Skip to main content
Top
Published in:

Open Access 01-12-2024 | Respiratory Microbiota | Research

Fecal microbiota transplantation validates the importance of gut microbiota in an ApoE−/− mouse model of chronic apical periodontitis-induced atherosclerosis

Authors: Guowu Gan, Ren Zhang, Yu Zeng, Beibei Lu, Yufang Luo, Shuai Chen, Huaxiang Lei, Zhiyu Cai, Xiaojing Huang

Published in: BMC Oral Health | Issue 1/2024

Login to get access

Abstract

Background

Chronic apical periodontitis (CAP) has been linked to the development of atherosclerosis, although the underlying mechanisms remain unclear. This study aimed to investigate the role of gut microbiota disruption in CAP-induced atherosclerosis development, focusing on trimethylamine N-oxide (TMAO)-related metabolites.

Methods

The study utilized fecal microbiota transplantation (FMT) to transfer gut microbiota from mice with CAP to healthy mice. Atherosclerosis development was assessed by analyzing lesions in the aortic arch and aortic root. Serum lipid and inflammatory factor levels were measured. Composition and diversity of gut microbiota were analyzed using targeted metabolomics, with a focus on the ratio of Firmicutes to Bacteroidetes. The expression of hepatic flavin-containing monooxygenase 3 (FMO3) and serum TMAO levels were also evaluated.

Results

Mice receiving gut microbiota from CAP mice showed increased atherosclerotic lesions compared to controls, without significant differences in serum lipid or inflammatory factor levels. Alterations in gut microbiota composition were observed, characterized by an increase in the Firmicutes to Bacteroidetes ratio. Peptostreptococcaceae abundance positively correlated with atherosclerosis severity, while Odoribacteraceae showed a negative correlation. No significant differences were found in hepatic FMO3 expression or serum TMAO levels.

Conclusions

The study confirms the role of gut microbiota disruption in CAP-mediated atherosclerosis development, independent of serum lipid or TMAO levels. Alterations in gut microbiota composition, particularly increased Firmicutes to Bacteroidetes ratio and specific bacterial families, were associated with atherosclerosis severity. These findings highlight the intricate interplay between gut microbiota and cardiovascular health in the context of CAP.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, Gewirtz AT. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519(7541):92–6.PubMedPubMedCentralCrossRef Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, Gewirtz AT. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519(7541):92–6.PubMedPubMedCentralCrossRef
2.
go back to reference Schmidt TSB, Raes J, Bork P. The human gut Microbiome: from Association to Modulation. Cell. 2018;172(6):1198–215.PubMedCrossRef Schmidt TSB, Raes J, Bork P. The human gut Microbiome: from Association to Modulation. Cell. 2018;172(6):1198–215.PubMedCrossRef
4.
go back to reference Mohajeri MH, La Fata G, Steinert RE, Weber P. Relationship between the gut microbiome and brain function. Nutr Rev. 2018;76(7):481–96.PubMedCrossRef Mohajeri MH, La Fata G, Steinert RE, Weber P. Relationship between the gut microbiome and brain function. Nutr Rev. 2018;76(7):481–96.PubMedCrossRef
5.
go back to reference Tierney BT, Yang Z, Luber JM, Beaudin M, Wibowo MC, Baek C, Mehlenbacher E, Patel CJ, Kostic AD. The Landscape of genetic content in the gut and oral human microbiome. Cell Host Microbe. 2019;26(2):283–e295288.PubMedPubMedCentralCrossRef Tierney BT, Yang Z, Luber JM, Beaudin M, Wibowo MC, Baek C, Mehlenbacher E, Patel CJ, Kostic AD. The Landscape of genetic content in the gut and oral human microbiome. Cell Host Microbe. 2019;26(2):283–e295288.PubMedPubMedCentralCrossRef
6.
go back to reference D T, Venkatesh MP. Fecal microbiota transplantation: history, procedure and regulatory considerations. Presse Med. 2023;52(4):104204.PubMedCrossRef D T, Venkatesh MP. Fecal microbiota transplantation: history, procedure and regulatory considerations. Presse Med. 2023;52(4):104204.PubMedCrossRef
7.
go back to reference Vindigni SM, Surawicz CM. Fecal microbiota transplantation. Gastroenterol Clin North Am. 2017;46(1):171–85.PubMedCrossRef Vindigni SM, Surawicz CM. Fecal microbiota transplantation. Gastroenterol Clin North Am. 2017;46(1):171–85.PubMedCrossRef
8.
go back to reference Eiseman B, Silen W, Bascom GS, Kauvar AJ. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery. 1958;44(5):854–9.PubMed Eiseman B, Silen W, Bascom GS, Kauvar AJ. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery. 1958;44(5):854–9.PubMed
9.
go back to reference Gheorghe CE, Ritz NL, Martin JA, Wardill HR, Cryan JF, Clarke G. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes. 2021;13(1):1941711.PubMedPubMedCentralCrossRef Gheorghe CE, Ritz NL, Martin JA, Wardill HR, Cryan JF, Clarke G. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes. 2021;13(1):1941711.PubMedPubMedCentralCrossRef
10.
11.
go back to reference Sun J, Xu J, Ling Y, Wang F, Gong T, Yang C, Ye S, Ye K, Wei D, Song Z, et al. Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry. 2019;9(1):189.PubMedPubMedCentralCrossRef Sun J, Xu J, Ling Y, Wang F, Gong T, Yang C, Ye S, Ye K, Wei D, Song Z, et al. Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry. 2019;9(1):189.PubMedPubMedCentralCrossRef
12.
go back to reference Brandsma E, Kloosterhuis NJ, Koster M, Dekker DC, Gijbels MJJ, van der Velden S, Rios-Morales M, van Faassen MJR, Loreti MG, de Bruin A, et al. A proinflammatory gut microbiota increases systemic inflammation and accelerates atherosclerosis. Circ Res. 2019;124(1):94–100.PubMedCrossRef Brandsma E, Kloosterhuis NJ, Koster M, Dekker DC, Gijbels MJJ, van der Velden S, Rios-Morales M, van Faassen MJR, Loreti MG, de Bruin A, et al. A proinflammatory gut microbiota increases systemic inflammation and accelerates atherosclerosis. Circ Res. 2019;124(1):94–100.PubMedCrossRef
13.
go back to reference Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, et al. Heart Disease and Stroke Statistics-2018 update: a Report from the American Heart Association. Circulation. 2018;137(12):e67–492.PubMedCrossRef Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, et al. Heart Disease and Stroke Statistics-2018 update: a Report from the American Heart Association. Circulation. 2018;137(12):e67–492.PubMedCrossRef
16.
go back to reference Ascher S, Reinhardt C. The gut microbiota: an emerging risk factor for cardiovascular and cerebrovascular disease. Eur J Immunol. 2018;48(4):564–75.PubMedCrossRef Ascher S, Reinhardt C. The gut microbiota: an emerging risk factor for cardiovascular and cerebrovascular disease. Eur J Immunol. 2018;48(4):564–75.PubMedCrossRef
17.
go back to reference Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, Sita G, Racchumi G, Ling L, Pamer EG, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat Med. 2016;22(5):516–23.PubMedPubMedCentralCrossRef Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, Sita G, Racchumi G, Ling L, Pamer EG, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat Med. 2016;22(5):516–23.PubMedPubMedCentralCrossRef
18.
19.
go back to reference Gregory JC, Buffa JA, Org E, Wang Z, Levison BS, Zhu W, Wagner MA, Bennett BJ, Li L, DiDonato JA, et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2015;290(9):5647–60.PubMedCrossRef Gregory JC, Buffa JA, Org E, Wang Z, Levison BS, Zhu W, Wagner MA, Bennett BJ, Li L, DiDonato JA, et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2015;290(9):5647–60.PubMedCrossRef
20.
go back to reference Gan G, Lu B, Zhang R, Luo Y, Chen S, Lei H, Li Y, Cai Z, Huang X. Chronic apical periodontitis exacerbates atherosclerosis in apolipoprotein E-deficient mice and leads to changes in the diversity of gut microbiota. Int Endod J. 2022;55(2):152–63.PubMedCrossRef Gan G, Lu B, Zhang R, Luo Y, Chen S, Lei H, Li Y, Cai Z, Huang X. Chronic apical periodontitis exacerbates atherosclerosis in apolipoprotein E-deficient mice and leads to changes in the diversity of gut microbiota. Int Endod J. 2022;55(2):152–63.PubMedCrossRef
21.
go back to reference Gan G, Zhang R, Lu B, Luo Y, Chen S, Lei H, Li Y, Cai Z, Huang X. Gut microbiota may mediate the impact of chronic apical periodontitis on atherosclerosis in apolipoprotein E-deficient mice. Int Endod J. 2023;56(1):53–68.PubMedCrossRef Gan G, Zhang R, Lu B, Luo Y, Chen S, Lei H, Li Y, Cai Z, Huang X. Gut microbiota may mediate the impact of chronic apical periodontitis on atherosclerosis in apolipoprotein E-deficient mice. Int Endod J. 2023;56(1):53–68.PubMedCrossRef
23.
go back to reference Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63.PubMedPubMedCentralCrossRef Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63.PubMedPubMedCentralCrossRef
24.
go back to reference Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, Gu X, Huang Y, Zamanian-Daryoush M, Culley MK, et al. Non-lethal inhibition of Gut Microbial Trimethylamine production for the Treatment of Atherosclerosis. Cell. 2015;163(7):1585–95.PubMedPubMedCentralCrossRef Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, Gu X, Huang Y, Zamanian-Daryoush M, Culley MK, et al. Non-lethal inhibition of Gut Microbial Trimethylamine production for the Treatment of Atherosclerosis. Cell. 2015;163(7):1585–95.PubMedPubMedCentralCrossRef
25.
go back to reference Organ CL, Otsuka H, Bhushan S, Wang Z, Bradley J, Trivedi R, Polhemus DJ, Tang WH, Wu Y, Hazen SL, et al. Choline Diet and its gut microbe-derived metabolite, trimethylamine N-Oxide, exacerbate pressure overload-Induced Heart failure. Circ Heart Fail. 2016;9(1):e002314.PubMedCrossRef Organ CL, Otsuka H, Bhushan S, Wang Z, Bradley J, Trivedi R, Polhemus DJ, Tang WH, Wu Y, Hazen SL, et al. Choline Diet and its gut microbe-derived metabolite, trimethylamine N-Oxide, exacerbate pressure overload-Induced Heart failure. Circ Heart Fail. 2016;9(1):e002314.PubMedCrossRef
26.
go back to reference Heianza Y, Ma W, DiDonato JA, Sun Q, Rimm EB, Hu FB, Rexrode KM, Manson JE, Qi L. Long-term changes in Gut Microbial Metabolite Trimethylamine N-Oxide and Coronary Heart Disease Risk. J Am Coll Cardiol. 2020;75(7):763–72.PubMedPubMedCentralCrossRef Heianza Y, Ma W, DiDonato JA, Sun Q, Rimm EB, Hu FB, Rexrode KM, Manson JE, Qi L. Long-term changes in Gut Microbial Metabolite Trimethylamine N-Oxide and Coronary Heart Disease Risk. J Am Coll Cardiol. 2020;75(7):763–72.PubMedPubMedCentralCrossRef
27.
go back to reference Barcena C, Valdes-Mas R, Mayoral P, Garabaya C, Durand S, Rodriguez F, Fernandez-Garcia MT, Salazar N, Nogacka AM, Garatachea N, et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat Med. 2019;25(8):1234–42.PubMedCrossRef Barcena C, Valdes-Mas R, Mayoral P, Garabaya C, Durand S, Rodriguez F, Fernandez-Garcia MT, Salazar N, Nogacka AM, Garatachea N, et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat Med. 2019;25(8):1234–42.PubMedCrossRef
28.
go back to reference Centa M, Ketelhuth DFJ, Malin S, Gistera A. Quantification of atherosclerosis in mice. Jove-Journal Visualized Experiments 2019:e59828. Centa M, Ketelhuth DFJ, Malin S, Gistera A. Quantification of atherosclerosis in mice. Jove-Journal Visualized Experiments 2019:e59828.
29.
go back to reference Daugherty A, Tall AR, Daemen M, Falk E, Fisher EA, Garcia-Cardena G, Lusis AJ, Owens AP 3rd, Rosenfeld ME, Virmani R, et al. Recommendation on design, execution, and reporting of animal atherosclerosis studies: A Scientific Statement from the American Heart Association. Circ Res. 2017;121(6):e53–79. Daugherty A, Tall AR, Daemen M, Falk E, Fisher EA, Garcia-Cardena G, Lusis AJ, Owens AP 3rd, Rosenfeld ME, Virmani R, et al. Recommendation on design, execution, and reporting of animal atherosclerosis studies: A Scientific Statement from the American Heart Association. Circ Res. 2017;121(6):e53–79.
30.
go back to reference Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 1994;14(1):133–40.PubMedCrossRef Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 1994;14(1):133–40.PubMedCrossRef
31.
go back to reference Mushtaq N, Hussain S, Zhang S, Yuan L, Li H, Ullah S, Wang Y, Xu J. Molecular characterization of alterations in the intestinal microbiota of patients with grade 3 hypertension. Int J Mol Med. 2019;44(2):513–22.PubMedPubMedCentral Mushtaq N, Hussain S, Zhang S, Yuan L, Li H, Ullah S, Wang Y, Xu J. Molecular characterization of alterations in the intestinal microbiota of patients with grade 3 hypertension. Int J Mol Med. 2019;44(2):513–22.PubMedPubMedCentral
32.
go back to reference Bergandi L, Giuggia B, Alovisi M, Comba A, Silvagno F, Maule M, Aldieri E, Scotti N, Scacciatella P, Conrotto F, et al. Endothelial dysfunction marker variation in young adults with chronic apical periodontitis before and after Endodontic Treatment. J Endod. 2019;45(5):500–6.PubMedCrossRef Bergandi L, Giuggia B, Alovisi M, Comba A, Silvagno F, Maule M, Aldieri E, Scotti N, Scacciatella P, Conrotto F, et al. Endothelial dysfunction marker variation in young adults with chronic apical periodontitis before and after Endodontic Treatment. J Endod. 2019;45(5):500–6.PubMedCrossRef
33.
go back to reference Chauhan N, Mittal S, Tewari S, Sen J, Laller K. Association of Apical Periodontitis with Cardiovascular Disease via Noninvasive Assessment of endothelial function and subclinical atherosclerosis. J Endod. 2019;45(6):681–90.PubMedCrossRef Chauhan N, Mittal S, Tewari S, Sen J, Laller K. Association of Apical Periodontitis with Cardiovascular Disease via Noninvasive Assessment of endothelial function and subclinical atherosclerosis. J Endod. 2019;45(6):681–90.PubMedCrossRef
34.
go back to reference Malvicini G, Marruganti C, Abu Leil M, Martignoni M, Pasqui E, de Donato G, Grandini S, Gaeta C. Association between apical periodontitis and secondary outcomes of atherosclerotic cardiovascular disease: a case-control study. Int Endod J. 2024;57(3):281–96.PubMedCrossRef Malvicini G, Marruganti C, Abu Leil M, Martignoni M, Pasqui E, de Donato G, Grandini S, Gaeta C. Association between apical periodontitis and secondary outcomes of atherosclerotic cardiovascular disease: a case-control study. Int Endod J. 2024;57(3):281–96.PubMedCrossRef
35.
go back to reference Gan G, Lin S, Luo Y, Zeng Y, Lu B, Zhang R, Chen S, Lei H, Cai Z, Huang X. Unveiling the oral-gut connection: chronic apical periodontitis accelerates atherosclerosis via gut microbiota dysbiosis and altered metabolites in apoE(-/-) mice on a high-fat diet. Int J Oral Sci. 2024;16(1):39.PubMedPubMedCentralCrossRef Gan G, Lin S, Luo Y, Zeng Y, Lu B, Zhang R, Chen S, Lei H, Cai Z, Huang X. Unveiling the oral-gut connection: chronic apical periodontitis accelerates atherosclerosis via gut microbiota dysbiosis and altered metabolites in apoE(-/-) mice on a high-fat diet. Int J Oral Sci. 2024;16(1):39.PubMedPubMedCentralCrossRef
36.
go back to reference Beverly JK, Budoff MJ. Atherosclerosis: pathophysiology of insulin resistance, hyperglycemia, hyperlipidemia, and inflammation. J Diabetes. 2020;12(2):102–4.PubMedCrossRef Beverly JK, Budoff MJ. Atherosclerosis: pathophysiology of insulin resistance, hyperglycemia, hyperlipidemia, and inflammation. J Diabetes. 2020;12(2):102–4.PubMedCrossRef
37.
go back to reference Gobalakrishnan S, Asirvatham SS, Janarthanam V. Effect of Silybin on lipid Profile in Hypercholesterolaemic rats. J Clin Diagn Res. 2016;10(4):FF01–05.PubMedPubMedCentral Gobalakrishnan S, Asirvatham SS, Janarthanam V. Effect of Silybin on lipid Profile in Hypercholesterolaemic rats. J Clin Diagn Res. 2016;10(4):FF01–05.PubMedPubMedCentral
38.
go back to reference Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.PubMedPubMedCentralCrossRef Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.PubMedPubMedCentralCrossRef
39.
40.
go back to reference Ma ZS, Li L, Gotelli NJ. Diversity-disease relationships and shared species analyses for human microbiome-associated diseases. ISME J. 2019;13(8):1911–9.PubMedCrossRef Ma ZS, Li L, Gotelli NJ. Diversity-disease relationships and shared species analyses for human microbiome-associated diseases. ISME J. 2019;13(8):1911–9.PubMedCrossRef
41.
go back to reference Jonsson AL, Backhed F. Role of gut microbiota in atherosclerosis. Nat Rev Cardiol. 2017;14(2):79–87.PubMedCrossRef Jonsson AL, Backhed F. Role of gut microbiota in atherosclerosis. Nat Rev Cardiol. 2017;14(2):79–87.PubMedCrossRef
42.
go back to reference Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33(9):496–503.PubMedCrossRef Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33(9):496–503.PubMedCrossRef
43.
go back to reference Emoto T, Yamashita T, Kobayashi T, Sasaki N, Hirota Y, Hayashi T, So A, Kasahara K, Yodoi K, Matsumoto T, et al. Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. Heart Vessels. 2017;32(1):39–46.PubMedCrossRef Emoto T, Yamashita T, Kobayashi T, Sasaki N, Hirota Y, Hayashi T, So A, Kasahara K, Yodoi K, Matsumoto T, et al. Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. Heart Vessels. 2017;32(1):39–46.PubMedCrossRef
44.
go back to reference Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sorensen SJ, Hansen LH, Jakobsen M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE. 2010;5(2):e9085.PubMedPubMedCentralCrossRef Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sorensen SJ, Hansen LH, Jakobsen M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE. 2010;5(2):e9085.PubMedPubMedCentralCrossRef
45.
go back to reference Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.PubMedCrossRef Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.PubMedCrossRef
46.
go back to reference Nakajima M, Arimatsu K, Kato T, Matsuda Y, Minagawa T, Takahashi N, Ohno H, Yamazaki K. Oral administration of P. Gingivalis induces dysbiosis of gut microbiota and impaired barrier function leading to dissemination of Enterobacteria to the liver. PLoS ONE. 2015;10(7):e0134234.PubMedPubMedCentralCrossRef Nakajima M, Arimatsu K, Kato T, Matsuda Y, Minagawa T, Takahashi N, Ohno H, Yamazaki K. Oral administration of P. Gingivalis induces dysbiosis of gut microbiota and impaired barrier function leading to dissemination of Enterobacteria to the liver. PLoS ONE. 2015;10(7):e0134234.PubMedPubMedCentralCrossRef
47.
go back to reference Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S, Zhong H, Liu Z, Gao Y, Zhao H, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8(1):845.PubMedPubMedCentralCrossRef Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S, Zhong H, Liu Z, Gao Y, Zhao H, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8(1):845.PubMedPubMedCentralCrossRef
48.
go back to reference Koren O, Spor A, Felin J, Fak F, Stombaugh J, Tremaroli V, Behre CJ, Knight R, Fagerberg B, Ley RE, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4592–8.PubMedCrossRef Koren O, Spor A, Felin J, Fak F, Stombaugh J, Tremaroli V, Behre CJ, Knight R, Fagerberg B, Ley RE, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4592–8.PubMedCrossRef
49.
go back to reference Jin C, Weng Y, Zhang Y, Bao Z, Yang G, Fu Z, Jin Y. Propamocarb exposure has the potential to accelerate the formation of atherosclerosis in both WT and ApoE(-/-) mice accompanied by gut microbiota dysbiosis. Sci Total Environ. 2021;800:149602.PubMedCrossRef Jin C, Weng Y, Zhang Y, Bao Z, Yang G, Fu Z, Jin Y. Propamocarb exposure has the potential to accelerate the formation of atherosclerosis in both WT and ApoE(-/-) mice accompanied by gut microbiota dysbiosis. Sci Total Environ. 2021;800:149602.PubMedCrossRef
50.
go back to reference Qiu L, Tao X, Xiong H, Yu J, Wei H. Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice. Food Funct. 2018;9(8):4299–309.PubMedCrossRef Qiu L, Tao X, Xiong H, Yu J, Wei H. Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice. Food Funct. 2018;9(8):4299–309.PubMedCrossRef
51.
go back to reference Portugal LR, Goncalves JL, Fernandes LR, Silva HP, Arantes RM, Nicoli JR, Vieira LQ, Alvarez-Leite JI. Effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and on atherogenesis in apolipoprotein E knock-out mice. Braz J Med Biol Res. 2006;39(5):629–35.PubMedCrossRef Portugal LR, Goncalves JL, Fernandes LR, Silva HP, Arantes RM, Nicoli JR, Vieira LQ, Alvarez-Leite JI. Effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and on atherogenesis in apolipoprotein E knock-out mice. Braz J Med Biol Res. 2006;39(5):629–35.PubMedCrossRef
52.
go back to reference Park S, Kim I, Han SJ, Kwon S, Min EJ, Cho W, Koh H, Koo BN, Lee JS, Kwon JS, et al. Oral Porphyromonas gingivalis infection affects intestinal microbiota and promotes atherosclerosis. J Clin Periodontol. 2023;50(11):1553–67.PubMedCrossRef Park S, Kim I, Han SJ, Kwon S, Min EJ, Cho W, Koh H, Koo BN, Lee JS, Kwon JS, et al. Oral Porphyromonas gingivalis infection affects intestinal microbiota and promotes atherosclerosis. J Clin Periodontol. 2023;50(11):1553–67.PubMedCrossRef
54.
go back to reference Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 2019;76(3):473–93.PubMedCrossRef Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 2019;76(3):473–93.PubMedCrossRef
55.
go back to reference Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85.PubMedPubMedCentralCrossRef Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85.PubMedPubMedCentralCrossRef
56.
go back to reference Benson TW, Conrad KA, Li XS, Wang Z, Helsley RN, Schugar RC, Coughlin TM, Wadding-Lee C, Fleifil S, Russell HM, et al. Gut microbiota-derived trimethylamine N-Oxide contributes to abdominal aortic aneurysm through inflammatory and apoptotic mechanisms. Circulation. 2023;147(14):1079–96.PubMedPubMedCentralCrossRef Benson TW, Conrad KA, Li XS, Wang Z, Helsley RN, Schugar RC, Coughlin TM, Wadding-Lee C, Fleifil S, Russell HM, et al. Gut microbiota-derived trimethylamine N-Oxide contributes to abdominal aortic aneurysm through inflammatory and apoptotic mechanisms. Circulation. 2023;147(14):1079–96.PubMedPubMedCentralCrossRef
57.
go back to reference Saaoud F, Liu L, Xu K, Cueto R, Shao Y, Lu Y, Sun Y, Snyder NW, Wu S, Yang L et al. Aorta- and liver-generated TMAO enhances trained immunity for increased inflammation via ER stress/mitochondrial ROS/glycolysis pathways. JCI Insight 2023, 8(1). Saaoud F, Liu L, Xu K, Cueto R, Shao Y, Lu Y, Sun Y, Snyder NW, Wu S, Yang L et al. Aorta- and liver-generated TMAO enhances trained immunity for increased inflammation via ER stress/mitochondrial ROS/glycolysis pathways. JCI Insight 2023, 8(1).
58.
go back to reference Chen Y, Weng Z, Liu Q, Shao W, Guo W, Chen C, Jiao L, Wang Q, Lu Q, Sun H, et al. FMO3 and its metabolite TMAO contribute to the formation of gallstones. Biochim Biophys Acta Mol Basis Dis. 2019;1865(10):2576–85.PubMedCrossRef Chen Y, Weng Z, Liu Q, Shao W, Guo W, Chen C, Jiao L, Wang Q, Lu Q, Sun H, et al. FMO3 and its metabolite TMAO contribute to the formation of gallstones. Biochim Biophys Acta Mol Basis Dis. 2019;1865(10):2576–85.PubMedCrossRef
59.
go back to reference Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, et al. Gut Microbial Metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165(1):111–24.PubMedPubMedCentralCrossRef Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, et al. Gut Microbial Metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165(1):111–24.PubMedPubMedCentralCrossRef
60.
go back to reference Massey W, Osborn LJ, Banerjee R, Horak A, Fung KK, Orabi D, Chan ER, Sangwan N, Wang Z, Brown JM. Flavin-Containing monooxygenase 3 (FMO3) is critical for Dioxin-Induced reorganization of the gut microbiome and host insulin sensitivity. Metabolites 2022, 12(4). Massey W, Osborn LJ, Banerjee R, Horak A, Fung KK, Orabi D, Chan ER, Sangwan N, Wang Z, Brown JM. Flavin-Containing monooxygenase 3 (FMO3) is critical for Dioxin-Induced reorganization of the gut microbiome and host insulin sensitivity. Metabolites 2022, 12(4).
61.
go back to reference Zhu W, Buffa JA, Wang Z, Warrier M, Schugar R, Shih DM, Gupta N, Gregory JC, Org E, Fu X, et al. Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethylamine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk. J Thromb Haemost. 2018;16(9):1857–72.PubMedPubMedCentralCrossRef Zhu W, Buffa JA, Wang Z, Warrier M, Schugar R, Shih DM, Gupta N, Gregory JC, Org E, Fu X, et al. Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethylamine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk. J Thromb Haemost. 2018;16(9):1857–72.PubMedPubMedCentralCrossRef
62.
go back to reference Fennema D, Phillips IR, Shephard EA. Trimethylamine and trimethylamine N-Oxide, a Flavin-Containing monooxygenase 3 (FMO3)-Mediated host-microbiome metabolic Axis implicated in Health and Disease. Drug Metab Dispos. 2016;44(11):1839–50.PubMedPubMedCentralCrossRef Fennema D, Phillips IR, Shephard EA. Trimethylamine and trimethylamine N-Oxide, a Flavin-Containing monooxygenase 3 (FMO3)-Mediated host-microbiome metabolic Axis implicated in Health and Disease. Drug Metab Dispos. 2016;44(11):1839–50.PubMedPubMedCentralCrossRef
63.
go back to reference Warrier M, Shih DM, Burrows AC, Ferguson D, Gromovsky AD, Brown AL, Marshall S, McDaniel A, Schugar RC, Wang Z, et al. The TMAO-Generating enzyme Flavin Monooxygenase 3 is a Central Regulator of cholesterol balance. Cell Rep. 2015;10(3):326–38.PubMedPubMedCentralCrossRef Warrier M, Shih DM, Burrows AC, Ferguson D, Gromovsky AD, Brown AL, Marshall S, McDaniel A, Schugar RC, Wang Z, et al. The TMAO-Generating enzyme Flavin Monooxygenase 3 is a Central Regulator of cholesterol balance. Cell Rep. 2015;10(3):326–38.PubMedPubMedCentralCrossRef
Metadata
Title
Fecal microbiota transplantation validates the importance of gut microbiota in an ApoE−/− mouse model of chronic apical periodontitis-induced atherosclerosis
Authors
Guowu Gan
Ren Zhang
Yu Zeng
Beibei Lu
Yufang Luo
Shuai Chen
Huaxiang Lei
Zhiyu Cai
Xiaojing Huang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2024
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-024-05230-5