Skip to main content
Top
Published in:

06-09-2024

Rhein Alleviates Doxorubicin-Induced Myocardial Injury by Inhibiting the p38 MAPK/HSP90/c-Jun/c-Fos Pathway-Mediated Apoptosis

Authors: Yong Chen, Yadan Tu, Jin Cao, Yigang Wang, Yi Ren

Published in: Cardiovascular Toxicology | Issue 11/2024

Login to get access

Abstract

Doxorubicin (Dox) has been limited in clinical application due to its cardiac toxicity that varies with the dose. This study aimed to explore how Rhein modulates Dox-induced myocardial toxicity. The general condition and echocardiographic changes of mice were observed to evaluate cardiac function and structure, with myocardial cell injury and apoptosis checked by TUNEL and HE staining. The ELISA assessed markers of myocardial damage and inflammation. The TCMSP and SwissTargetPrediction databases were used to retrieve Rhein's targets while GeneCards was used to find genes related to Dox-induced myocardial injury. Intersection genes were analyzed by Protein–Protein Interaction Networks. The core network genes underwent GO and KEGG enrichment analysis using R software. Western blot was used to detect protein expression. Compared to the Dox group, there was no remarkable difference in heart mass /body mass ratio in the Rhein+Dox group. However, heart mass/tibia length increased. Mice in the Rhein+Dox group had significantly increased LVEF, LVPWs, and LVFS compared to those in the Dox group. Myocardial cell damage, inflammation, and apoptosis significantly reduced in the Rhein+Dox group compared to the model group. Eleven core network genes were selected. Further, Rhein+Dox group showed significantly downregulated expression of p38/p-p38, HSP90AA1, c-Jun/p-c-Jun, c-Fos/p-c-Fos, Bax, and cleaved-caspase-3/caspase-3 while Bcl-2 expression significantly upregulated compared to the Dox group. The study suggests that Rhein mediates cardioprotection against Dox-induced myocardial injury, at least partly, by influencing multiple core genes in the MAPK signaling pathway to inhibit myocardial cell apoptosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sangweni, N. F., Gabuza, K., Huisamen, B., Mabasa, L., van Vuuren, D., & Johnson, R. (2022). Molecular insights into the pathophysiology of doxorubicin-induced cardiotoxicity: A graphical representation. Archives of Toxicology, 96, 1541–1550.PubMedPubMedCentralCrossRef Sangweni, N. F., Gabuza, K., Huisamen, B., Mabasa, L., van Vuuren, D., & Johnson, R. (2022). Molecular insights into the pathophysiology of doxorubicin-induced cardiotoxicity: A graphical representation. Archives of Toxicology, 96, 1541–1550.PubMedPubMedCentralCrossRef
2.
go back to reference Rivankar, S. (2014). An overview of doxorubicin formulations in cancer therapy. Journal of Cancer Research and Therapeutics, 10, 853–858.PubMedCrossRef Rivankar, S. (2014). An overview of doxorubicin formulations in cancer therapy. Journal of Cancer Research and Therapeutics, 10, 853–858.PubMedCrossRef
3.
go back to reference Sun, Z., Zhou, D., Yang, J., & Zhang, D. (2022). Doxorubicin promotes breast cancer cell migration and invasion via DCAF13. FEBS Open Bio, 12, 221–230.PubMedCrossRef Sun, Z., Zhou, D., Yang, J., & Zhang, D. (2022). Doxorubicin promotes breast cancer cell migration and invasion via DCAF13. FEBS Open Bio, 12, 221–230.PubMedCrossRef
4.
go back to reference Christidi, E., & Brunham, L. R. (2021). Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death & Disease, 12, 339.CrossRef Christidi, E., & Brunham, L. R. (2021). Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death & Disease, 12, 339.CrossRef
5.
go back to reference Kong, C. Y., Guo, Z., Song, P., Zhang, X., Yuan, Y. P., Teng, T., Yan, L., & Tang, Q. Z. (2022). Underlying the mechanisms of doxorubicin-induced acute cardiotoxicity: Oxidative stress and cell death. International Journal of Biological Sciences, 18, 760–770.PubMedPubMedCentralCrossRef Kong, C. Y., Guo, Z., Song, P., Zhang, X., Yuan, Y. P., Teng, T., Yan, L., & Tang, Q. Z. (2022). Underlying the mechanisms of doxorubicin-induced acute cardiotoxicity: Oxidative stress and cell death. International Journal of Biological Sciences, 18, 760–770.PubMedPubMedCentralCrossRef
6.
go back to reference Songbo, M., Lang, H., Xinyong, C., Bin, X., Ping, Z., & Liang, S. (2019). Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicology Letters, 307, 41–48.PubMedCrossRef Songbo, M., Lang, H., Xinyong, C., Bin, X., Ping, Z., & Liang, S. (2019). Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicology Letters, 307, 41–48.PubMedCrossRef
7.
8.
go back to reference Wang, A. J., Zhang, J., Xiao, M., Wang, S., Wang, B. J., Guo, Y., Tang, Y., & Gu, J. (2021). Molecular mechanisms of doxorubicin-induced cardiotoxicity: Novel roles of sirtuin 1-mediated signaling pathways. Cellular and Molecular Life Sciences, 78, 3105–3125.PubMedPubMedCentralCrossRef Wang, A. J., Zhang, J., Xiao, M., Wang, S., Wang, B. J., Guo, Y., Tang, Y., & Gu, J. (2021). Molecular mechanisms of doxorubicin-induced cardiotoxicity: Novel roles of sirtuin 1-mediated signaling pathways. Cellular and Molecular Life Sciences, 78, 3105–3125.PubMedPubMedCentralCrossRef
9.
go back to reference Fang, X., Wang, H., Han, D., Xie, E., Yang, X., Wei, J., Gu, S., Gao, F., Zhu, N., Yin, X., Cheng, Q., Zhang, P., Dai, W., Chen, J., Yang, F., Yang, H. T., Linkermann, A., Gu, W., Min, J., & Wang, F. (2019). Ferroptosis as a target for protection against cardiomyopathy. Proceedings of the National Academy of Sciences U S A, 116, 2672–2680.CrossRef Fang, X., Wang, H., Han, D., Xie, E., Yang, X., Wei, J., Gu, S., Gao, F., Zhu, N., Yin, X., Cheng, Q., Zhang, P., Dai, W., Chen, J., Yang, F., Yang, H. T., Linkermann, A., Gu, W., Min, J., & Wang, F. (2019). Ferroptosis as a target for protection against cardiomyopathy. Proceedings of the National Academy of Sciences U S A, 116, 2672–2680.CrossRef
10.
go back to reference Xie, M., Tao, W., Wu, F., Wu, K., Huang, X., Ling, G., Zhao, C., Lv, Q., Wang, Q., Zhou, X., Chen, Y., Yuan, Q., & Chen, Y. (2021). Anti-hypertensive and cardioprotective activities of traditional Chinese medicine-derived polysaccharides: A review. International Journal of Biological Macromolecules, 185, 917–934.PubMedCrossRef Xie, M., Tao, W., Wu, F., Wu, K., Huang, X., Ling, G., Zhao, C., Lv, Q., Wang, Q., Zhou, X., Chen, Y., Yuan, Q., & Chen, Y. (2021). Anti-hypertensive and cardioprotective activities of traditional Chinese medicine-derived polysaccharides: A review. International Journal of Biological Macromolecules, 185, 917–934.PubMedCrossRef
11.
go back to reference Varghese, R., George Priya Doss, C., Kumar, R. S., Almansour, A. I., Arumugam, N., Efferth, T., & Ramamoorthy, S. (2022). Cardioprotective effects of phytopigments via multiple signaling pathways. Phytomedicine, 95, 153859.PubMedCrossRef Varghese, R., George Priya Doss, C., Kumar, R. S., Almansour, A. I., Arumugam, N., Efferth, T., & Ramamoorthy, S. (2022). Cardioprotective effects of phytopigments via multiple signaling pathways. Phytomedicine, 95, 153859.PubMedCrossRef
12.
go back to reference Kushwah, A. S., Mittal, R., Kumar, M., Kaur, G., Goel, P., Sharma, R. K., Kabra, A., & Nainwal, L. M. (2022). Cardioprotective Activity of Cassia fistula L Bark Extract in Isoproterenol-Induced Myocardial Infarction Rat Model. Evid Based Complement Alternat Med, 2022, 6874281.PubMedPubMedCentralCrossRef Kushwah, A. S., Mittal, R., Kumar, M., Kaur, G., Goel, P., Sharma, R. K., Kabra, A., & Nainwal, L. M. (2022). Cardioprotective Activity of Cassia fistula L Bark Extract in Isoproterenol-Induced Myocardial Infarction Rat Model. Evid Based Complement Alternat Med, 2022, 6874281.PubMedPubMedCentralCrossRef
13.
go back to reference Lu, J., Li, J., Hu, Y., Guo, Z., Sun, D., Wang, P., Guo, K., Duan, D. D., Gao, S., Jiang, J., Wang, J., & Liu, P. (2019). Chrysophanol protects against doxorubicin-induced cardiotoxicity by suppressing cellular PARylation. Acta Pharmaceutica Sinica B, 9, 782–793.PubMedCrossRef Lu, J., Li, J., Hu, Y., Guo, Z., Sun, D., Wang, P., Guo, K., Duan, D. D., Gao, S., Jiang, J., Wang, J., & Liu, P. (2019). Chrysophanol protects against doxorubicin-induced cardiotoxicity by suppressing cellular PARylation. Acta Pharmaceutica Sinica B, 9, 782–793.PubMedCrossRef
14.
go back to reference Birari, L., Wagh, S., Patil, K. R., Mahajan, U. B., Unger, B., Belemkar, S., Goyal, S. N., & Ojha, S. (2020). Patil CR Aloin alleviates doxorubicin-induced cardiotoxicity in rats by abrogating oxidative stress and pro-inflammatory cytokines. Cancer Chemotherapy and Pharmacology, 86, 419–426.PubMedCrossRef Birari, L., Wagh, S., Patil, K. R., Mahajan, U. B., Unger, B., Belemkar, S., Goyal, S. N., & Ojha, S. (2020). Patil CR Aloin alleviates doxorubicin-induced cardiotoxicity in rats by abrogating oxidative stress and pro-inflammatory cytokines. Cancer Chemotherapy and Pharmacology, 86, 419–426.PubMedCrossRef
15.
go back to reference Wu, J., Wei, Z., Cheng, P., Qian, C., Xu, F., Yang, Y., Wang, A., Chen, W., Sun, Z., & Lu, Y. (2020). Rhein modulates host purine metabolism in intestine through gut microbiota and ameliorates experimental colitis. Theranostics, 10, 10665–10679.PubMedPubMedCentralCrossRef Wu, J., Wei, Z., Cheng, P., Qian, C., Xu, F., Yang, Y., Wang, A., Chen, W., Sun, Z., & Lu, Y. (2020). Rhein modulates host purine metabolism in intestine through gut microbiota and ameliorates experimental colitis. Theranostics, 10, 10665–10679.PubMedPubMedCentralCrossRef
16.
go back to reference Zhou, Y., Gao, C., Vong, C. T., Tao, H., Li, H., Wang, S., & Wang, Y. (2022). Rhein regulates redox-mediated activation of NLRP3 inflammasomes in intestinal inflammation through macrophage-activated crosstalk. British Journal of Pharmacology, 179, 1978–1997.PubMedCrossRef Zhou, Y., Gao, C., Vong, C. T., Tao, H., Li, H., Wang, S., & Wang, Y. (2022). Rhein regulates redox-mediated activation of NLRP3 inflammasomes in intestinal inflammation through macrophage-activated crosstalk. British Journal of Pharmacology, 179, 1978–1997.PubMedCrossRef
17.
go back to reference Xu, X., Lv, H., Xia, Z., Fan, R., Zhang, C., Wang, Y., & Wang, D. (2017). Rhein exhibits antioxidative effects similar to Rhubarb in a rat model of traumatic brain injury. BMC Complementary and Alternative Medicine, 17, 140.PubMedPubMedCentralCrossRef Xu, X., Lv, H., Xia, Z., Fan, R., Zhang, C., Wang, Y., & Wang, D. (2017). Rhein exhibits antioxidative effects similar to Rhubarb in a rat model of traumatic brain injury. BMC Complementary and Alternative Medicine, 17, 140.PubMedPubMedCentralCrossRef
18.
go back to reference Ren, B., Guo, W., Tang, Y., Zhang, J., Xiao, N., Zhang, L., & Li, W. (2019). Rhein inhibits the migration of ovarian cancer cells through down-regulation of matrix metalloproteinases. Biological and Pharmaceutical Bulletin, 42, 568–572.PubMedCrossRef Ren, B., Guo, W., Tang, Y., Zhang, J., Xiao, N., Zhang, L., & Li, W. (2019). Rhein inhibits the migration of ovarian cancer cells through down-regulation of matrix metalloproteinases. Biological and Pharmaceutical Bulletin, 42, 568–572.PubMedCrossRef
19.
go back to reference Lu, W., Zhu, H., Wu, J., Liao, S., Cheng, G., & Li, X. (2022). Rhein attenuates angiotensin II-induced cardiac remodeling by modulating AMPK-FGF23 signaling. Journal of Translational Medicine, 20, 305.PubMedPubMedCentralCrossRef Lu, W., Zhu, H., Wu, J., Liao, S., Cheng, G., & Li, X. (2022). Rhein attenuates angiotensin II-induced cardiac remodeling by modulating AMPK-FGF23 signaling. Journal of Translational Medicine, 20, 305.PubMedPubMedCentralCrossRef
20.
go back to reference Liu, J., Chen, Z., Zhang, Y., Zhang, M., Zhu, X., Fan, Y., Shi, S., Zen, K., & Liu, Z. (2013). Rhein protects pancreatic β-cells from dynamin-related protein-1-mediated mitochondrial fission and cell apoptosis under hyperglycemia. Diabetes, 62, 3927–3935.PubMedPubMedCentralCrossRef Liu, J., Chen, Z., Zhang, Y., Zhang, M., Zhu, X., Fan, Y., Shi, S., Zen, K., & Liu, Z. (2013). Rhein protects pancreatic β-cells from dynamin-related protein-1-mediated mitochondrial fission and cell apoptosis under hyperglycemia. Diabetes, 62, 3927–3935.PubMedPubMedCentralCrossRef
21.
go back to reference Zhang, G. L., Dai, D. Z., Xi, T., Cong, X. D., Zhang, Y., & Dai, Y. (2011). Isoproterenol-induced FKBP12.6/12 downregulation is modulated by ETA and ETB receptors and reversed by Argirhein, a derivative of Rhein. Acta Pharmacologica Sinica, 32, 223–229.PubMedPubMedCentralCrossRef Zhang, G. L., Dai, D. Z., Xi, T., Cong, X. D., Zhang, Y., & Dai, Y. (2011). Isoproterenol-induced FKBP12.6/12 downregulation is modulated by ETA and ETB receptors and reversed by Argirhein, a derivative of Rhein. Acta Pharmacologica Sinica, 32, 223–229.PubMedPubMedCentralCrossRef
22.
go back to reference Liu, J., Li, Y., Tang, Y., Cheng, J., Wang, J., Li, J., Ma, X., Zhuang, W., Gong, J., & Liu, Z. (2018). Rhein protects the myocardiac cells against hypoxia/reoxygention-induced injury by suppressing GSK3β activity. Phytomedicine, 51, 1–6.PubMedCrossRef Liu, J., Li, Y., Tang, Y., Cheng, J., Wang, J., Li, J., Ma, X., Zhuang, W., Gong, J., & Liu, Z. (2018). Rhein protects the myocardiac cells against hypoxia/reoxygention-induced injury by suppressing GSK3β activity. Phytomedicine, 51, 1–6.PubMedCrossRef
23.
go back to reference Nogales, C., Mamdouh, Z. M., List, M., Kiel, C., Casas, A. I., & Schmidt, H. (2022). Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends in Pharmacological Sciences, 43, 136–150.PubMedCrossRef Nogales, C., Mamdouh, Z. M., List, M., Kiel, C., Casas, A. I., & Schmidt, H. (2022). Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends in Pharmacological Sciences, 43, 136–150.PubMedCrossRef
24.
go back to reference He, S., Wang, T., Shi, C., Wang, Z., & Fu, X. (2022). Network pharmacology-based approach to understand the effect and mechanism of Danshen against anemia. Journal of Ethnopharmacology, 282, 114615.PubMedCrossRef He, S., Wang, T., Shi, C., Wang, Z., & Fu, X. (2022). Network pharmacology-based approach to understand the effect and mechanism of Danshen against anemia. Journal of Ethnopharmacology, 282, 114615.PubMedCrossRef
25.
go back to reference Wang, Y., Yuan, Y., Wang, W., He, Y., Zhong, H., Zhou, X., Chen, Y., Cai, X. J., & Liu, L. Q. (2022). Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking. Computers in Biology and Medicine, 145, 105454.PubMedCrossRef Wang, Y., Yuan, Y., Wang, W., He, Y., Zhong, H., Zhou, X., Chen, Y., Cai, X. J., & Liu, L. Q. (2022). Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking. Computers in Biology and Medicine, 145, 105454.PubMedCrossRef
26.
go back to reference Desai, V. G., Herman, E. H., Moland, C. L., Branham, W. S., Lewis, S. M., Davis, K. J., George, N. I., Lee, T., Kerr, S., & Fuscoe, J. C. (2013). Development of doxorubicin-induced chronic cardiotoxicity in the B6C3F1 mouse model. Toxicology and Applied Pharmacology, 266, 109–121.PubMedCrossRef Desai, V. G., Herman, E. H., Moland, C. L., Branham, W. S., Lewis, S. M., Davis, K. J., George, N. I., Lee, T., Kerr, S., & Fuscoe, J. C. (2013). Development of doxorubicin-induced chronic cardiotoxicity in the B6C3F1 mouse model. Toxicology and Applied Pharmacology, 266, 109–121.PubMedCrossRef
27.
go back to reference Upadhyay, S., Gupta, K. B., Mantha, A. K., & Dhiman, M. (2021). A short review: Doxorubicin and its effect on cardiac proteins. Journal of Cellular Biochemistry, 122, 153–165.PubMedCrossRef Upadhyay, S., Gupta, K. B., Mantha, A. K., & Dhiman, M. (2021). A short review: Doxorubicin and its effect on cardiac proteins. Journal of Cellular Biochemistry, 122, 153–165.PubMedCrossRef
28.
go back to reference Doroshow, J. H. (1991). Doxorubicin-induced cardiac toxicity. New England Journal of Medicine, 324, 843–845.PubMedCrossRef Doroshow, J. H. (1991). Doxorubicin-induced cardiac toxicity. New England Journal of Medicine, 324, 843–845.PubMedCrossRef
29.
go back to reference Ma, Y., Yang, L., Ma, J., Lu, L., Wang, X., Ren, J., & Yang, J. (2017). Rutin attenuates doxorubicin-induced cardiotoxicity via regulating autophagy and apoptosis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863, 1904–1911.PubMedCrossRef Ma, Y., Yang, L., Ma, J., Lu, L., Wang, X., Ren, J., & Yang, J. (2017). Rutin attenuates doxorubicin-induced cardiotoxicity via regulating autophagy and apoptosis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863, 1904–1911.PubMedCrossRef
30.
go back to reference Poelmann, R. E., Molin, D., Wisse, L. J., & Gittenberger-de Groot, A. C. (2000). Apoptosis in cardiac development. Cell and Tissue Research, 301, 43–52.PubMedCrossRef Poelmann, R. E., Molin, D., Wisse, L. J., & Gittenberger-de Groot, A. C. (2000). Apoptosis in cardiac development. Cell and Tissue Research, 301, 43–52.PubMedCrossRef
32.
go back to reference Qi, J. Y., Yang, Y. K., Jiang, C., Zhao, Y., Wu, Y. C., Han, X., Jing, X., Wu, Z. L., & Chu, L. (2022). Exploring the mechanism of Danshensu in the treatment of doxorubicin-induced cardiotoxicity based on network pharmacology and experimental evaluation. Frontiers in Cardiovascular Medicine, 9, 827975.PubMedPubMedCentralCrossRef Qi, J. Y., Yang, Y. K., Jiang, C., Zhao, Y., Wu, Y. C., Han, X., Jing, X., Wu, Z. L., & Chu, L. (2022). Exploring the mechanism of Danshensu in the treatment of doxorubicin-induced cardiotoxicity based on network pharmacology and experimental evaluation. Frontiers in Cardiovascular Medicine, 9, 827975.PubMedPubMedCentralCrossRef
33.
go back to reference Li, W., Qu, X., Kang, X., Zhang, H., Zhang, X., Hu, H., Yao, L., Zhang, L., Zheng, J., Zheng, Y., Zhang, J., & Xu, Y. (2022). Silibinin eliminates mitochondrial ROS and restores autophagy through IL6ST/JAK2/STAT3 signaling pathway to protect cardiomyocytes from doxorubicin-induced injury. European Journal of Pharmacology, 929, 175153.PubMedCrossRef Li, W., Qu, X., Kang, X., Zhang, H., Zhang, X., Hu, H., Yao, L., Zhang, L., Zheng, J., Zheng, Y., Zhang, J., & Xu, Y. (2022). Silibinin eliminates mitochondrial ROS and restores autophagy through IL6ST/JAK2/STAT3 signaling pathway to protect cardiomyocytes from doxorubicin-induced injury. European Journal of Pharmacology, 929, 175153.PubMedCrossRef
34.
go back to reference Dong, L., Du, H., Zhang, M., Xu, H., Pu, X., Chen, Q., Luo, R., Hu, Y., Wang, Y., Tu, H., Zhang, J., & Gao, F. (2022). Anti-inflammatory effect of Rhein on ulcerative colitis via inhibiting PI3K/Akt/mTOR signaling pathway and regulating gut microbiota. Phytotherapy Research, 36, 2081–2094.PubMedCrossRef Dong, L., Du, H., Zhang, M., Xu, H., Pu, X., Chen, Q., Luo, R., Hu, Y., Wang, Y., Tu, H., Zhang, J., & Gao, F. (2022). Anti-inflammatory effect of Rhein on ulcerative colitis via inhibiting PI3K/Akt/mTOR signaling pathway and regulating gut microbiota. Phytotherapy Research, 36, 2081–2094.PubMedCrossRef
35.
go back to reference Henamayee, S., Banik, K., Sailo, B. L., Shabnam, B., Harsha, C., Srilakshmi, S., Vgm, N., Baek, S. H., Ahn, K. S., & Kunnumakkara, A. B. (2020). Therapeutic emergence of Rhein as a potential anticancer drug: A review of its molecular targets and anticancer properties. Molecules, 25, 2278.PubMedPubMedCentralCrossRef Henamayee, S., Banik, K., Sailo, B. L., Shabnam, B., Harsha, C., Srilakshmi, S., Vgm, N., Baek, S. H., Ahn, K. S., & Kunnumakkara, A. B. (2020). Therapeutic emergence of Rhein as a potential anticancer drug: A review of its molecular targets and anticancer properties. Molecules, 25, 2278.PubMedPubMedCentralCrossRef
36.
go back to reference Wang, W., Meng, X., Wang, J., & Li, Y. (2018). Improved heart failure by Rhein lysinate is associated with p38MAPK pathway. Experimental and Therapeutic Medicine, 16, 2046–2051.PubMedPubMedCentral Wang, W., Meng, X., Wang, J., & Li, Y. (2018). Improved heart failure by Rhein lysinate is associated with p38MAPK pathway. Experimental and Therapeutic Medicine, 16, 2046–2051.PubMedPubMedCentral
37.
go back to reference Liao, X., Song, X., Li, J., Li, L., Fan, X., Qin, Q., Zhong, C., Yang, P., Zhan, J., & Cai, Y. (2022). An injectable co-assembled hydrogel blocks reactive oxygen species and inflammation cycle resisting myocardial ischemia-reperfusion injury. Acta Biomaterials, 149, 82–95.CrossRef Liao, X., Song, X., Li, J., Li, L., Fan, X., Qin, Q., Zhong, C., Yang, P., Zhan, J., & Cai, Y. (2022). An injectable co-assembled hydrogel blocks reactive oxygen species and inflammation cycle resisting myocardial ischemia-reperfusion injury. Acta Biomaterials, 149, 82–95.CrossRef
38.
go back to reference Zhang, Y. J., Wu, S. S., Chen, X. M., Pi, J. K., Cheng, Y. F., Zhang, Y., Wang, X. J., Luo, D., Zhou, J. H., Xu, J. Y., Li, X., Wu, Z., Jiang, W., Saikosaponin, D., & Wang, X. X. (2022). Alleviates DOX-induced cardiac injury in vivo and in vitro. Journal of Cardiovascular Pharmacology, 79, 558–567.PubMedCrossRef Zhang, Y. J., Wu, S. S., Chen, X. M., Pi, J. K., Cheng, Y. F., Zhang, Y., Wang, X. J., Luo, D., Zhou, J. H., Xu, J. Y., Li, X., Wu, Z., Jiang, W., Saikosaponin, D., & Wang, X. X. (2022). Alleviates DOX-induced cardiac injury in vivo and in vitro. Journal of Cardiovascular Pharmacology, 79, 558–567.PubMedCrossRef
39.
go back to reference Guo, R., Lin, J., Xu, W., Shen, N., Mo, L., Zhang, C., & Feng, J. (2013). Hydrogen sulfide attenuates doxorubicin-induced cardiotoxicity by inhibition of the p38 MAPK pathway in H9c2 cells. International Journal of Molecular Medicine, 31, 644–650.PubMedCrossRef Guo, R., Lin, J., Xu, W., Shen, N., Mo, L., Zhang, C., & Feng, J. (2013). Hydrogen sulfide attenuates doxorubicin-induced cardiotoxicity by inhibition of the p38 MAPK pathway in H9c2 cells. International Journal of Molecular Medicine, 31, 644–650.PubMedCrossRef
40.
go back to reference Blüthgen, N., & Legewie, S. (2008). Systems analysis of MAPK signal transduction. Essays in Biochemistry, 45, 95–107.PubMedCrossRef Blüthgen, N., & Legewie, S. (2008). Systems analysis of MAPK signal transduction. Essays in Biochemistry, 45, 95–107.PubMedCrossRef
41.
go back to reference Kiel, C., & Serrano, L. (2012). Challenges ahead in signal transduction: MAPK as an example. Current Opinion in Biotechnology, 23, 305–314.PubMedCrossRef Kiel, C., & Serrano, L. (2012). Challenges ahead in signal transduction: MAPK as an example. Current Opinion in Biotechnology, 23, 305–314.PubMedCrossRef
42.
go back to reference Lin, K. H., Kuo, W. W., Jiang, A. Z., Pai, P., Lin, J. Y., Chen, W. K., Day, C. H., Shen, C. Y., Padma, V. V., & Huang, C. Y. (2015). Tetramethylpyrazine ameliorated hypoxia-induced myocardial cell apoptosis via HIF-1α/JNK/p38 and IGFBP3/BNIP3 inhibition to upregulate PI3K/Akt survival signaling. Cellular Physiology and Biochemistry, 36, 334–344.PubMedCrossRef Lin, K. H., Kuo, W. W., Jiang, A. Z., Pai, P., Lin, J. Y., Chen, W. K., Day, C. H., Shen, C. Y., Padma, V. V., & Huang, C. Y. (2015). Tetramethylpyrazine ameliorated hypoxia-induced myocardial cell apoptosis via HIF-1α/JNK/p38 and IGFBP3/BNIP3 inhibition to upregulate PI3K/Akt survival signaling. Cellular Physiology and Biochemistry, 36, 334–344.PubMedCrossRef
43.
go back to reference Xu, L., He, D., Wu, Y., Shen, L., Wang, Y., & Xu, Y. (2022). Tanshinone IIA inhibits cardiomyocyte apoptosis and rescues cardiac function during doxorubicin-induced cardiotoxicity by activating the DAXX/MEK/ERK1/2 pathway. Phytomedicine, 107, 154471.PubMedCrossRef Xu, L., He, D., Wu, Y., Shen, L., Wang, Y., & Xu, Y. (2022). Tanshinone IIA inhibits cardiomyocyte apoptosis and rescues cardiac function during doxorubicin-induced cardiotoxicity by activating the DAXX/MEK/ERK1/2 pathway. Phytomedicine, 107, 154471.PubMedCrossRef
45.
go back to reference Sun, P., Wang, Y., Gao, T., Li, K., Zheng, D., Liu, A., & Ni, Y. (2021). Hsp90 modulates human sperm capacitation via the Erk1/2 and p38 MAPK signaling pathways. Reproductive Biology and Endocrinology, 19, 39.PubMedPubMedCentralCrossRef Sun, P., Wang, Y., Gao, T., Li, K., Zheng, D., Liu, A., & Ni, Y. (2021). Hsp90 modulates human sperm capacitation via the Erk1/2 and p38 MAPK signaling pathways. Reproductive Biology and Endocrinology, 19, 39.PubMedPubMedCentralCrossRef
46.
go back to reference Xiao, X., Wang, W., Li, Y., Yang, D., Li, X., Shen, C., Liu, Y., Ke, X., Guo, S., & Guo, Z. (2018). HSP90AA1-mediated autophagy promotes drug resistance in osteosarcoma. Journal of Experimental & Clinical Cancer Research, 37, 201.CrossRef Xiao, X., Wang, W., Li, Y., Yang, D., Li, X., Shen, C., Liu, Y., Ke, X., Guo, S., & Guo, Z. (2018). HSP90AA1-mediated autophagy promotes drug resistance in osteosarcoma. Journal of Experimental & Clinical Cancer Research, 37, 201.CrossRef
47.
48.
go back to reference Singh, M., Yadav, S., Kumar, M., Saxena, S., Saraswat, D., Bansal, A., & Singh, S. B. (2018). The MAPK-activator protein-1 signaling regulates changes in lung tissue of rat exposed to hypobaric hypoxia. Journal of Cellular Physiology, 233, 6851–6865.PubMedCrossRef Singh, M., Yadav, S., Kumar, M., Saxena, S., Saraswat, D., Bansal, A., & Singh, S. B. (2018). The MAPK-activator protein-1 signaling regulates changes in lung tissue of rat exposed to hypobaric hypoxia. Journal of Cellular Physiology, 233, 6851–6865.PubMedCrossRef
49.
go back to reference Wu, Y. Z., Tsai, Y. Y., Chang, L. S., & Chen, Y. J. (2021). Evaluation of gallic acid-coated gold nanoparticles as an anti-aging ingredient. Pharmaceuticals (Basel), 14, 1071.PubMedCrossRef Wu, Y. Z., Tsai, Y. Y., Chang, L. S., & Chen, Y. J. (2021). Evaluation of gallic acid-coated gold nanoparticles as an anti-aging ingredient. Pharmaceuticals (Basel), 14, 1071.PubMedCrossRef
50.
go back to reference Tago, K., Tsukahara, F., Naruse, M., Yoshioka, T., & Takano, K. (2004). Hsp90 inhibitors attenuate effect of dexamethasone on activated NF-kappaB and AP-1. Life Sciences, 74, 1981–1992.PubMedCrossRef Tago, K., Tsukahara, F., Naruse, M., Yoshioka, T., & Takano, K. (2004). Hsp90 inhibitors attenuate effect of dexamethasone on activated NF-kappaB and AP-1. Life Sciences, 74, 1981–1992.PubMedCrossRef
51.
go back to reference Lalier, L., Vallette, F., & Manon, S. (2022). Bcl-2 family members and the mitochondrial import machineries: The roads to death. Biomolecules, 12, 162.PubMedPubMedCentralCrossRef Lalier, L., Vallette, F., & Manon, S. (2022). Bcl-2 family members and the mitochondrial import machineries: The roads to death. Biomolecules, 12, 162.PubMedPubMedCentralCrossRef
52.
go back to reference Chang, W. T., Lin, Y. W., Ho, C. H., Chen, Z. C., Liu, P. Y., & Shih, J. Y. (2021). Dapagliflozin suppresses ER stress and protects doxorubicin-induced cardiotoxicity in breast cancer patients. Archives of Toxicology, 95, 659–671.PubMedCrossRef Chang, W. T., Lin, Y. W., Ho, C. H., Chen, Z. C., Liu, P. Y., & Shih, J. Y. (2021). Dapagliflozin suppresses ER stress and protects doxorubicin-induced cardiotoxicity in breast cancer patients. Archives of Toxicology, 95, 659–671.PubMedCrossRef
53.
go back to reference Zhang, H., Ma, L., Kim, E., Yi, J., Huang, H., Kim, H., Raza, M. A., Park, S., Jang, S., Kim, K., Kim, S. H., Lee, Y., Kim, E., Ryoo, Z. Y., & Kim, M. O. (2023). Rhein induces oral cancer cell apoptosis and ROS via suppresse AKT/mTOR signaling pathway in vitro and in vivo. International Journal of Molecular Sciences, 24, 8507.PubMedPubMedCentralCrossRef Zhang, H., Ma, L., Kim, E., Yi, J., Huang, H., Kim, H., Raza, M. A., Park, S., Jang, S., Kim, K., Kim, S. H., Lee, Y., Kim, E., Ryoo, Z. Y., & Kim, M. O. (2023). Rhein induces oral cancer cell apoptosis and ROS via suppresse AKT/mTOR signaling pathway in vitro and in vivo. International Journal of Molecular Sciences, 24, 8507.PubMedPubMedCentralCrossRef
54.
go back to reference Wang, J., Liu, S., Yin, Y., Li, M., Wang, B., Yang, L., & Jiang, Y. (2015). FOXO3-mediated up-regulation of Bim contributes to Rhein-induced cancer cell apoptosis. Apoptosis: A International Journal on Programmed Cell Death, 20, 399–409.CrossRef Wang, J., Liu, S., Yin, Y., Li, M., Wang, B., Yang, L., & Jiang, Y. (2015). FOXO3-mediated up-regulation of Bim contributes to Rhein-induced cancer cell apoptosis. Apoptosis: A International Journal on Programmed Cell Death, 20, 399–409.CrossRef
55.
go back to reference Liu, C., Cao, Q., Chen, Y., Chen, X., Zhu, Y., Zhang, Z., & Wei, W. (2023). Rhein protects retinal Müller cells from high glucose-induced injury via activating the AMPK/Sirt1/PGC-1α pathway. Journal of Receptor and Signal Transduction Research, 43, 62–71.PubMedCrossRef Liu, C., Cao, Q., Chen, Y., Chen, X., Zhu, Y., Zhang, Z., & Wei, W. (2023). Rhein protects retinal Müller cells from high glucose-induced injury via activating the AMPK/Sirt1/PGC-1α pathway. Journal of Receptor and Signal Transduction Research, 43, 62–71.PubMedCrossRef
56.
go back to reference Li, H., Jia, Y., Yao, D., Gao, M., Wang, L., & Liu, J. (2024). Rhein alleviates myocardial ischemic injury by inhibiting mitochondrial division, activating mitochondrial autophagy and suppressing myocardial cell apoptosis through the Drp1/Pink1/Parkin pathway. Molecular Biology Reports, 51, 266.PubMedCrossRef Li, H., Jia, Y., Yao, D., Gao, M., Wang, L., & Liu, J. (2024). Rhein alleviates myocardial ischemic injury by inhibiting mitochondrial division, activating mitochondrial autophagy and suppressing myocardial cell apoptosis through the Drp1/Pink1/Parkin pathway. Molecular Biology Reports, 51, 266.PubMedCrossRef
Metadata
Title
Rhein Alleviates Doxorubicin-Induced Myocardial Injury by Inhibiting the p38 MAPK/HSP90/c-Jun/c-Fos Pathway-Mediated Apoptosis
Authors
Yong Chen
Yadan Tu
Jin Cao
Yigang Wang
Yi Ren
Publication date
06-09-2024
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 11/2024
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-024-09917-7

Other articles of this Issue 11/2024

Cardiovascular Toxicology 11/2024 Go to the issue

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

Keynote webinar | Spotlight on medication adherence

  • Webinar | 27-06-2024 | 18:00 (CEST)

Medication non-adherence is a major barrier to effective healthcare delivery; half of all patients do not follow their doctor’s recommendations or treatment plan.

Our experts explain the fundamentals with a practical discussion of how to manage non-adherence in two common scenarios: hypertension and asthma control.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Watch now