Skip to main content
Top
Published in:

26-09-2023 | Respiratory Microbiota | LUNG MICROBIOME

Lung Microbiome as a Treatable Trait in Chronic Respiratory Disorders

Authors: Filippo Scialò, Maria Vitale, Vito D’Agnano, Domenica Francesca Mariniello, Fabio Perrotta, Alice Castaldo, Susan F. M. Campbell, Lucio Pastore, Mario Cazzola, Andrea Bianco

Published in: Lung | Issue 5/2023

Login to get access

Abstract

Once thought to be a sterile environment, it is now established that lungs are populated by various microorganisms that participate in maintaining lung function and play an important role in shaping lung immune surveillance. Although our comprehension of the molecular and metabolic interactions between microbes and lung cells is still in its infancy, any event causing a persistent qualitative or quantitative variation in the composition of lung microbiome, termed “dysbiosis”, has been virtually associated with many respiratory diseases. A deep understanding of the composition and function of the “healthy” lung microbiota and how dysbiosis can cause or participate in disease progression will be pivotal in finding specific therapies aimed at preventing diseases and restoring lung function. Here, we review lung microbiome dysbiosis in different lung pathologies and the mechanisms by which these bacteria can cause or contribute to the severity of the disease. Furthermore, we describe how different respiratory disorders can be caused by the same pathogen, and that the real pathogenetic mechanism is not only dependent by the presence and amount of the main pathogen but can be shaped by the interaction it can build with other bacteria, fungi, and viruses present in the lung. Understanding the nature of this bacteria crosstalk could further our understanding of each respiratory disease leading to the development of new therapeutic strategies.
Literature
1.
go back to reference Zitvogel L, Daillère R, Roberti MP, Routy B, Kroemer G (2017) Anticancer effects of the microbiome and its products. Nat Rev Microbiol 15(8):465–478PubMedCrossRef Zitvogel L, Daillère R, Roberti MP, Routy B, Kroemer G (2017) Anticancer effects of the microbiome and its products. Nat Rev Microbiol 15(8):465–478PubMedCrossRef
2.
go back to reference Huffnagle GB, Dickson RP, Lukacs NW (2017) The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol 10(2):299–306PubMedCrossRef Huffnagle GB, Dickson RP, Lukacs NW (2017) The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol 10(2):299–306PubMedCrossRef
3.
go back to reference Yagi K, Huffnagle GB, Lukacs NW, Asai N (2021) The lung microbiome during health and disease. Int J Mol Sci 22(19):1–13CrossRef Yagi K, Huffnagle GB, Lukacs NW, Asai N (2021) The lung microbiome during health and disease. Int J Mol Sci 22(19):1–13CrossRef
4.
go back to reference Chotirmall SH, Gellatly SL, Budden KF, Mac Aogain M, Shukla SD, Wood DLA et al (2017) Microbiomes in respiratory health and disease: an Asia-Pacific perspective. Respirology 22(2):240–250PubMedCrossRef Chotirmall SH, Gellatly SL, Budden KF, Mac Aogain M, Shukla SD, Wood DLA et al (2017) Microbiomes in respiratory health and disease: an Asia-Pacific perspective. Respirology 22(2):240–250PubMedCrossRef
5.
go back to reference Budden KF, Shukla SD, Rehman SF, Bowerman KL, Keely S, Hugenholtz P et al (2019) Functional effects of the microbiota in chronic respiratory disease. Lancet Respir Med 7(10):907–920PubMedCrossRef Budden KF, Shukla SD, Rehman SF, Bowerman KL, Keely S, Hugenholtz P et al (2019) Functional effects of the microbiota in chronic respiratory disease. Lancet Respir Med 7(10):907–920PubMedCrossRef
6.
go back to reference Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, Schmidt LA et al (2011) Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS ONE 6(2):e16384PubMedPubMedCentralCrossRef Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, Schmidt LA et al (2011) Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS ONE 6(2):e16384PubMedPubMedCentralCrossRef
7.
8.
go back to reference Gomes S, Cavadas B, Ferreira JC, Marques PI, Monteiro C, Sucena M et al (2019) Profiling of lung microbiota discloses differences in adenocarcinoma and squamous cell carcinoma. Sci Rep 9(1):1–11CrossRef Gomes S, Cavadas B, Ferreira JC, Marques PI, Monteiro C, Sucena M et al (2019) Profiling of lung microbiota discloses differences in adenocarcinoma and squamous cell carcinoma. Sci Rep 9(1):1–11CrossRef
9.
go back to reference Valverde-Molina J, García-Marcos L (2023) Microbiome and asthma: microbial dysbiosis and the origins, phenotypes, persistence, and severity of asthma. Nutrients 15(3):486PubMedPubMedCentralCrossRef Valverde-Molina J, García-Marcos L (2023) Microbiome and asthma: microbial dysbiosis and the origins, phenotypes, persistence, and severity of asthma. Nutrients 15(3):486PubMedPubMedCentralCrossRef
10.
go back to reference Hu T, Dong Y, Yang C, Zhao M, He Q (2021) Pathogenesis of children’s allergic diseases: refocusing the role of the gut microbiota. Front Physiol 12:1–10CrossRef Hu T, Dong Y, Yang C, Zhao M, He Q (2021) Pathogenesis of children’s allergic diseases: refocusing the role of the gut microbiota. Front Physiol 12:1–10CrossRef
11.
go back to reference Natalini JG, Singh S, Segal LN (2023) The dynamic lung microbiome in health and disease. Nat Rev Microbiol 21:222–235PubMedCrossRef Natalini JG, Singh S, Segal LN (2023) The dynamic lung microbiome in health and disease. Nat Rev Microbiol 21:222–235PubMedCrossRef
12.
go back to reference O’Dwyer DN, Ashley SL, Gurczynski SJ, Xia M, Wilke C, Falkowski NR et al (2019) Lung microbiota contribute to pulmonary inflammation and disease progression in pulmonary fibrosis. Am J Respir Crit Care Med 199(9):1127–1138PubMedPubMedCentralCrossRef O’Dwyer DN, Ashley SL, Gurczynski SJ, Xia M, Wilke C, Falkowski NR et al (2019) Lung microbiota contribute to pulmonary inflammation and disease progression in pulmonary fibrosis. Am J Respir Crit Care Med 199(9):1127–1138PubMedPubMedCentralCrossRef
13.
14.
go back to reference Esposito V, Lucariello A, Savarese L, Cinelli MP, Ferraraccio F, Bianco A et al (2012) Morphology changes in human lung epithelial cells after exposure to diesel exhaust micron sub particles (PM1.0) and pollen allergens. Environ Pollut 171:162–167PubMedCrossRef Esposito V, Lucariello A, Savarese L, Cinelli MP, Ferraraccio F, Bianco A et al (2012) Morphology changes in human lung epithelial cells after exposure to diesel exhaust micron sub particles (PM1.0) and pollen allergens. Environ Pollut 171:162–167PubMedCrossRef
15.
go back to reference Brune K, Frank J, Schwingshackl A, Finigan J, Sidhaye VK (2015) Pulmonary epithelial barrier function: some new players and mechanisms. Am J Physiol-Lung Cell Mol Physiol 308(8):L731–L745PubMedPubMedCentralCrossRef Brune K, Frank J, Schwingshackl A, Finigan J, Sidhaye VK (2015) Pulmonary epithelial barrier function: some new players and mechanisms. Am J Physiol-Lung Cell Mol Physiol 308(8):L731–L745PubMedPubMedCentralCrossRef
17.
go back to reference Roca J, Vargas C, Cano I, Selivanov V, Barreiro E, Maier D et al (2014) Chronic obstructive pulmonary disease heterogeneity: challenges for health risk assessment, stratification and management. J Transl Med 12(Suppl 2):S3PubMedPubMedCentralCrossRef Roca J, Vargas C, Cano I, Selivanov V, Barreiro E, Maier D et al (2014) Chronic obstructive pulmonary disease heterogeneity: challenges for health risk assessment, stratification and management. J Transl Med 12(Suppl 2):S3PubMedPubMedCentralCrossRef
18.
go back to reference Prasetyo A, Sadhana U, Budiman J (2021) Nasal mucociliary clearance in smokers: A systematic review. Int Arch Otorhinolaryngol 25(1):160–169CrossRef Prasetyo A, Sadhana U, Budiman J (2021) Nasal mucociliary clearance in smokers: A systematic review. Int Arch Otorhinolaryngol 25(1):160–169CrossRef
19.
go back to reference Sethi S, Maloney J, Grove L, Wrona C, Berenson CS (2006) Airway inflammation and bronchial bacterial colonization in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 173(9):991–998PubMedPubMedCentralCrossRef Sethi S, Maloney J, Grove L, Wrona C, Berenson CS (2006) Airway inflammation and bronchial bacterial colonization in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 173(9):991–998PubMedPubMedCentralCrossRef
21.
go back to reference Pragman AA, Kim HB, Reilly CS, Wendt C, Isaacson RE (2012) The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS ONE 7(10):e47305PubMedPubMedCentralCrossRef Pragman AA, Kim HB, Reilly CS, Wendt C, Isaacson RE (2012) The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS ONE 7(10):e47305PubMedPubMedCentralCrossRef
22.
go back to reference Lin L, Li J, Song Q, Cheng W, Chen P (2022) The role of HMGB1/RAGE/TLR4 signaling pathways in cigarette smoke-induced inflammation in chronic obstructive pulmonary disease. Immunity, Inflamm Dis 10(11):e711CrossRef Lin L, Li J, Song Q, Cheng W, Chen P (2022) The role of HMGB1/RAGE/TLR4 signaling pathways in cigarette smoke-induced inflammation in chronic obstructive pulmonary disease. Immunity, Inflamm Dis 10(11):e711CrossRef
23.
go back to reference Gangemi S, Casciaro M, Trapani G, Quartuccio S, Navarra M, Pioggia G, et al (2015) Association between HMGB1 and COPD: a systematic review. Mediat Inflamm Gangemi S, Casciaro M, Trapani G, Quartuccio S, Navarra M, Pioggia G, et al (2015) Association between HMGB1 and COPD: a systematic review. Mediat Inflamm
24.
go back to reference Alpkvist H, Athlin S, Mölling P, Norrby-Teglund A, Strålin K (2018) High HMGB1 levels in sputum are related to pneumococcal bacteraemia but not to disease severity in community-acquired pneumonia. Sci Rep 8(1):1–9CrossRef Alpkvist H, Athlin S, Mölling P, Norrby-Teglund A, Strålin K (2018) High HMGB1 levels in sputum are related to pneumococcal bacteraemia but not to disease severity in community-acquired pneumonia. Sci Rep 8(1):1–9CrossRef
25.
go back to reference Polosukhin VV, Cates JM, Lawson WE, Zaynagetdinov R, Milstone AP, Massion PP et al (2011) Bronchial secretory immunoglobulin a deficiency correlates with airway inflammation and progression of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 184(3):317–327PubMedPubMedCentralCrossRef Polosukhin VV, Cates JM, Lawson WE, Zaynagetdinov R, Milstone AP, Massion PP et al (2011) Bronchial secretory immunoglobulin a deficiency correlates with airway inflammation and progression of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 184(3):317–327PubMedPubMedCentralCrossRef
26.
go back to reference Baraldo S, Turato G, Badin C, Bazzan E, Beghé B, Zuin R et al (2004) Neutrophilic infiltration within the airway smooth muscle in patients with COPD. Thorax 59(4):308–312PubMedPubMedCentralCrossRef Baraldo S, Turato G, Badin C, Bazzan E, Beghé B, Zuin R et al (2004) Neutrophilic infiltration within the airway smooth muscle in patients with COPD. Thorax 59(4):308–312PubMedPubMedCentralCrossRef
27.
go back to reference Sze MA, Dimitriu PA, Hayashi S, Elliott WM, McDonough JE, Gosselink JV et al (2012) The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 185(10):1073–1080PubMedPubMedCentralCrossRef Sze MA, Dimitriu PA, Hayashi S, Elliott WM, McDonough JE, Gosselink JV et al (2012) The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 185(10):1073–1080PubMedPubMedCentralCrossRef
28.
go back to reference Dang AT, Marsland BJ (2019) Microbes, metabolites, and the gut-lung axis. Mucosal Immunol 12(4):843–850PubMedCrossRef Dang AT, Marsland BJ (2019) Microbes, metabolites, and the gut-lung axis. Mucosal Immunol 12(4):843–850PubMedCrossRef
29.
go back to reference Chen L-W, Chen P-H, Hsu C-M (2011) Commensal microflora contribute to host defense against Escherichia coli pneumonia through Toll-like receptors. Shock 36(1):67–75PubMedCrossRef Chen L-W, Chen P-H, Hsu C-M (2011) Commensal microflora contribute to host defense against Escherichia coli pneumonia through Toll-like receptors. Shock 36(1):67–75PubMedCrossRef
30.
go back to reference Schuijt TJ, Lankelma JM, Scicluna BP, de Sousa e Melo F, Roelofs JJTH, de Boer JD et al (2016) The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 65(4):575–583PubMedCrossRef Schuijt TJ, Lankelma JM, Scicluna BP, de Sousa e Melo F, Roelofs JJTH, de Boer JD et al (2016) The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 65(4):575–583PubMedCrossRef
31.
go back to reference Sprooten RTM, Lenaerts K, Braeken DCW, Grimbergen I, Rutten EP, Wouters EFM et al (2018) Increased small intestinal permeability during severe acute exacerbations of COPD. Respiration 95(5):334–342PubMedCrossRef Sprooten RTM, Lenaerts K, Braeken DCW, Grimbergen I, Rutten EP, Wouters EFM et al (2018) Increased small intestinal permeability during severe acute exacerbations of COPD. Respiration 95(5):334–342PubMedCrossRef
32.
go back to reference Qu L, Cheng Q, Wang Y, Mu H, Zhang Y (2022) COPD and gut-lung axis: how microbiota and host inflammasome influence COPD and related therapeutics. Front Microbiol 13:868086PubMedPubMedCentralCrossRef Qu L, Cheng Q, Wang Y, Mu H, Zhang Y (2022) COPD and gut-lung axis: how microbiota and host inflammasome influence COPD and related therapeutics. Front Microbiol 13:868086PubMedPubMedCentralCrossRef
33.
34.
go back to reference Crowell MD, Zayat EN, Lacy BE, Schettler-Duncan A, Liu MC (2001) The effects of an inhaled beta(2)-adrenergic agonist on lower esophageal function: a dose-response study. Chest 120(4):1184–1189PubMedCrossRef Crowell MD, Zayat EN, Lacy BE, Schettler-Duncan A, Liu MC (2001) The effects of an inhaled beta(2)-adrenergic agonist on lower esophageal function: a dose-response study. Chest 120(4):1184–1189PubMedCrossRef
35.
go back to reference Huang C, Liu Y, Shi G (2020) A systematic review with meta-analysis of gastroesophageal reflux disease and exacerbations of chronic obstructive pulmonary disease. BMC Pulm Med 20(1):2PubMedPubMedCentralCrossRef Huang C, Liu Y, Shi G (2020) A systematic review with meta-analysis of gastroesophageal reflux disease and exacerbations of chronic obstructive pulmonary disease. BMC Pulm Med 20(1):2PubMedPubMedCentralCrossRef
36.
go back to reference Yu F, Huang Q, Ye Y, Zhang L (2022) Effectiveness of proton-pump inhibitors in chronic obstructive pulmonary disease: a meta-analysis of randomized controlled trials. Front Med 9:841155CrossRef Yu F, Huang Q, Ye Y, Zhang L (2022) Effectiveness of proton-pump inhibitors in chronic obstructive pulmonary disease: a meta-analysis of randomized controlled trials. Front Med 9:841155CrossRef
37.
go back to reference Agustí A, Celli BR, Criner GJ, Halpin D, Anzueto A, Barnes P et al (2023) Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary. Eur Respir J 61(4):2300239PubMedPubMedCentralCrossRef Agustí A, Celli BR, Criner GJ, Halpin D, Anzueto A, Barnes P et al (2023) Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary. Eur Respir J 61(4):2300239PubMedPubMedCentralCrossRef
38.
go back to reference Contoli M, Pauletti A, Rossi MR, Spanevello A, Casolari P, Marcellini A et al (2017) Long-term effects of inhaled corticosteroids on sputum bacterial and viral loads in COPD. Eur Respir J 50(4):1700451PubMedCrossRef Contoli M, Pauletti A, Rossi MR, Spanevello A, Casolari P, Marcellini A et al (2017) Long-term effects of inhaled corticosteroids on sputum bacterial and viral loads in COPD. Eur Respir J 50(4):1700451PubMedCrossRef
39.
go back to reference Carrera-Salinas A, González-Díaz A, Ehrlich RL, Berbel D, Tubau F, Pomares X et al (2023) Genetic adaptation and acquisition of macrolide resistance in Haemophilus spp. during persistent respiratory tract colonization in chronic obstructive pulmonary disease (COPD) Patients receiving long-term azithromycin treatment. Microbiol Spectr. 11(1):e0386022PubMedCrossRef Carrera-Salinas A, González-Díaz A, Ehrlich RL, Berbel D, Tubau F, Pomares X et al (2023) Genetic adaptation and acquisition of macrolide resistance in Haemophilus spp. during persistent respiratory tract colonization in chronic obstructive pulmonary disease (COPD) Patients receiving long-term azithromycin treatment. Microbiol Spectr. 11(1):e0386022PubMedCrossRef
40.
go back to reference Nigro E, Daniele A, Scudiero O, Monaco ML, Roviezzo F, D’Agostino B, Mazzarella G, Bianco A (2015) Adiponectin in asthma: implications for phenotyping. Curr Protein Pept Sci 16(3):182–187PubMedCrossRef Nigro E, Daniele A, Scudiero O, Monaco ML, Roviezzo F, D’Agostino B, Mazzarella G, Bianco A (2015) Adiponectin in asthma: implications for phenotyping. Curr Protein Pept Sci 16(3):182–187PubMedCrossRef
42.
43.
go back to reference Durack J, Boushey HA, Lynch SV (2016) Airway microbiota and the implications of dysbiosis in asthma. Curr Allergy Asthma Rep 16(8) Durack J, Boushey HA, Lynch SV (2016) Airway microbiota and the implications of dysbiosis in asthma. Curr Allergy Asthma Rep 16(8)
44.
go back to reference Loss GJ, Depner M, Hose AJ, Genuneit J, Karvonen AM, Hyvärinen A et al (2016) The early development of wheeze environmental determinants and genetic susceptibility at 17q21. Am J Respir Crit Care Med 193(8):889–897PubMedCrossRef Loss GJ, Depner M, Hose AJ, Genuneit J, Karvonen AM, Hyvärinen A et al (2016) The early development of wheeze environmental determinants and genetic susceptibility at 17q21. Am J Respir Crit Care Med 193(8):889–897PubMedCrossRef
45.
go back to reference Martín R, Heilig GHJ, Zoetendal EG, Smidt H, Rodríguez JM (2007) Diversity of the Lactobacillus group in breast milk and vagina of healthy women and potential role in the colonization of the infant gut. J Appl Microbiol 103(6):2638–2644PubMedCrossRef Martín R, Heilig GHJ, Zoetendal EG, Smidt H, Rodríguez JM (2007) Diversity of the Lactobacillus group in breast milk and vagina of healthy women and potential role in the colonization of the infant gut. J Appl Microbiol 103(6):2638–2644PubMedCrossRef
46.
go back to reference Losol P, Park HS, Song WJ, Hwang YK, Kim SH, Holloway JW et al (2022) Association of upper airway bacterial microbiota and asthma: systematic review. Asia Pac Allergy 12(3):1–15CrossRef Losol P, Park HS, Song WJ, Hwang YK, Kim SH, Holloway JW et al (2022) Association of upper airway bacterial microbiota and asthma: systematic review. Asia Pac Allergy 12(3):1–15CrossRef
47.
go back to reference Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N et al (2015) The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 17(5):704–715PubMedPubMedCentralCrossRef Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N et al (2015) The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 17(5):704–715PubMedPubMedCentralCrossRef
48.
go back to reference Jacquet A (2011) Interactions of airway epithelium with protease allergens in the allergic response. Clin Exp Allergy 41(3):305–311PubMedCrossRef Jacquet A (2011) Interactions of airway epithelium with protease allergens in the allergic response. Clin Exp Allergy 41(3):305–311PubMedCrossRef
49.
go back to reference Holgate ST, Wenzel S, Postma DS, Weiss ST, Renz H, Sly PD (2015) Asthma. Nat Rev Dis Prim 1:1–22 Holgate ST, Wenzel S, Postma DS, Weiss ST, Renz H, Sly PD (2015) Asthma. Nat Rev Dis Prim 1:1–22
51.
go back to reference Denner DR, Sangwan N, Becker JB, Hogarth DK, Oldham J, Castillo J et al (2016) Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways. J Allergy Clin Immunol 137(5):1398–1405PubMedCrossRef Denner DR, Sangwan N, Becker JB, Hogarth DK, Oldham J, Castillo J et al (2016) Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways. J Allergy Clin Immunol 137(5):1398–1405PubMedCrossRef
53.
go back to reference Purcell P, Jary H, Perry A, Perry JD, Stewart CJ, Nelson A et al (2014) Polymicrobial airway bacterial communities in adult bronchiectasis patients. BMC Microbiol 14(1):1–11CrossRef Purcell P, Jary H, Perry A, Perry JD, Stewart CJ, Nelson A et al (2014) Polymicrobial airway bacterial communities in adult bronchiectasis patients. BMC Microbiol 14(1):1–11CrossRef
55.
go back to reference Pasteur MC, Helliwell SM, Houghton SJ, Webb SC, Foweraker JE, Coulden RA et al (2000) An investigation into causative factors in patients with bronchiectasis. Am J Respir Crit Care Med 162(4I):1277–1284PubMedCrossRef Pasteur MC, Helliwell SM, Houghton SJ, Webb SC, Foweraker JE, Coulden RA et al (2000) An investigation into causative factors in patients with bronchiectasis. Am J Respir Crit Care Med 162(4I):1277–1284PubMedCrossRef
56.
go back to reference Flume PA, Chalmers JD, Olivier KN (2018) Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity. Lancet 392(10150):880–890PubMedPubMedCentralCrossRef Flume PA, Chalmers JD, Olivier KN (2018) Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity. Lancet 392(10150):880–890PubMedPubMedCentralCrossRef
57.
go back to reference Tung JP, Fraser JF, Wood P, Fung YL (2009) Respiratory burst function of ovine neutrophils. BMC Immunol 10:1–11CrossRef Tung JP, Fraser JF, Wood P, Fung YL (2009) Respiratory burst function of ovine neutrophils. BMC Immunol 10:1–11CrossRef
58.
go back to reference Whitters D, Stockley R (2012) Immunity and bacterial colonisation in bronchiectasis. Thorax 67(11):1006–1013PubMedCrossRef Whitters D, Stockley R (2012) Immunity and bacterial colonisation in bronchiectasis. Thorax 67(11):1006–1013PubMedCrossRef
59.
go back to reference Martínez-García MA, Soler-Cataluña JJ, Perpiñá-Tordera M, Román-Sánchez P, Soriano J (2007) Factors associated with lung function decline in adult patients with stable non-cystic fibrosis bronchiectasis. Chest 132(5):1565–1572PubMedCrossRef Martínez-García MA, Soler-Cataluña JJ, Perpiñá-Tordera M, Román-Sánchez P, Soriano J (2007) Factors associated with lung function decline in adult patients with stable non-cystic fibrosis bronchiectasis. Chest 132(5):1565–1572PubMedCrossRef
60.
go back to reference Byun MK, Chang J, Kim HJ, Jeong SH (2017) Differences of lung microbiome in patients with clinically stable and exacerbated bronchiectasis. PLoS ONE 12(8):1–18CrossRef Byun MK, Chang J, Kim HJ, Jeong SH (2017) Differences of lung microbiome in patients with clinically stable and exacerbated bronchiectasis. PLoS ONE 12(8):1–18CrossRef
61.
go back to reference Rogers GB, Van Der Gast CJ, Cuthbertson L, Thomson SK, Bruce KD, Martin ML et al (2013) Clinical measures of disease in adult non-CF bronchiectasis correlate with airway microbiota composition. Thorax 68(8):731–737PubMedCrossRef Rogers GB, Van Der Gast CJ, Cuthbertson L, Thomson SK, Bruce KD, Martin ML et al (2013) Clinical measures of disease in adult non-CF bronchiectasis correlate with airway microbiota composition. Thorax 68(8):731–737PubMedCrossRef
62.
go back to reference Tunney MM, Einarsson GG, Wei L, Drain M, Klem ER, Cardwell C et al (2013) Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation. Am J Respir Crit Care Med 187(10):1118–1126PubMedPubMedCentralCrossRef Tunney MM, Einarsson GG, Wei L, Drain M, Klem ER, Cardwell C et al (2013) Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation. Am J Respir Crit Care Med 187(10):1118–1126PubMedPubMedCentralCrossRef
63.
go back to reference Finch S, McDonnell MJ, Abo-Leyah H, Aliberti S, Chalmers JD (2015) A comprehensive analysis of the impact of pseudomonas aeruginosa colonization on prognosis in adult bronchiectasis. Ann Am Thorac Soc 12(11):1602–1611PubMed Finch S, McDonnell MJ, Abo-Leyah H, Aliberti S, Chalmers JD (2015) A comprehensive analysis of the impact of pseudomonas aeruginosa colonization on prognosis in adult bronchiectasis. Ann Am Thorac Soc 12(11):1602–1611PubMed
64.
go back to reference Hill AT, Haworth CS, Aliberti S, Barker A, Blasi F, Boersma W et al (2017) Pulmonary exacerbation in adults with bronchiectasis: a consensus definition for clinical research. Eur Respir J 49(6) Hill AT, Haworth CS, Aliberti S, Barker A, Blasi F, Boersma W et al (2017) Pulmonary exacerbation in adults with bronchiectasis: a consensus definition for clinical research. Eur Respir J 49(6)
65.
go back to reference Cox MJ, Turek EM, Hennessy C, Mirza GK, James PL, Coleman M et al (2017) Longitudinal assessment of sputum microbiome by sequencing of the 16S rRNA gene in non-cystic fibrosis bronchiectasis patients. PLoS ONE 12(2):1–17CrossRef Cox MJ, Turek EM, Hennessy C, Mirza GK, James PL, Coleman M et al (2017) Longitudinal assessment of sputum microbiome by sequencing of the 16S rRNA gene in non-cystic fibrosis bronchiectasis patients. PLoS ONE 12(2):1–17CrossRef
66.
go back to reference Mac Aogáin M, Narayana JK, Tiew PY, Ali NABM, Yong VFL, Jaggi TK et al (2021) Integrative microbiomics in bronchiectasis exacerbations. Nat Med 27(4):688–699PubMedCrossRef Mac Aogáin M, Narayana JK, Tiew PY, Ali NABM, Yong VFL, Jaggi TK et al (2021) Integrative microbiomics in bronchiectasis exacerbations. Nat Med 27(4):688–699PubMedCrossRef
67.
go back to reference Vanfleteren LEGW, Spruit MA, Wouters EFM, Franssen FME (2016) Management of chronic obstructive pulmonary disease beyond the lungs. Lancet Respir Med 4(11):911–924PubMedCrossRef Vanfleteren LEGW, Spruit MA, Wouters EFM, Franssen FME (2016) Management of chronic obstructive pulmonary disease beyond the lungs. Lancet Respir Med 4(11):911–924PubMedCrossRef
68.
go back to reference Narayana JK, Aliberti S, Mac Aogáin M, Jaggi TK, Ali NABM, Ivan FX et al (2023) Microbial dysregulation of the gut-lung axis in bronchiectasis. Am J Respir Crit Care Med 207(7):908–920PubMedCrossRef Narayana JK, Aliberti S, Mac Aogáin M, Jaggi TK, Ali NABM, Ivan FX et al (2023) Microbial dysregulation of the gut-lung axis in bronchiectasis. Am J Respir Crit Care Med 207(7):908–920PubMedCrossRef
69.
go back to reference Narayana JK, Aliberti S, Aogáin MM, Jaggi TK, Ali NABM, Xaverius IF et al (2022) Dysregulation of the microbial ‘gut-lung’ axis in bronchiectasis. Eur Respir J 60(Suppl 66):1646 Narayana JK, Aliberti S, Aogáin MM, Jaggi TK, Ali NABM, Xaverius IF et al (2022) Dysregulation of the microbial ‘gut-lung’ axis in bronchiectasis. Eur Respir J 60(Suppl 66):1646
70.
go back to reference Koh W-J, Lee JH, Kwon YS, Lee KS, Suh GY, Chung MP et al (2007) Prevalence of gastroesophageal reflux disease in patients with nontuberculous mycobacterial lung disease. Chest 131(6):1825–1830PubMedCrossRef Koh W-J, Lee JH, Kwon YS, Lee KS, Suh GY, Chung MP et al (2007) Prevalence of gastroesophageal reflux disease in patients with nontuberculous mycobacterial lung disease. Chest 131(6):1825–1830PubMedCrossRef
71.
go back to reference Ahn B, Lee DH, Lee CM, Hwang JJ, Yoon H, Shin CM et al (2016) Effect of proton pump inhibitors in bronchiectatic patients with gastroesophageal reflux disease. Korean J Gastroenterol 68(1):10–15PubMedCrossRef Ahn B, Lee DH, Lee CM, Hwang JJ, Yoon H, Shin CM et al (2016) Effect of proton pump inhibitors in bronchiectatic patients with gastroesophageal reflux disease. Korean J Gastroenterol 68(1):10–15PubMedCrossRef
72.
go back to reference Altenburg J, de Graaff CS, Stienstra Y, Sloos JH, van Haren EH, Koppers RJ et al (2013) Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial. JAMA 309(12):1251–1259PubMedCrossRef Altenburg J, de Graaff CS, Stienstra Y, Sloos JH, van Haren EH, Koppers RJ et al (2013) Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial. JAMA 309(12):1251–1259PubMedCrossRef
73.
go back to reference Malhotra S, Hayes D, Wozniak DJ (2019) Cystic fibrosis and pseudomonas aeruginosa: the host-microbe interface. Clin Microbiol Rev 32(3):1–46CrossRef Malhotra S, Hayes D, Wozniak DJ (2019) Cystic fibrosis and pseudomonas aeruginosa: the host-microbe interface. Clin Microbiol Rev 32(3):1–46CrossRef
75.
go back to reference Scialo F, Amato F, Cernera G, Gelzo M, Zarrilli F, Comegna M et al (2021) Lung microbiome in cystic fibrosis. Life 11(2):1–7CrossRef Scialo F, Amato F, Cernera G, Gelzo M, Zarrilli F, Comegna M et al (2021) Lung microbiome in cystic fibrosis. Life 11(2):1–7CrossRef
76.
go back to reference Shah VS, Meyerholz DK, Tang XX, Reznikov L, Alaiwa MA, Ernst SE et al (2016) Airway acidification initiates host defense abnormalities in cystic fibrosis mice. Science 351(6272):503–507PubMedPubMedCentralCrossRef Shah VS, Meyerholz DK, Tang XX, Reznikov L, Alaiwa MA, Ernst SE et al (2016) Airway acidification initiates host defense abnormalities in cystic fibrosis mice. Science 351(6272):503–507PubMedPubMedCentralCrossRef
77.
go back to reference Pezzulo AA, Tang XX, Hoegger MJ, Abou Alaiwa MH, Ramachandran S, Moninger TO et al (2012) Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 487(7405):109–113PubMedPubMedCentralCrossRef Pezzulo AA, Tang XX, Hoegger MJ, Abou Alaiwa MH, Ramachandran S, Moninger TO et al (2012) Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 487(7405):109–113PubMedPubMedCentralCrossRef
78.
go back to reference Scudiero O, Galdiero S, Cantisani M, Di Noto R, Vitiello M, Galdiero M et al (2010) Novel synthetic, salt-resistant analogs of human beta-defensins 1 and 3 endowed with enhanced antimicrobial activity. Antimicrob Agents Chemother 54(6):2312–2322PubMedPubMedCentralCrossRef Scudiero O, Galdiero S, Cantisani M, Di Noto R, Vitiello M, Galdiero M et al (2010) Novel synthetic, salt-resistant analogs of human beta-defensins 1 and 3 endowed with enhanced antimicrobial activity. Antimicrob Agents Chemother 54(6):2312–2322PubMedPubMedCentralCrossRef
79.
go back to reference Carnovale V, Castaldo A, Di Minno A, Gelzo M, Iacotucci P, Illiano A et al (2022) Oxylipin profile in saliva from patients with cystic fibrosis reveals a balance between pro-resolving and pro-inflammatory molecules. Sci Rep 12(1):1–10CrossRef Carnovale V, Castaldo A, Di Minno A, Gelzo M, Iacotucci P, Illiano A et al (2022) Oxylipin profile in saliva from patients with cystic fibrosis reveals a balance between pro-resolving and pro-inflammatory molecules. Sci Rep 12(1):1–10CrossRef
80.
go back to reference Castaldo A, Iacotucci P, Carnovale V, Cimino R, Liguori R, Comegna M et al (2020) Salivary cytokines and airways disease severity in patients with cystic fibrosis. Diagnostics 10(4):222PubMedPubMedCentralCrossRef Castaldo A, Iacotucci P, Carnovale V, Cimino R, Liguori R, Comegna M et al (2020) Salivary cytokines and airways disease severity in patients with cystic fibrosis. Diagnostics 10(4):222PubMedPubMedCentralCrossRef
81.
go back to reference Crovella S, Segat L, Amato A, Athanasakis E, Bezzerri V, Braggion C et al (2011) A polymorphism in the 5’ UTR of the DEFB1 gene is associated with the lung phenotype in F508del homozygous Italian cystic fibrosis patients. Clin Chem Lab Med 49(1):49–54PubMedCrossRef Crovella S, Segat L, Amato A, Athanasakis E, Bezzerri V, Braggion C et al (2011) A polymorphism in the 5’ UTR of the DEFB1 gene is associated with the lung phenotype in F508del homozygous Italian cystic fibrosis patients. Clin Chem Lab Med 49(1):49–54PubMedCrossRef
82.
go back to reference Tomaiuolo R, Ruocco A, Salapete C, Carru C, Baggio G, Franceschi C et al (2012) Activity of mannose-binding lectin in centenarians. Aging Cell 11(3):394–400PubMedCrossRef Tomaiuolo R, Ruocco A, Salapete C, Carru C, Baggio G, Franceschi C et al (2012) Activity of mannose-binding lectin in centenarians. Aging Cell 11(3):394–400PubMedCrossRef
83.
go back to reference Castaldo A, Cernera G, Iacotucci P, Cimbalo C, Gelzo M, Comegna M et al (2020) TAS2R38 is a novel modifier gene in patients with cystic fibrosis. Sci Rep 10(1):5–10CrossRef Castaldo A, Cernera G, Iacotucci P, Cimbalo C, Gelzo M, Comegna M et al (2020) TAS2R38 is a novel modifier gene in patients with cystic fibrosis. Sci Rep 10(1):5–10CrossRef
84.
go back to reference Hogan DA, Willger SD, Dolben EL, Hampton TH, Stanton B, Morrison HG et al (2016) Analysis of lung microbiota in bronchoalveolar lavage, protected brush and sputum samples from subjects with Mild-To- Moderate cystic fibrosis lung disease. PLoS ONE 11(3):1–23CrossRef Hogan DA, Willger SD, Dolben EL, Hampton TH, Stanton B, Morrison HG et al (2016) Analysis of lung microbiota in bronchoalveolar lavage, protected brush and sputum samples from subjects with Mild-To- Moderate cystic fibrosis lung disease. PLoS ONE 11(3):1–23CrossRef
85.
go back to reference Rieber N, Hector A, Carevic M, Hartl D (2014) Current concepts of immune dysregulation in cystic fibrosis. Int J Biochem Cell Biol 52:108–112PubMedCrossRef Rieber N, Hector A, Carevic M, Hartl D (2014) Current concepts of immune dysregulation in cystic fibrosis. Int J Biochem Cell Biol 52:108–112PubMedCrossRef
86.
go back to reference Klepac-Ceraj V, Lemon KP, Martin TR, Allgaier M, Kembel SW, Knapp AA et al (2010) Relationship between cystic fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and Pseudomonas aeruginosa. Environ Microbiol 12(5):1293–1303PubMedCrossRef Klepac-Ceraj V, Lemon KP, Martin TR, Allgaier M, Kembel SW, Knapp AA et al (2010) Relationship between cystic fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and Pseudomonas aeruginosa. Environ Microbiol 12(5):1293–1303PubMedCrossRef
87.
go back to reference Keravec M, Mounier J, Guilloux CA, Fangous MS, Mondot S, Vallet S et al (2019) Porphyromonas, a potential predictive biomarker of Pseudomonas aeruginosa pulmonary infection in cystic fibrosis. BMJ Open Respir Res 6(1):1–5CrossRef Keravec M, Mounier J, Guilloux CA, Fangous MS, Mondot S, Vallet S et al (2019) Porphyromonas, a potential predictive biomarker of Pseudomonas aeruginosa pulmonary infection in cystic fibrosis. BMJ Open Respir Res 6(1):1–5CrossRef
88.
go back to reference Van Der Gast CJ, Walker AW, Stressmann FA, Rogers GB, Scott P, Daniels TW et al (2011) Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME J 5(5):780–791PubMedCrossRef Van Der Gast CJ, Walker AW, Stressmann FA, Rogers GB, Scott P, Daniels TW et al (2011) Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME J 5(5):780–791PubMedCrossRef
89.
go back to reference Keravec M, Mounier J, Prestat E, Vallet S, Jansson JK, Burgaud G et al (2015) Insights into the respiratory tract microbiota of patients with cystic fibrosis during early Pseudomonas aeruginosa colonization. Springerplus 4(1):1–8CrossRef Keravec M, Mounier J, Prestat E, Vallet S, Jansson JK, Burgaud G et al (2015) Insights into the respiratory tract microbiota of patients with cystic fibrosis during early Pseudomonas aeruginosa colonization. Springerplus 4(1):1–8CrossRef
91.
go back to reference Coburn B, Wang PW, Diaz Caballero J, Clark ST, Brahma V, Donaldson S et al (2015) Lung microbiota across age and disease stage in cystic fibrosis. Sci Rep 5:1–12CrossRef Coburn B, Wang PW, Diaz Caballero J, Clark ST, Brahma V, Donaldson S et al (2015) Lung microbiota across age and disease stage in cystic fibrosis. Sci Rep 5:1–12CrossRef
92.
go back to reference Zhao J, Schloss PD, Kalikin LM, Carmody LA, Foster BK, Petrosino JF et al (2012) Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci USA 109(15):5809–5814PubMedPubMedCentralCrossRef Zhao J, Schloss PD, Kalikin LM, Carmody LA, Foster BK, Petrosino JF et al (2012) Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci USA 109(15):5809–5814PubMedPubMedCentralCrossRef
93.
go back to reference Goddard AF, Staudinger BJ, Dowd SE, Joshi-Datar A, Wolcott RD, Aitken ML et al (2012) Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota. Proc Natl Acad Sci USA 109(34):13769–13774PubMedPubMedCentralCrossRef Goddard AF, Staudinger BJ, Dowd SE, Joshi-Datar A, Wolcott RD, Aitken ML et al (2012) Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota. Proc Natl Acad Sci USA 109(34):13769–13774PubMedPubMedCentralCrossRef
94.
go back to reference Whelan FJ, Surette MG (2015) Clinical insights into pulmonary exacerbations in cystic fibrosis from the microbiome what are we missing? Ann Am Thorac Soc 12(6):S207–S211PubMedCrossRef Whelan FJ, Surette MG (2015) Clinical insights into pulmonary exacerbations in cystic fibrosis from the microbiome what are we missing? Ann Am Thorac Soc 12(6):S207–S211PubMedCrossRef
95.
go back to reference Fonseca C, Bicker J, Alves G, Falcão A, Fortuna A (2020) Cystic fibrosis: physiopathology and the latest pharmacological treatments. Pharmacol Res 162:105267PubMedCrossRef Fonseca C, Bicker J, Alves G, Falcão A, Fortuna A (2020) Cystic fibrosis: physiopathology and the latest pharmacological treatments. Pharmacol Res 162:105267PubMedCrossRef
96.
go back to reference Heirali AA, Acosta N, Storey DG, Workentine ML, Somayaji R, Laforest-Lapointe I et al (2019) The effects of cycled inhaled aztreonam on the cystic fibrosis (CF) lung microbiome. J Cyst Fibros 18(6):829–837PubMedCrossRef Heirali AA, Acosta N, Storey DG, Workentine ML, Somayaji R, Laforest-Lapointe I et al (2019) The effects of cycled inhaled aztreonam on the cystic fibrosis (CF) lung microbiome. J Cyst Fibros 18(6):829–837PubMedCrossRef
97.
go back to reference Perrotta F, Rocco D, Vitiello F, De Palma R, Guerra G, De Luca A et al (2019) Immune checkpoint blockade for advanced NSCLC: a new landscape for elderly patients. Int J Mol Sci 20(9):2258PubMedPubMedCentralCrossRef Perrotta F, Rocco D, Vitiello F, De Palma R, Guerra G, De Luca A et al (2019) Immune checkpoint blockade for advanced NSCLC: a new landscape for elderly patients. Int J Mol Sci 20(9):2258PubMedPubMedCentralCrossRef
98.
go back to reference Nigro E, Perrotta F, Monaco ML, Polito R, Pafundi PC, Matera MG et al (2020) Implications of the adiponectin system in non-small cell lung cancer patients: a case-control study. Biomolecules 10(6):926PubMedPubMedCentralCrossRef Nigro E, Perrotta F, Monaco ML, Polito R, Pafundi PC, Matera MG et al (2020) Implications of the adiponectin system in non-small cell lung cancer patients: a case-control study. Biomolecules 10(6):926PubMedPubMedCentralCrossRef
99.
go back to reference Stella GM, Scialò F, Bortolotto C, Agustoni F, Sanci V, Saddi J et al (2022) Pragmatic expectancy on microbiota and non-small cell lung cancer: a narrative review. Cancers 14(13):3131PubMedPubMedCentralCrossRef Stella GM, Scialò F, Bortolotto C, Agustoni F, Sanci V, Saddi J et al (2022) Pragmatic expectancy on microbiota and non-small cell lung cancer: a narrative review. Cancers 14(13):3131PubMedPubMedCentralCrossRef
100.
go back to reference Nigro E, Perrotta F, Scialò F, D’Agnano V, Mallardo M, Bianco A et al (2021) Food, nutrition, physical activity and microbiota: which impact on lung cancer? Int J Environ Res Public Health 18(5):2399PubMedPubMedCentralCrossRef Nigro E, Perrotta F, Scialò F, D’Agnano V, Mallardo M, Bianco A et al (2021) Food, nutrition, physical activity and microbiota: which impact on lung cancer? Int J Environ Res Public Health 18(5):2399PubMedPubMedCentralCrossRef
101.
go back to reference Dong Q, Chen ES, Zhao C, Jin C (2021) Host-microbiome interaction in lung cancer. Front Immunol 12:1–9CrossRef Dong Q, Chen ES, Zhao C, Jin C (2021) Host-microbiome interaction in lung cancer. Front Immunol 12:1–9CrossRef
102.
go back to reference Mao Q, Jiang F, Yin R, Wang J, Xia W, Dong G et al (2018) Interplay between the lung microbiome and lung cancer. Cancer Lett 415:40–48PubMedCrossRef Mao Q, Jiang F, Yin R, Wang J, Xia W, Dong G et al (2018) Interplay between the lung microbiome and lung cancer. Cancer Lett 415:40–48PubMedCrossRef
103.
go back to reference Bianco A, Malapelle U, Rocco D, Perrotta F, Mazzarella G (2018) Targeting immune checkpoints in non small cell lung cancer. Curr Opin Pharmacol 40:46–50PubMedCrossRef Bianco A, Malapelle U, Rocco D, Perrotta F, Mazzarella G (2018) Targeting immune checkpoints in non small cell lung cancer. Curr Opin Pharmacol 40:46–50PubMedCrossRef
104.
go back to reference Bachem A, Makhlouf C, Binger KJ, de Souza DP, Tull D, Hochheiser K et al (2019) Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 51(2):285–329PubMedCrossRef Bachem A, Makhlouf C, Binger KJ, de Souza DP, Tull D, Hochheiser K et al (2019) Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 51(2):285–329PubMedCrossRef
105.
go back to reference Holmes E, Li JV, Marchesi JR, Nicholson JK (2012) Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab 16(5):559–564PubMedCrossRef Holmes E, Li JV, Marchesi JR, Nicholson JK (2012) Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab 16(5):559–564PubMedCrossRef
106.
go back to reference McLean AEB, Kao SC, Barnes DJ, Wong KKH, Scolyer RA, Cooper WA et al (2022) The emerging role of the lung microbiome and its importance in non-small cell lung cancer diagnosis and treatment. Lung Cancer 165:124–132PubMedCrossRef McLean AEB, Kao SC, Barnes DJ, Wong KKH, Scolyer RA, Cooper WA et al (2022) The emerging role of the lung microbiome and its importance in non-small cell lung cancer diagnosis and treatment. Lung Cancer 165:124–132PubMedCrossRef
107.
go back to reference Tsay JCJ, Wu BG, Badri MH, Clemente JC, Shen N, Meyn P et al (2018) Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer. Am J Respir Crit Care Med 198(9):1188–1198PubMedPubMedCentralCrossRef Tsay JCJ, Wu BG, Badri MH, Clemente JC, Shen N, Meyn P et al (2018) Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer. Am J Respir Crit Care Med 198(9):1188–1198PubMedPubMedCentralCrossRef
108.
go back to reference Yu G, Gail MH, Consonni D, Carugno M, Humphrys M, Pesatori AC et al (2016) Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol 17(1):1–12CrossRef Yu G, Gail MH, Consonni D, Carugno M, Humphrys M, Pesatori AC et al (2016) Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol 17(1):1–12CrossRef
109.
110.
go back to reference Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Beck JM, Huffnagle GB et al (2015) Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann Am Thorac Soc 12(6):821–830PubMedPubMedCentralCrossRef Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Beck JM, Huffnagle GB et al (2015) Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann Am Thorac Soc 12(6):821–830PubMedPubMedCentralCrossRef
112.
go back to reference Yan X, Yang M, Liu J, Gao R, Hu J, Li J et al (2015) Discovery and validation of potential bacterial biomarkers for lung cancer. Am J Cancer Res 5(10):3111–3122PubMedPubMedCentral Yan X, Yang M, Liu J, Gao R, Hu J, Li J et al (2015) Discovery and validation of potential bacterial biomarkers for lung cancer. Am J Cancer Res 5(10):3111–3122PubMedPubMedCentral
113.
go back to reference Erb-Downward JR, Falkowski NR, D’souza JC, McCloskey LM, McDonald RA, Brown CA et al (2020) Critical relevance of stochastic effects on low-bacterialbiomass 16s rrna gene analysis. MBio 11(3):1–12CrossRef Erb-Downward JR, Falkowski NR, D’souza JC, McCloskey LM, McDonald RA, Brown CA et al (2020) Critical relevance of stochastic effects on low-bacterialbiomass 16s rrna gene analysis. MBio 11(3):1–12CrossRef
114.
go back to reference D’Agnano V, Scialò F, Perna F, Atripaldi L, Sanduzzi S, Allocca V et al (2022) Exploring the role of Krebs von den Lungen-6 in severe to critical COVID-19 patients. Life 12:1141PubMedPubMedCentralCrossRef D’Agnano V, Scialò F, Perna F, Atripaldi L, Sanduzzi S, Allocca V et al (2022) Exploring the role of Krebs von den Lungen-6 in severe to critical COVID-19 patients. Life 12:1141PubMedPubMedCentralCrossRef
115.
go back to reference Pattaroni C, Watzenboeck ML, Schneidegger S, Kieser S, Wong NC, Bernasconi E et al (2018) Early-life formation of the microbial and immunological environment of the human airways. Cell Host Microbe 24(6):857–865PubMedCrossRef Pattaroni C, Watzenboeck ML, Schneidegger S, Kieser S, Wong NC, Bernasconi E et al (2018) Early-life formation of the microbial and immunological environment of the human airways. Cell Host Microbe 24(6):857–865PubMedCrossRef
Metadata
Title
Lung Microbiome as a Treatable Trait in Chronic Respiratory Disorders
Authors
Filippo Scialò
Maria Vitale
Vito D’Agnano
Domenica Francesca Mariniello
Fabio Perrotta
Alice Castaldo
Susan F. M. Campbell
Lucio Pastore
Mario Cazzola
Andrea Bianco
Publication date
26-09-2023
Publisher
Springer US
Published in
Lung / Issue 5/2023
Print ISSN: 0341-2040
Electronic ISSN: 1432-1750
DOI
https://doi.org/10.1007/s00408-023-00645-3

Other articles of this Issue 5/2023

Lung 5/2023 Go to the issue

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more