Skip to main content
Top
Published in:

Open Access 01-12-2024 | Ranibizumab | Research

The analysis of foveal microvascular anomalies in retinopathy of prematurity after anti-vascular endothelial growth factor therapy using optical coherence tomography angiography

Authors: Wenbo Liu, Lili Guo, Yi Cai, Hua Xu, Dandan Linghu, Xuemei Zhu, Yong Cheng, Xun Deng, Mingwei Zhao, Xuan Shi, Jianhong Liang

Published in: BMC Ophthalmology | Issue 1/2024

Login to get access

Abstract

Background

To investigate the quantitative vascular and structural differences in the foveal region of the eyes in retinopathy of prematurity children with or without anti-vascular endothelial growth factor (VEGF) therapy and healthy children using optical coherence tomography angiography (OCTA).

Methods

This cross-sectional study analyzed 75 eyes from 44 subjects, categorized into four groups: ROP children treated with Conbercept or Ranibizumab, spontaneously regressed ROP, and healthy age-matched children. Using spectral-domain OCT and OCTA, we assessed parameters like central foveal thickness (CFT), foveal avascular zone (FAZ), superficial/deep capillary plexus (SCP/DCP), and choroidal vessel density (VD) at the fovea. Correlations between foveal microvasculature, preterm status and visual acuity were evaluated.

Results

Significant differences were found in FAZ area, CFT, and VD-SCP (parafoveal) among the groups. The FAZ area was smaller in ROP children (with/without treatment) than in healthy counterparts(p = 0.009). CFT was higher in the Ranibizumab and spontaneously regressed groups compared to healthy ones (p = 0.043, p = 0.037), while Conbercept-treated children showed no significant difference (p = 0.886). Foveal VD trends were higher in groups A, B, and C compared to group D. FAZ area correlated negatively with CFT, VD-SCP (foveal), and VD-DCP (foveal) (p < 0.001, p < 0.001, p = 0.001), and positively with choroidal VD (p = 0.012). CFT showed positive correlations with VD-SCP (foveal) and VD-DCP (foveal) (p = 0.003, p = 0.001).

Conclusion

ROP children exhibit a smaller FAZ area compared to healthy group, with no significant difference noted when comparing the use of different anti-VEGF agents. ROP children have a thicker CFT than healthy children, except for those treated with Conbercept. Furthermore, microvascular irregularities were correlated with central foveal thickness.
Literature
1.
go back to reference Ni YQ, Huang X, Xue K, Yu J, Ruan L, Shan HD, Xu GZ. Natural involution of acute retinopathy of prematurity not requiring treatment: factors associated with the time course of involution. Invest Ophthalmol Vis Sci. 2014;55(5):3165–70.CrossRefPubMed Ni YQ, Huang X, Xue K, Yu J, Ruan L, Shan HD, Xu GZ. Natural involution of acute retinopathy of prematurity not requiring treatment: factors associated with the time course of involution. Invest Ophthalmol Vis Sci. 2014;55(5):3165–70.CrossRefPubMed
2.
go back to reference Lee AC, Katz J, Blencowe H, Cousens S, Kozuki N, Vogel JP, Adair L, Baqui AH, Bhutta ZA, Caulfield LE, et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Glob Health. 2013;1(1):e26–36.CrossRefPubMedPubMedCentral Lee AC, Katz J, Blencowe H, Cousens S, Kozuki N, Vogel JP, Adair L, Baqui AH, Bhutta ZA, Caulfield LE, et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Glob Health. 2013;1(1):e26–36.CrossRefPubMedPubMedCentral
3.
go back to reference Dogra MR, Katoch D, Dogra M. An update on retinopathy of Prematurity (ROP). Indian J Pediatr. 2017;84(12):930–6.CrossRefPubMed Dogra MR, Katoch D, Dogra M. An update on retinopathy of Prematurity (ROP). Indian J Pediatr. 2017;84(12):930–6.CrossRefPubMed
4.
go back to reference Shah VA, Yeo CL, Ling YL, Ho LY. Incidence, risk factors of retinopathy of prematurity among very low birth weight infants in Singapore. Ann Acad Med Singap. 2005;34(2):169–78.CrossRefPubMed Shah VA, Yeo CL, Ling YL, Ho LY. Incidence, risk factors of retinopathy of prematurity among very low birth weight infants in Singapore. Ann Acad Med Singap. 2005;34(2):169–78.CrossRefPubMed
5.
go back to reference Mintz-Hittner HA, Kennedy KA, Chuang AZ. Efficacy of intravitreal bevacizumab for stage 3 + retinopathy of prematurity. N Engl J Med. 2011;364(7):603–15.CrossRefPubMedPubMedCentral Mintz-Hittner HA, Kennedy KA, Chuang AZ. Efficacy of intravitreal bevacizumab for stage 3 + retinopathy of prematurity. N Engl J Med. 2011;364(7):603–15.CrossRefPubMedPubMedCentral
6.
go back to reference Chen SN, Lian I, Hwang YC, Chen YH, Chang YC, Lee KH, Chuang CC, Wu WC. Intravitreal anti-vascular endothelial growth factor treatment for retinopathy of prematurity: comparison between Ranibizumab and Bevacizumab. Retina. 2015;35(4):667–74.CrossRefPubMed Chen SN, Lian I, Hwang YC, Chen YH, Chang YC, Lee KH, Chuang CC, Wu WC. Intravitreal anti-vascular endothelial growth factor treatment for retinopathy of prematurity: comparison between Ranibizumab and Bevacizumab. Retina. 2015;35(4):667–74.CrossRefPubMed
7.
go back to reference Sankar MJ, Sankar J, Mehta M, Bhat V, Srinivasan R. Anti-vascular endothelial growth factor (VEGF) drugs for treatment of retinopathy of prematurity. Cochrane Database Syst Rev. 2016;2:CD009734.PubMed Sankar MJ, Sankar J, Mehta M, Bhat V, Srinivasan R. Anti-vascular endothelial growth factor (VEGF) drugs for treatment of retinopathy of prematurity. Cochrane Database Syst Rev. 2016;2:CD009734.PubMed
8.
go back to reference Bashinsky AL. Retinopathy of Prematurity. N C Med J. 2017;78(2):124–8.PubMed Bashinsky AL. Retinopathy of Prematurity. N C Med J. 2017;78(2):124–8.PubMed
9.
go back to reference Zhang A, Zhang Q, Chen CL, Wang RK. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt. 2015;20(10):100901.CrossRefPubMedPubMedCentral Zhang A, Zhang Q, Chen CL, Wang RK. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt. 2015;20(10):100901.CrossRefPubMedPubMedCentral
10.
go back to reference Zhao Q, Yang WL, Wang XN, Wang RK, You QS, Chu ZD, Xin C, Zhang MY, Li DJ, Wang ZY, et al. Repeatability and reproducibility of quantitative Assessment of the retinal microvasculature using Optical Coherence Tomography Angiography based on Optical Microangiography. Biomed Environ Sci. 2018;31(6):407–12.PubMed Zhao Q, Yang WL, Wang XN, Wang RK, You QS, Chu ZD, Xin C, Zhang MY, Li DJ, Wang ZY, et al. Repeatability and reproducibility of quantitative Assessment of the retinal microvasculature using Optical Coherence Tomography Angiography based on Optical Microangiography. Biomed Environ Sci. 2018;31(6):407–12.PubMed
11.
go back to reference Vinekar A, Chidambara L, Jayadev C, Sivakumar M, Webers CA, Shetty B. Monitoring neovascularization in aggressive posterior retinopathy of prematurity using optical coherence tomography angiography. J Aapos. 2016;20(3):271–4.CrossRefPubMed Vinekar A, Chidambara L, Jayadev C, Sivakumar M, Webers CA, Shetty B. Monitoring neovascularization in aggressive posterior retinopathy of prematurity using optical coherence tomography angiography. J Aapos. 2016;20(3):271–4.CrossRefPubMed
12.
go back to reference Campbell JP, Nudleman E, Yang J, Tan O, Chan RVP, Chiang MF, Huang D, Liu G. Handheld Optical Coherence Tomography Angiography and Ultra-wide-field Optical Coherence Tomography in Retinopathy of Prematurity. JAMA Ophthalmol. 2017;135(9):977–81.CrossRefPubMedPubMedCentral Campbell JP, Nudleman E, Yang J, Tan O, Chan RVP, Chiang MF, Huang D, Liu G. Handheld Optical Coherence Tomography Angiography and Ultra-wide-field Optical Coherence Tomography in Retinopathy of Prematurity. JAMA Ophthalmol. 2017;135(9):977–81.CrossRefPubMedPubMedCentral
13.
go back to reference Falavarjani KG, Iafe NA, Velez FG, Schwartz SD, Sadda SR, Sarraf D, Tsui I. Optical coherence tomography angiography of the Fovea in Children Born Preterm. Retina. 2017;37(12):2289–94.CrossRefPubMed Falavarjani KG, Iafe NA, Velez FG, Schwartz SD, Sadda SR, Sarraf D, Tsui I. Optical coherence tomography angiography of the Fovea in Children Born Preterm. Retina. 2017;37(12):2289–94.CrossRefPubMed
14.
go back to reference Chiang MF, Quinn GE, Fielder AR, Ostmo SR, Paul Chan RV, Berrocal A, Binenbaum G, Blair M, Peter Campbell J, Capone A, Jr, et al. International classification of retinopathy of Prematurity, Third Edition. Ophthalmology. 2021;128(10):e51–68.CrossRefPubMed Chiang MF, Quinn GE, Fielder AR, Ostmo SR, Paul Chan RV, Berrocal A, Binenbaum G, Blair M, Peter Campbell J, Capone A, Jr, et al. International classification of retinopathy of Prematurity, Third Edition. Ophthalmology. 2021;128(10):e51–68.CrossRefPubMed
15.
go back to reference Sarwar S, Hassan M, Soliman MK, Halim MS, Sadiq MA, Afridi R, Agarwal A, Do DV, Nguyen QD, Sepah YJ. Diurnal variation of choriocapillaris vessel flow density in normal subjects measured using optical coherence tomography angiography. Int J Retina Vitreous. 2018;4:37.CrossRefPubMedPubMedCentral Sarwar S, Hassan M, Soliman MK, Halim MS, Sadiq MA, Afridi R, Agarwal A, Do DV, Nguyen QD, Sepah YJ. Diurnal variation of choriocapillaris vessel flow density in normal subjects measured using optical coherence tomography angiography. Int J Retina Vitreous. 2018;4:37.CrossRefPubMedPubMedCentral
16.
go back to reference Villegas VM, Capo H, Cavuoto K, McKeown CA, Berrocal AM. Foveal structure-function correlation in children with history of retinopathy of prematurity. Am J Ophthalmol. 2014;158(3):508–e512502.CrossRefPubMed Villegas VM, Capo H, Cavuoto K, McKeown CA, Berrocal AM. Foveal structure-function correlation in children with history of retinopathy of prematurity. Am J Ophthalmol. 2014;158(3):508–e512502.CrossRefPubMed
17.
go back to reference Balasubramanian S, Borrelli E, Lonngi M, Velez F, Sarraf D, Sadda SR, Tsui I. Visual function and optical coherence tomography angiography features in children born Preterm. Retina. 2019;39(11):2233–9.CrossRefPubMed Balasubramanian S, Borrelli E, Lonngi M, Velez F, Sarraf D, Sadda SR, Tsui I. Visual function and optical coherence tomography angiography features in children born Preterm. Retina. 2019;39(11):2233–9.CrossRefPubMed
18.
go back to reference Chen YC, Chen YT, Chen SN. Foveal microvascular anomalies on optical coherence tomography angiography and the correlation with foveal thickness and visual acuity in retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol. 2019;257(1):23–30.CrossRefPubMed Chen YC, Chen YT, Chen SN. Foveal microvascular anomalies on optical coherence tomography angiography and the correlation with foveal thickness and visual acuity in retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol. 2019;257(1):23–30.CrossRefPubMed
19.
go back to reference Stoica F, Chirita-Emandi A, Andreescu N, Stanciu A, Zimbru CG, Puiu M. Clinical relevance of retinal structure in children with laser-treated retinopathy of prematurity versus controls - using optical coherence tomography. Acta Ophthalmol. 2018;96(2):e222–8.CrossRefPubMed Stoica F, Chirita-Emandi A, Andreescu N, Stanciu A, Zimbru CG, Puiu M. Clinical relevance of retinal structure in children with laser-treated retinopathy of prematurity versus controls - using optical coherence tomography. Acta Ophthalmol. 2018;96(2):e222–8.CrossRefPubMed
20.
go back to reference Bringmann A, Syrbe S, Gorner K, Kacza J, Francke M, Wiedemann P, Reichenbach A. The primate fovea: structure, function and development. Prog Retin Eye Res. 2018;66:49–84.CrossRefPubMed Bringmann A, Syrbe S, Gorner K, Kacza J, Francke M, Wiedemann P, Reichenbach A. The primate fovea: structure, function and development. Prog Retin Eye Res. 2018;66:49–84.CrossRefPubMed
21.
go back to reference Provis JM. Development of the primate retinal vasculature. Prog Retin Eye Res. 2001;20(6):799–821.CrossRefPubMed Provis JM. Development of the primate retinal vasculature. Prog Retin Eye Res. 2001;20(6):799–821.CrossRefPubMed
22.
go back to reference Springer AD, Hendrickson AE. Development of the primate area of high acuity, 3: temporal relationships between pit formation, retinal elongation and cone packing. Vis Neurosci. 2005;22(2):171–85.CrossRefPubMed Springer AD, Hendrickson AE. Development of the primate area of high acuity, 3: temporal relationships between pit formation, retinal elongation and cone packing. Vis Neurosci. 2005;22(2):171–85.CrossRefPubMed
23.
go back to reference Engerman RL. Development of the macular circulation. Invest Ophthalmol. 1976;15(10):835–40.PubMed Engerman RL. Development of the macular circulation. Invest Ophthalmol. 1976;15(10):835–40.PubMed
24.
go back to reference Dubis AM, Costakos DM, Subramaniam CD, Godara P, Wirostko WJ, Carroll J, Provis JM. Evaluation of normal human foveal development using optical coherence tomography and histologic examination. Arch Ophthalmol. 2012;130(10):1291–300.CrossRefPubMedPubMedCentral Dubis AM, Costakos DM, Subramaniam CD, Godara P, Wirostko WJ, Carroll J, Provis JM. Evaluation of normal human foveal development using optical coherence tomography and histologic examination. Arch Ophthalmol. 2012;130(10):1291–300.CrossRefPubMedPubMedCentral
25.
go back to reference Böhm MR, Hodes F, Brockhaus K, Hummel S, Schlatt S, Melkonyan H, Thanos S. Is angiostatin involved in physiological Foveal Avascularity? Invest Ophthalmol Vis Sci. 2016;57(11):4536–52.CrossRefPubMed Böhm MR, Hodes F, Brockhaus K, Hummel S, Schlatt S, Melkonyan H, Thanos S. Is angiostatin involved in physiological Foveal Avascularity? Invest Ophthalmol Vis Sci. 2016;57(11):4536–52.CrossRefPubMed
26.
go back to reference Jin E, Yin H, Gui Y, Chen J, Zhang J, Liang J, Li XX, Zhao M. Fluorescein Angiographic findings of Peripheral Retinal vasculature after Intravitreal Conbercept versus Ranibizumab for Retinopathy of Prematurity. J Ophthalmol. 2019;2019:3935945.CrossRefPubMedPubMedCentral Jin E, Yin H, Gui Y, Chen J, Zhang J, Liang J, Li XX, Zhao M. Fluorescein Angiographic findings of Peripheral Retinal vasculature after Intravitreal Conbercept versus Ranibizumab for Retinopathy of Prematurity. J Ophthalmol. 2019;2019:3935945.CrossRefPubMedPubMedCentral
27.
go back to reference Vural A, Gunay M, Celik G, Demirayak B, Kizilay O. Comparison of foveal optical coherence tomography angiography findings between premature children with ROP and non-premature healthy children. Eye (Lond). 2021;35(6):1721–9.CrossRefPubMed Vural A, Gunay M, Celik G, Demirayak B, Kizilay O. Comparison of foveal optical coherence tomography angiography findings between premature children with ROP and non-premature healthy children. Eye (Lond). 2021;35(6):1721–9.CrossRefPubMed
28.
go back to reference Bowl W, Stieger K, Bokun M, Schweinfurth S, Holve K, Andrassi-Darida M, Lorenz B. OCT-Based Macular structure-function correlation in dependence on Birth Weight and Gestational Age-the Giessen Long-Term ROP Study. Invest Ophthalmol Vis Sci. 2016;57(9):OCT235–241.CrossRefPubMed Bowl W, Stieger K, Bokun M, Schweinfurth S, Holve K, Andrassi-Darida M, Lorenz B. OCT-Based Macular structure-function correlation in dependence on Birth Weight and Gestational Age-the Giessen Long-Term ROP Study. Invest Ophthalmol Vis Sci. 2016;57(9):OCT235–241.CrossRefPubMed
29.
go back to reference Wang J, Spencer R, Leffler JN, Birch EE. Critical period for foveal fine structure in children with regressed retinopathy of prematurity. Retina. 2012;32(2):330–9.CrossRefPubMed Wang J, Spencer R, Leffler JN, Birch EE. Critical period for foveal fine structure in children with regressed retinopathy of prematurity. Retina. 2012;32(2):330–9.CrossRefPubMed
30.
go back to reference Yanni SE, Wang J, Chan M, Carroll J, Farsiu S, Leffler JN, Spencer R, Birch EE. Foveal avascular zone and foveal pit formation after preterm birth. Br J Ophthalmol. 2012;96(7):961–6.CrossRefPubMed Yanni SE, Wang J, Chan M, Carroll J, Farsiu S, Leffler JN, Spencer R, Birch EE. Foveal avascular zone and foveal pit formation after preterm birth. Br J Ophthalmol. 2012;96(7):961–6.CrossRefPubMed
31.
go back to reference Springer AD, Hendrickson AE. Development of the primate area of high acuity. 1. Use of finite element analysis models to identify mechanical variables affecting pit formation. Vis Neurosci. 2004;21(1):53–62.CrossRefPubMed Springer AD, Hendrickson AE. Development of the primate area of high acuity. 1. Use of finite element analysis models to identify mechanical variables affecting pit formation. Vis Neurosci. 2004;21(1):53–62.CrossRefPubMed
32.
go back to reference Jiang S, Li X, Fu M, Huanglu D, Huang J, Huang W, Hu P. Comparison of clinical effectiveness of conbercept and ranibizumab for treating retinopathy of prematurity: a meta-analysis. Int J Clin Pharm 2023. Jiang S, Li X, Fu M, Huanglu D, Huang J, Huang W, Hu P. Comparison of clinical effectiveness of conbercept and ranibizumab for treating retinopathy of prematurity: a meta-analysis. Int J Clin Pharm 2023.
33.
go back to reference Bai Y, Nie H, Wei S, Lu X, Ke X, Ouyang X, Feng S. Efficacy of intravitreal conbercept injection in the treatment of retinopathy of prematurity. Br J Ophthalmol. 2019;103(4):494–8.CrossRefPubMed Bai Y, Nie H, Wei S, Lu X, Ke X, Ouyang X, Feng S. Efficacy of intravitreal conbercept injection in the treatment of retinopathy of prematurity. Br J Ophthalmol. 2019;103(4):494–8.CrossRefPubMed
34.
go back to reference Zhou M, Hashimoto K, Liu W, Cai Y, Liang J, Shi X, Zhao M. Efficacy comparison of anti-vascular endothelial growth factor drugs for the treatment of type 1 retinopathy of prematurity: a network meta-analysis of randomised controlled trials. Graefes Arch Clin Exp Ophthalmol 2023. Zhou M, Hashimoto K, Liu W, Cai Y, Liang J, Shi X, Zhao M. Efficacy comparison of anti-vascular endothelial growth factor drugs for the treatment of type 1 retinopathy of prematurity: a network meta-analysis of randomised controlled trials. Graefes Arch Clin Exp Ophthalmol 2023.
35.
go back to reference Takagi M, Maruko I, Yamaguchi A, Kakehashi M, Hasegawa T, Iida T. Foveal abnormalities determined by optical coherence tomography angiography in children with history of retinopathy of prematurity. Eye (Lond). 2019;33(12):1890–6.CrossRefPubMed Takagi M, Maruko I, Yamaguchi A, Kakehashi M, Hasegawa T, Iida T. Foveal abnormalities determined by optical coherence tomography angiography in children with history of retinopathy of prematurity. Eye (Lond). 2019;33(12):1890–6.CrossRefPubMed
36.
go back to reference Rezar-Dreindl S, Eibenberger K, Told R, Neumayer T, Steiner I, Sacu S, Schmidt-Erfurth U, Stifter E. Retinal vessel architecture in retinopathy of prematurity and healthy controls using swept-source optical coherence tomography angiography. Acta Ophthalmol. 2021;99(2):e232–9.CrossRefPubMed Rezar-Dreindl S, Eibenberger K, Told R, Neumayer T, Steiner I, Sacu S, Schmidt-Erfurth U, Stifter E. Retinal vessel architecture in retinopathy of prematurity and healthy controls using swept-source optical coherence tomography angiography. Acta Ophthalmol. 2021;99(2):e232–9.CrossRefPubMed
37.
go back to reference Lavric A, Tekavcic Pompe M, Markelj S, Ding J, Mahajan S, Khandelwal N, Agrawal R. Choroidal structural changes in preterm children with and without retinopathy of prematurity. Acta Ophthalmol 2019. Lavric A, Tekavcic Pompe M, Markelj S, Ding J, Mahajan S, Khandelwal N, Agrawal R. Choroidal structural changes in preterm children with and without retinopathy of prematurity. Acta Ophthalmol 2019.
38.
go back to reference Erol MK, Coban DT, Ozdemir O, Dogan B, Tunay ZO, Bulut M. Choroidal Thickness in infants with Retinopathy of Prematurity. Retina. 2016;36(6):1191–8.CrossRefPubMed Erol MK, Coban DT, Ozdemir O, Dogan B, Tunay ZO, Bulut M. Choroidal Thickness in infants with Retinopathy of Prematurity. Retina. 2016;36(6):1191–8.CrossRefPubMed
Metadata
Title
The analysis of foveal microvascular anomalies in retinopathy of prematurity after anti-vascular endothelial growth factor therapy using optical coherence tomography angiography
Authors
Wenbo Liu
Lili Guo
Yi Cai
Hua Xu
Dandan Linghu
Xuemei Zhu
Yong Cheng
Xun Deng
Mingwei Zhao
Xuan Shi
Jianhong Liang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2024
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-024-03759-1