Skip to main content
Top
Published in:

27-09-2023 | Review Article

Quantification of dynamic cerebral autoregulation: welcome to the jungle!

Authors: Patrice Brassard, Marc-Antoine Roy, Joel S. Burma, Lawrence Labrecque, Jonathan D. Smirl

Published in: Clinical Autonomic Research | Issue 6/2023

Login to get access

Abstract

Purpose

Patients with dysautonomia often experience symptoms such as dizziness, syncope, blurred vision and brain fog. Dynamic cerebral autoregulation, or the ability of the cerebrovasculature to react to transient changes in arterial blood pressure, could be associated with these symptoms.

Methods

In this narrative review, we go beyond the classical view of cerebral autoregulation to discuss dynamic cerebral autoregulation, focusing on recent advances pitfalls and future directions.

Results

Following some historical background, this narrative review provides a brief overview of the concept of cerebral autoregulation, with a focus on the quantification of dynamic cerebral autoregulation. We then discuss the main protocols and analytical approaches to assess dynamic cerebral autoregulation, including recent advances and important issues which need to be tackled.

Conclusion

The researcher or clinician new to this field needs an adequate comprehension of the toolbox they have to adequately assess, and interpret, the complex relationship between arterial blood pressure and cerebral blood flow in healthy individuals and clinical populations, including patients with autonomic disorders.
Literature
1.
go back to reference Goldstein DS, Robertson D, Esler M, Straus SE, Eisenhofer G (2002) Dysautonomias: clinical disorders of the autonomic nervous system. Ann Intern Med 137:753–763PubMedCrossRef Goldstein DS, Robertson D, Esler M, Straus SE, Eisenhofer G (2002) Dysautonomias: clinical disorders of the autonomic nervous system. Ann Intern Med 137:753–763PubMedCrossRef
2.
go back to reference McWhirter L, Smyth H, Hoeritzauer I, Couturier A, Stone J, Carson AJ (2023) What is brain fog? J Neurol Neurosurg Psychiatry 94:321–325PubMedCrossRef McWhirter L, Smyth H, Hoeritzauer I, Couturier A, Stone J, Carson AJ (2023) What is brain fog? J Neurol Neurosurg Psychiatry 94:321–325PubMedCrossRef
3.
go back to reference Reichgott MJ (1990) Clinical evidence of dysautonomia. In: Walker HK, Hall WD, Hurst JW (eds) Clinical methods: the History, physical, and laboratory examinations. Butterworths, Boston Reichgott MJ (1990) Clinical evidence of dysautonomia. In: Walker HK, Hall WD, Hurst JW (eds) Clinical methods: the History, physical, and laboratory examinations. Butterworths, Boston
4.
go back to reference Claassen J, Thijssen DHJ, Panerai RB, Faraci FM (2021) Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 101:1487–1559 Claassen J, Thijssen DHJ, Panerai RB, Faraci FM (2021) Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 101:1487–1559
5.
go back to reference Ocon AJ, Medow MS, Taneja I, Clarke D, Stewart JM (2009) Decreased upright cerebral blood flow and cerebral autoregulation in normocapnic postural tachycardia syndrome. Am J Physiol Heart Circ Physiol 297:H664–673PubMedPubMedCentralCrossRef Ocon AJ, Medow MS, Taneja I, Clarke D, Stewart JM (2009) Decreased upright cerebral blood flow and cerebral autoregulation in normocapnic postural tachycardia syndrome. Am J Physiol Heart Circ Physiol 297:H664–673PubMedPubMedCentralCrossRef
6.
go back to reference Castro PM, Santos R, Freitas J, Panerai RB, Azevedo E (2014) Autonomic dysfunction affects dynamic cerebral autoregulation during Valsalva maneuver: comparison between healthy and autonomic dysfunction subjects. J Appl Physiol 117:205–213PubMedCrossRef Castro PM, Santos R, Freitas J, Panerai RB, Azevedo E (2014) Autonomic dysfunction affects dynamic cerebral autoregulation during Valsalva maneuver: comparison between healthy and autonomic dysfunction subjects. J Appl Physiol 117:205–213PubMedCrossRef
7.
go back to reference Schondorf R, Benoit J, Stein R (2005) Cerebral autoregulation is preserved in postural tachycardia syndrome. J Appl Physiol 99:828–835PubMedCrossRef Schondorf R, Benoit J, Stein R (2005) Cerebral autoregulation is preserved in postural tachycardia syndrome. J Appl Physiol 99:828–835PubMedCrossRef
8.
go back to reference Pavy-Le Traon A, Hughson RL, Thalamas C, Galitsky M, Fabre N, Rascol O, Senard JM (2006) Cerebral autoregulation is preserved in multiple system atrophy: a transcranial Doppler study. Mov Disord 21:2122–2126PubMedCrossRef Pavy-Le Traon A, Hughson RL, Thalamas C, Galitsky M, Fabre N, Rascol O, Senard JM (2006) Cerebral autoregulation is preserved in multiple system atrophy: a transcranial Doppler study. Mov Disord 21:2122–2126PubMedCrossRef
9.
10.
go back to reference Paulson OB, Strandgaard S, Edvinsson L (1990) Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2:161–192PubMed Paulson OB, Strandgaard S, Edvinsson L (1990) Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2:161–192PubMed
11.
go back to reference Brassard P, Labrecque L, Smirl JD, Tymko MM, Caldwell HG, Hoiland RL, Lucas SJE, Denault AY, Couture EJ, Ainslie PN (2021) Losing the dogmatic view of cerebral autoregulation. Physiol Rep 9:e14982PubMedPubMedCentralCrossRef Brassard P, Labrecque L, Smirl JD, Tymko MM, Caldwell HG, Hoiland RL, Lucas SJE, Denault AY, Couture EJ, Ainslie PN (2021) Losing the dogmatic view of cerebral autoregulation. Physiol Rep 9:e14982PubMedPubMedCentralCrossRef
12.
go back to reference Schondorf R, Stein R, Roberts R, Benoit J, Cupples W (2001) Dynamic cerebral autoregulation is preserved in neurally mediated syncope. J Appl Physiol 91:2493–2502PubMedCrossRef Schondorf R, Stein R, Roberts R, Benoit J, Cupples W (2001) Dynamic cerebral autoregulation is preserved in neurally mediated syncope. J Appl Physiol 91:2493–2502PubMedCrossRef
13.
go back to reference van der Scheer JW, Kamijo YI, Leicht CA, Millar PJ, Shibasaki M, Goosey-Tolfrey VL, Tajima F (2018) A comparison of static and dynamic cerebral autoregulation during mild whole-body cold stress in individuals with and without cervical spinal cord injury: a pilot study. Spinal Cord 56:469–477PubMedCrossRef van der Scheer JW, Kamijo YI, Leicht CA, Millar PJ, Shibasaki M, Goosey-Tolfrey VL, Tajima F (2018) A comparison of static and dynamic cerebral autoregulation during mild whole-body cold stress in individuals with and without cervical spinal cord injury: a pilot study. Spinal Cord 56:469–477PubMedCrossRef
14.
go back to reference Sahota IS, Lucci VM, McGrath MS, Ravensbergen H, Claydon VE (2022) Cardiovascular and cerebrovascular responses to urodynamics testing after spinal cord injury: the influence of autonomic injury. Front Physiol 13:977772PubMedPubMedCentralCrossRef Sahota IS, Lucci VM, McGrath MS, Ravensbergen H, Claydon VE (2022) Cardiovascular and cerebrovascular responses to urodynamics testing after spinal cord injury: the influence of autonomic injury. Front Physiol 13:977772PubMedPubMedCentralCrossRef
15.
go back to reference Saleem S, Vucina D, Sarafis Z, Lee AHX, Squair JW, Barak OF, Coombs GB, Mijacika T, Krassioukov AV, Ainslie PN, Dujic Z, Tzeng YC, Phillips AA (2018) Wavelet decomposition analysis is a clinically relevant strategy to evaluate cerebrovascular buffering of blood pressure after spinal cord injury. Am J Physiol Heart Circ Physiol 314:H1108–H1114PubMedPubMedCentralCrossRef Saleem S, Vucina D, Sarafis Z, Lee AHX, Squair JW, Barak OF, Coombs GB, Mijacika T, Krassioukov AV, Ainslie PN, Dujic Z, Tzeng YC, Phillips AA (2018) Wavelet decomposition analysis is a clinically relevant strategy to evaluate cerebrovascular buffering of blood pressure after spinal cord injury. Am J Physiol Heart Circ Physiol 314:H1108–H1114PubMedPubMedCentralCrossRef
16.
go back to reference Wilson LC, Cotter JD, Fan JL, Lucas RA, Thomas KN, Ainslie PN (2010) Cerebrovascular reactivity and dynamic autoregulation in tetraplegia. Am J Physiol Regul Integr Comp Physiol 298:R1035–1042PubMedCrossRef Wilson LC, Cotter JD, Fan JL, Lucas RA, Thomas KN, Ainslie PN (2010) Cerebrovascular reactivity and dynamic autoregulation in tetraplegia. Am J Physiol Regul Integr Comp Physiol 298:R1035–1042PubMedCrossRef
17.
go back to reference Castro P, Freitas J, Azevedo E, Tan CO (2022) Cerebrovascular regulation in patients with vasovagal syncope and autonomic failure due to familial amyloidotic polyneuropathy. Auton Neurosci 242:103010PubMedCrossRef Castro P, Freitas J, Azevedo E, Tan CO (2022) Cerebrovascular regulation in patients with vasovagal syncope and autonomic failure due to familial amyloidotic polyneuropathy. Auton Neurosci 242:103010PubMedCrossRef
18.
go back to reference Carey BJ, Manktelow BN, Panerai RB, Potter JF (2001) Cerebral autoregulatory responses to head-up tilt in normal subjects and patients with recurrent vasovagal syncope. Circulation 104:898–902PubMedCrossRef Carey BJ, Manktelow BN, Panerai RB, Potter JF (2001) Cerebral autoregulatory responses to head-up tilt in normal subjects and patients with recurrent vasovagal syncope. Circulation 104:898–902PubMedCrossRef
19.
go back to reference Roy CS, Sherrington CS (1890) On the regulation of the blood-supply of the brain. J Physiol 11(85–158):117 Roy CS, Sherrington CS (1890) On the regulation of the blood-supply of the brain. J Physiol 11(85–158):117
20.
go back to reference Bayliss WM, Hill L, Gulland GL (1895) On Intra-cranial pressure and the cerebral circulation: Part I. Physiological; Part II. Histological. J Physiol 18:334–362PubMedPubMedCentralCrossRef Bayliss WM, Hill L, Gulland GL (1895) On Intra-cranial pressure and the cerebral circulation: Part I. Physiological; Part II. Histological. J Physiol 18:334–362PubMedPubMedCentralCrossRef
22.
go back to reference Fog M (1939) Cerebral circulation II. Reaction of pial arteries to increase in blood pressure. Arch Neuro Psychiat 41:9 Fog M (1939) Cerebral circulation II. Reaction of pial arteries to increase in blood pressure. Arch Neuro Psychiat 41:9
23.
go back to reference Fog M (1939) Cerebral circulation. The reaction of pial arteries to a fall in blood pressure. Arch Neurol Psychiat 37:14 Fog M (1939) Cerebral circulation. The reaction of pial arteries to a fall in blood pressure. Arch Neurol Psychiat 37:14
24.
go back to reference Barrett KE, Barman SM, Boitano S, Brooks H (2010) Ganong’s review of medical physiology, 23rd edn. McGraw-Hill, New York Barrett KE, Barman SM, Boitano S, Brooks H (2010) Ganong’s review of medical physiology, 23rd edn. McGraw-Hill, New York
25.
26.
go back to reference Patel PM, Drummond JC, Lemkuil BP (2020) Cerebral physiology and the effects of anethetic drugs. In: Miller RD (ed) Miller’s anesthesia. Elsevier Health Sciences, Philadelphia, pp 294–332 Patel PM, Drummond JC, Lemkuil BP (2020) Cerebral physiology and the effects of anethetic drugs. In: Miller RD (ed) Miller’s anesthesia. Elsevier Health Sciences, Philadelphia, pp 294–332
28.
go back to reference Kontos HA, Wei EP, Raper AJ, Rosenblum WI, Navari RM, Patterson JL Jr (1978) Role of tissue hypoxia in local regulation of cerebral microcirculation. Am J Physiol 234:H582–591PubMed Kontos HA, Wei EP, Raper AJ, Rosenblum WI, Navari RM, Patterson JL Jr (1978) Role of tissue hypoxia in local regulation of cerebral microcirculation. Am J Physiol 234:H582–591PubMed
29.
go back to reference MacKenzie ET, Farrar JK, Fitch W, Graham DI, Gregory PC, Harper AM (1979) Effects of hemorrhagic hypotension on the cerebral circulation. I. Cerebral blood flow and pial arteriolar caliber. Stroke 10:711–718PubMedCrossRef MacKenzie ET, Farrar JK, Fitch W, Graham DI, Gregory PC, Harper AM (1979) Effects of hemorrhagic hypotension on the cerebral circulation. I. Cerebral blood flow and pial arteriolar caliber. Stroke 10:711–718PubMedCrossRef
30.
go back to reference MacKenzie ET, Strandgaard S, Graham DI, Jones JV, Harper AM, Farrar JK (1976) Effects of acutely induced hypertension in cats on pial arteriolar caliber, local cerebral blood flow, and the blood-brain barrier. Circ Res 39:33–41PubMedCrossRef MacKenzie ET, Strandgaard S, Graham DI, Jones JV, Harper AM, Farrar JK (1976) Effects of acutely induced hypertension in cats on pial arteriolar caliber, local cerebral blood flow, and the blood-brain barrier. Circ Res 39:33–41PubMedCrossRef
31.
go back to reference Harper SL, Bohlen HG (1984) Microvascular adaptation in the cerebral cortex of adult spontaneously hypertensive rats. Hypertension 6:408–419PubMedCrossRef Harper SL, Bohlen HG (1984) Microvascular adaptation in the cerebral cortex of adult spontaneously hypertensive rats. Hypertension 6:408–419PubMedCrossRef
32.
go back to reference Harper SL, Bohlen HG, Rubin MJ (1984) Arterial and microvascular contributions to cerebral cortical autoregulation in rats. Am J Physiol 246:H17–24PubMed Harper SL, Bohlen HG, Rubin MJ (1984) Arterial and microvascular contributions to cerebral cortical autoregulation in rats. Am J Physiol 246:H17–24PubMed
33.
go back to reference Hernandez MJ, Brennan RW, Bowman GS (1978) Cerebral blood flow autoregulation in the rat. Stroke 9:150–154PubMedCrossRef Hernandez MJ, Brennan RW, Bowman GS (1978) Cerebral blood flow autoregulation in the rat. Stroke 9:150–154PubMedCrossRef
34.
go back to reference Hoffman WE, Edelman G, Kochs E, Werner C, Segil L, Albrecht RF (1991) Cerebral autoregulation in awake versus isoflurane-anesthetized rats. Anesth Analg 73:753–757PubMedCrossRef Hoffman WE, Edelman G, Kochs E, Werner C, Segil L, Albrecht RF (1991) Cerebral autoregulation in awake versus isoflurane-anesthetized rats. Anesth Analg 73:753–757PubMedCrossRef
35.
go back to reference Sadoshima S, Heistad DD (1983) Regional cerebral blood flow during hypotension in normotensive and stroke-prone spontaneously hypertensive rats: effect of sympathetic denervation. Stroke 14:575–579PubMedCrossRef Sadoshima S, Heistad DD (1983) Regional cerebral blood flow during hypotension in normotensive and stroke-prone spontaneously hypertensive rats: effect of sympathetic denervation. Stroke 14:575–579PubMedCrossRef
36.
go back to reference Fitch W, Ferguson GG, Sengupta D, Garibi J, Harper AM (1976) Autoregulation of cerebral blood flow during controlled hypotension in baboons. J Neurol Neurosurg Psychiatry 39:1014–1022PubMedPubMedCentralCrossRef Fitch W, Ferguson GG, Sengupta D, Garibi J, Harper AM (1976) Autoregulation of cerebral blood flow during controlled hypotension in baboons. J Neurol Neurosurg Psychiatry 39:1014–1022PubMedPubMedCentralCrossRef
37.
go back to reference Fitch W, Jones JV, MacKenzie ET, Harper AM (1976) Proceedings: autoregulation of cerebral blood flow in chronically hypertensive baboons. Br J Surg 63:663PubMed Fitch W, Jones JV, MacKenzie ET, Harper AM (1976) Proceedings: autoregulation of cerebral blood flow in chronically hypertensive baboons. Br J Surg 63:663PubMed
38.
go back to reference Harper AM, Lassen NA, MacKenzie ET, Rowan JO, Sengupta D, Strandgaard S (1973) Proceedings: the upper limit of ‘autoregulation’ of cerebral blood flow in the baboon. J Physiol 234:61P–62PPubMed Harper AM, Lassen NA, MacKenzie ET, Rowan JO, Sengupta D, Strandgaard S (1973) Proceedings: the upper limit of ‘autoregulation’ of cerebral blood flow in the baboon. J Physiol 234:61P–62PPubMed
39.
go back to reference Strandgaard S, MacKenzie ET, Jones JV, Harper AM (1976) Studies on the cerebral circulation of the baboon in acutely induced hypertension. Stroke 7:287–290PubMedCrossRef Strandgaard S, MacKenzie ET, Jones JV, Harper AM (1976) Studies on the cerebral circulation of the baboon in acutely induced hypertension. Stroke 7:287–290PubMedCrossRef
40.
go back to reference Strandgaard S, MacKenzie ET, Sengupta D, Rowan JO, Lassen NA, Harper AM (1974) Upper limit of autoregulation of cerebral blood flow in the baboon. Circ Res 34:435–440PubMedCrossRef Strandgaard S, MacKenzie ET, Sengupta D, Rowan JO, Lassen NA, Harper AM (1974) Upper limit of autoregulation of cerebral blood flow in the baboon. Circ Res 34:435–440PubMedCrossRef
41.
go back to reference Heistad DD, Marcus ML, Piegors DJ, Armstrong ML (1980) Regulation of cerebral blood flow in atherosclerotic monkeys. Am J Physiol 239:H539–H544PubMed Heistad DD, Marcus ML, Piegors DJ, Armstrong ML (1980) Regulation of cerebral blood flow in atherosclerotic monkeys. Am J Physiol 239:H539–H544PubMed
42.
go back to reference Tureen JH, Dworkin RJ, Kennedy SL, Sachdeva M, Sande MA (1990) Loss of cerebrovascular autoregulation in experimental meningitis in rabbits. J Clin Invest 85:577–581PubMedPubMedCentralCrossRef Tureen JH, Dworkin RJ, Kennedy SL, Sachdeva M, Sande MA (1990) Loss of cerebrovascular autoregulation in experimental meningitis in rabbits. J Clin Invest 85:577–581PubMedPubMedCentralCrossRef
43.
44.
go back to reference Heistad DD, Kontos HA (2011) Cerebral circulation. In: Supplement 8: handbook of physiology, the cardiovascular system, peripheral circulation and organ blood flow. Comp Physiol 2011:137–182 (First published in print 1983) Heistad DD, Kontos HA (2011) Cerebral circulation. In: Supplement 8: handbook of physiology, the cardiovascular system, peripheral circulation and organ blood flow. Comp Physiol 2011:137–182 (First published in print 1983)
48.
go back to reference Numan T, Bain AR, Hoiland RL, Smirl JD, Lewis NC, Ainslie PN (2014) Static autoregulation in humans: a review and reanalysis. Med Eng Phys 36(11):1487–1495. Numan T, Bain AR, Hoiland RL, Smirl JD, Lewis NC, Ainslie PN (2014) Static autoregulation in humans: a review and reanalysis. Med Eng Phys 36(11):1487–1495.
49.
go back to reference Kety SS (1948) Quantitative determination of cerebral blood flow in man. Methods Med Res 1:204–217PubMed Kety SS (1948) Quantitative determination of cerebral blood flow in man. Methods Med Res 1:204–217PubMed
50.
go back to reference Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 27:476–483PubMedPubMedCentralCrossRef Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 27:476–483PubMedPubMedCentralCrossRef
51.
go back to reference Lassen NA, Ingvar DH (1961) The blood flow of the cerebral cortex determined by radioactive krypton. Experientia 17:42–43PubMedCrossRef Lassen NA, Ingvar DH (1961) The blood flow of the cerebral cortex determined by radioactive krypton. Experientia 17:42–43PubMedCrossRef
52.
go back to reference Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57:769–774PubMedCrossRef Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57:769–774PubMedCrossRef
53.
go back to reference Serrador JM, Picot PA, Rutt BK, Shoemaker JK, Bondar RL (2000) MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke 31:1672–1678PubMedCrossRef Serrador JM, Picot PA, Rutt BK, Shoemaker JK, Bondar RL (2000) MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke 31:1672–1678PubMedCrossRef
54.
go back to reference Ainslie PN, Hoiland RL (2014) Transcranial Doppler ultrasound: valid, invalid, or both? J Appl Physiol 117:1081–1083PubMedCrossRef Ainslie PN, Hoiland RL (2014) Transcranial Doppler ultrasound: valid, invalid, or both? J Appl Physiol 117:1081–1083PubMedCrossRef
55.
go back to reference Coverdale NS, Gati JS, Opalevych O, Perrotta A, Shoemaker JK (2014) Cerebral blood flow velocity underestimates cerebral blood flow during modest hypercapnia and hypocapnia. J Appl Physiol 117:1090–1096PubMedCrossRef Coverdale NS, Gati JS, Opalevych O, Perrotta A, Shoemaker JK (2014) Cerebral blood flow velocity underestimates cerebral blood flow during modest hypercapnia and hypocapnia. J Appl Physiol 117:1090–1096PubMedCrossRef
56.
go back to reference Verbree J, Bronzwaer AS, Ghariq E, Versluis MJ, Daemen MJ, van Buchem MA, Dahan A, van Lieshout JJ, van Osch MJ (2014) Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI. J Appl Physiol 117:1084–1089PubMedCrossRef Verbree J, Bronzwaer AS, Ghariq E, Versluis MJ, Daemen MJ, van Buchem MA, Dahan A, van Lieshout JJ, van Osch MJ (2014) Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI. J Appl Physiol 117:1084–1089PubMedCrossRef
57.
go back to reference Skow RJ, Brothers RM, Claassen J, Day TA, Rickards CA, Smirl JD, Brassard P (2022) On the use and misuse of cerebral hemodynamics terminology using transcranial Doppler ultrasound: a call for standardization. Am J Physiol Heart Circ Physiol 323:H350–H357PubMedCrossRef Skow RJ, Brothers RM, Claassen J, Day TA, Rickards CA, Smirl JD, Brassard P (2022) On the use and misuse of cerebral hemodynamics terminology using transcranial Doppler ultrasound: a call for standardization. Am J Physiol Heart Circ Physiol 323:H350–H357PubMedCrossRef
58.
go back to reference Tzeng YC, Ainslie P (2014) Blood pressure regulation IX: cerebral autoregulation under blood pressure challenges. Eur J Appl Physiol 114(3):545–559 Tzeng YC, Ainslie P (2014) Blood pressure regulation IX: cerebral autoregulation under blood pressure challenges. Eur J Appl Physiol 114(3):545–559
59.
go back to reference Claassen JA, Meel-van den Abeelen AS, Simpson DM, Panerai RB, International Cerebral Autoregulation Research Network (2016) Transfer function analysis of dynamic cerebral autoregulation: a white paper from the International Cerebral Autoregulation Research Network. J Cereb Blood Flow Metab 36:665–680 Claassen JA, Meel-van den Abeelen AS, Simpson DM, Panerai RB, International Cerebral Autoregulation Research Network (2016) Transfer function analysis of dynamic cerebral autoregulation: a white paper from the International Cerebral Autoregulation Research Network. J Cereb Blood Flow Metab 36:665–680
60.
go back to reference Zhang R, Zuckerman JH, Giller CA, Levine BD (1998) Transfer function analysis of dynamic cerebral autoregulation in humans. Am J Physiol 274:H233–241PubMed Zhang R, Zuckerman JH, Giller CA, Levine BD (1998) Transfer function analysis of dynamic cerebral autoregulation in humans. Am J Physiol 274:H233–241PubMed
61.
go back to reference Cipolla MJ (2010) The cerebral circulation. San Rafaell (CA), Morgan & Claypool Life Sciences Cipolla MJ (2010) The cerebral circulation. San Rafaell (CA), Morgan & Claypool Life Sciences
62.
go back to reference Tzeng YC, Chan GS, Willie CK, Ainslie PN (2011) Determinants of human cerebral pressure-flow velocity relationships: new insights from vascular modelling and Ca(2)(+) channel blockade. J Physiol 589:3263–3274PubMedPubMedCentralCrossRef Tzeng YC, Chan GS, Willie CK, Ainslie PN (2011) Determinants of human cerebral pressure-flow velocity relationships: new insights from vascular modelling and Ca(2)(+) channel blockade. J Physiol 589:3263–3274PubMedPubMedCentralCrossRef
63.
go back to reference Quick S, Moss J, Rajani RM, Williams A (2021) A Vessel for change: endothelial dysfunction in cerebral small vessel disease. Trends Neurosci 44:289–305PubMedCrossRef Quick S, Moss J, Rajani RM, Williams A (2021) A Vessel for change: endothelial dysfunction in cerebral small vessel disease. Trends Neurosci 44:289–305PubMedCrossRef
64.
go back to reference Kusano Y, Echeverry G, Miekisiak G, Kulik TB, Aronhime SN, Chen JF, Winn HR (2010) Role of adenosine A2 receptors in regulation of cerebral blood flow during induced hypotension. J Cereb Blood Flow Metab 30:808–815PubMedCrossRef Kusano Y, Echeverry G, Miekisiak G, Kulik TB, Aronhime SN, Chen JF, Winn HR (2010) Role of adenosine A2 receptors in regulation of cerebral blood flow during induced hypotension. J Cereb Blood Flow Metab 30:808–815PubMedCrossRef
65.
go back to reference Toda N, Ayajiki K, Okamura T (2009) Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev 61:62–97PubMedCrossRef Toda N, Ayajiki K, Okamura T (2009) Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev 61:62–97PubMedCrossRef
66.
go back to reference Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(829–837):837a–837d Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(829–837):837a–837d
67.
go back to reference Bor-Seng-Shu E, Kita WS, Figueiredo EG, Paiva WS, Fonoff ET, Teixeira MJ, Panerai RB (2012) Cerebral hemodynamics: concepts of clinical importance. Arq Neuropsiquiatr 70:352–356PubMedCrossRef Bor-Seng-Shu E, Kita WS, Figueiredo EG, Paiva WS, Fonoff ET, Teixeira MJ, Panerai RB (2012) Cerebral hemodynamics: concepts of clinical importance. Arq Neuropsiquiatr 70:352–356PubMedCrossRef
68.
go back to reference Cassaglia PA, Griffiths RI, Walker AM (2008) Sympathetic nerve activity in the superior cervical ganglia increases in response to imposed increases in arterial pressure. Am J Physiol Regul Integr Comp Physiol 294:R1255-1261PubMedCrossRef Cassaglia PA, Griffiths RI, Walker AM (2008) Sympathetic nerve activity in the superior cervical ganglia increases in response to imposed increases in arterial pressure. Am J Physiol Regul Integr Comp Physiol 294:R1255-1261PubMedCrossRef
69.
go back to reference Hamner JW, Tan CO, Lee K, Cohen MA, Taylor JA (2010) Sympathetic control of the cerebral vasculature in humans. Stroke 41:102–109PubMedCrossRef Hamner JW, Tan CO, Lee K, Cohen MA, Taylor JA (2010) Sympathetic control of the cerebral vasculature in humans. Stroke 41:102–109PubMedCrossRef
71.
72.
go back to reference Angarita-Jaimes N, Kouchakpour H, Liu J, Panerai RB, Simpson DM (2014) Optimising the assessment of cerebral autoregulation from black box models. Med Eng Phys 36:607–612PubMedCrossRef Angarita-Jaimes N, Kouchakpour H, Liu J, Panerai RB, Simpson DM (2014) Optimising the assessment of cerebral autoregulation from black box models. Med Eng Phys 36:607–612PubMedCrossRef
73.
go back to reference Panerai RB (1998) Assessment of cerebral pressure autoregulation in humans–a review of measurement methods. Physiol Meas 19:305–338PubMedCrossRef Panerai RB (1998) Assessment of cerebral pressure autoregulation in humans–a review of measurement methods. Physiol Meas 19:305–338PubMedCrossRef
74.
go back to reference Simpson DM, Payne SJ, Panerai RB (2022) The INfoMATAS project: methods for assessing cerebral autoregulation in stroke. J Cereb Blood Flow Metab 42:411–429PubMedCrossRef Simpson DM, Payne SJ, Panerai RB (2022) The INfoMATAS project: methods for assessing cerebral autoregulation in stroke. J Cereb Blood Flow Metab 42:411–429PubMedCrossRef
75.
go back to reference Hoiland RL, Fisher JA, Ainslie PN (2019) Regulation of the cerebral circulation by arterial carbon dioxide. Compr Physiol 9:1101–1154PubMedCrossRef Hoiland RL, Fisher JA, Ainslie PN (2019) Regulation of the cerebral circulation by arterial carbon dioxide. Compr Physiol 9:1101–1154PubMedCrossRef
76.
go back to reference Aaslid R, Lindegaard KF, Sorteberg W, Nornes H (1989) Cerebral autoregulation dynamics in humans. Stroke 20:45–52PubMedCrossRef Aaslid R, Lindegaard KF, Sorteberg W, Nornes H (1989) Cerebral autoregulation dynamics in humans. Stroke 20:45–52PubMedCrossRef
77.
go back to reference Birch AA, Dirnhuber MJ, Hartley-Davies R, Iannotti F, Neil-Dwyer G (1995) Assessment of autoregulation by means of periodic changes in blood pressure. Stroke 26:834–837PubMedCrossRef Birch AA, Dirnhuber MJ, Hartley-Davies R, Iannotti F, Neil-Dwyer G (1995) Assessment of autoregulation by means of periodic changes in blood pressure. Stroke 26:834–837PubMedCrossRef
78.
go back to reference Panerai RB, Deverson ST, Mahony P, Hayes P, Evans DH (1999) Effects of CO2 on dynamic cerebral autoregulation measurement. Physiol Meas 20:265–275PubMedCrossRef Panerai RB, Deverson ST, Mahony P, Hayes P, Evans DH (1999) Effects of CO2 on dynamic cerebral autoregulation measurement. Physiol Meas 20:265–275PubMedCrossRef
79.
go back to reference Xiong L, Liu X, Shang T, Smielewski P, Donnelly J, Guo ZN, Yang Y, Leung T, Czosnyka M, Zhang R, Liu J, Wong KS (2017) Impaired cerebral autoregulation: measurement and application to stroke. J Neurol Neurosurg Psychiatry 88:520–531PubMedCrossRef Xiong L, Liu X, Shang T, Smielewski P, Donnelly J, Guo ZN, Yang Y, Leung T, Czosnyka M, Zhang R, Liu J, Wong KS (2017) Impaired cerebral autoregulation: measurement and application to stroke. J Neurol Neurosurg Psychiatry 88:520–531PubMedCrossRef
80.
go back to reference Yang M, Yang Z, Yuan T, Feng W, Wang P (2019) A systemic review of functional near-infrared spectroscopy for stroke: current application and future directions. Front Neurol 10:58PubMedPubMedCentralCrossRef Yang M, Yang Z, Yuan T, Feng W, Wang P (2019) A systemic review of functional near-infrared spectroscopy for stroke: current application and future directions. Front Neurol 10:58PubMedPubMedCentralCrossRef
81.
go back to reference Zweifel C, Castellani G, Czosnyka M, Carrera E, Brady KM, Kirkpatrick PJ, Pickard JD, Smielewski P (2010) Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage. Stroke 41:1963–1968PubMedCrossRef Zweifel C, Castellani G, Czosnyka M, Carrera E, Brady KM, Kirkpatrick PJ, Pickard JD, Smielewski P (2010) Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage. Stroke 41:1963–1968PubMedCrossRef
82.
go back to reference Panerai RB, Brassard P, Burma JS, Castro P, Claassen JA, van Lieshout JJ, Liu J, Lucas SJ, Minhas JS, Mitsis GD, Nogueira RC, Ogoh S, Payne SJ, Rickards CA, Robertson AD, Rodrigues GD, Smirl JD, Simpson DM (2023) Transfer function analysis of dynamic cerebral autoregulation: a CARNet white paper 2022 update. J Cereb Blood Flow Metab 43:3–25PubMedCrossRef Panerai RB, Brassard P, Burma JS, Castro P, Claassen JA, van Lieshout JJ, Liu J, Lucas SJ, Minhas JS, Mitsis GD, Nogueira RC, Ogoh S, Payne SJ, Rickards CA, Robertson AD, Rodrigues GD, Smirl JD, Simpson DM (2023) Transfer function analysis of dynamic cerebral autoregulation: a CARNet white paper 2022 update. J Cereb Blood Flow Metab 43:3–25PubMedCrossRef
84.
go back to reference Manoach M, Gitter S, Levinger IM, Stricker S (1971) On the origin of respiratory waves in circulation. I. The role of the chest pump. Pflugers Arch 325:40–49PubMedCrossRef Manoach M, Gitter S, Levinger IM, Stricker S (1971) On the origin of respiratory waves in circulation. I. The role of the chest pump. Pflugers Arch 325:40–49PubMedCrossRef
85.
go back to reference Smirl JD, Hoffman K, Tzeng YC, Hansen A, Ainslie PN (2016) Relationship between blood pressure and cerebral blood flow during supine cycling: influence of aging. J Appl Physiol 120:552–563PubMedCrossRef Smirl JD, Hoffman K, Tzeng YC, Hansen A, Ainslie PN (2016) Relationship between blood pressure and cerebral blood flow during supine cycling: influence of aging. J Appl Physiol 120:552–563PubMedCrossRef
86.
87.
go back to reference Burma JS, Copeland P, Macaulay A, Khatra O, Smirl JD (2020) Comparison of diurnal variation, anatomical location, and biological sex within spontaneous and driven dynamic cerebral autoregulation measures. Physiol Rep 8:e14458PubMedPubMedCentralCrossRef Burma JS, Copeland P, Macaulay A, Khatra O, Smirl JD (2020) Comparison of diurnal variation, anatomical location, and biological sex within spontaneous and driven dynamic cerebral autoregulation measures. Physiol Rep 8:e14458PubMedPubMedCentralCrossRef
88.
go back to reference Claassen JA, Levine BD, Zhang R (2009) Dynamic cerebral autoregulation during repeated squat-stand maneuvers. J Appl Physiol 106:153–160PubMedCrossRef Claassen JA, Levine BD, Zhang R (2009) Dynamic cerebral autoregulation during repeated squat-stand maneuvers. J Appl Physiol 106:153–160PubMedCrossRef
89.
go back to reference Drapeau A, Labrecque L, Imhoff S, Paquette M, Le Blanc O, Malenfant S, Brassard P (2019) Six weeks of high-intensity interval training to exhaustion attenuates dynamic cerebral autoregulation without influencing resting cerebral blood velocity in young fit men. Physiol Rep 7:e14185PubMedPubMedCentralCrossRef Drapeau A, Labrecque L, Imhoff S, Paquette M, Le Blanc O, Malenfant S, Brassard P (2019) Six weeks of high-intensity interval training to exhaustion attenuates dynamic cerebral autoregulation without influencing resting cerebral blood velocity in young fit men. Physiol Rep 7:e14185PubMedPubMedCentralCrossRef
90.
go back to reference Labrecque L, Drapeau A, Rahimaly K, Imhoff S, Brassard P (2021) Dynamic cerebral autoregulation and cerebrovascular carbon dioxide reactivity in middle and posterior cerebral arteries in young endurance-trained women. J Appl Physiol 130:1724–1735PubMedCrossRef Labrecque L, Drapeau A, Rahimaly K, Imhoff S, Brassard P (2021) Dynamic cerebral autoregulation and cerebrovascular carbon dioxide reactivity in middle and posterior cerebral arteries in young endurance-trained women. J Appl Physiol 130:1724–1735PubMedCrossRef
91.
go back to reference Labrecque L, Rahimaly K, Imhoff S, Paquette M, Le Blanc O, Malenfant S, Drapeau A, Smirl JD, Bailey DM, Brassard P (2019) Dynamic cerebral autoregulation is attenuated in young fit women. Physiol Rep 7:e13984PubMedPubMedCentralCrossRef Labrecque L, Rahimaly K, Imhoff S, Paquette M, Le Blanc O, Malenfant S, Drapeau A, Smirl JD, Bailey DM, Brassard P (2019) Dynamic cerebral autoregulation is attenuated in young fit women. Physiol Rep 7:e13984PubMedPubMedCentralCrossRef
92.
go back to reference Labrecque L, Rahimaly K, Imhoff S, Paquette M, Le Blanc O, Malenfant S, Lucas SJE, Bailey DM, Smirl JD, Brassard P (2017) Diminished dynamic cerebral autoregulatory capacity with forced oscillations in mean arterial pressure with elevated cardiorespiratory fitness. Physiol Rep 5:e13486 Labrecque L, Rahimaly K, Imhoff S, Paquette M, Le Blanc O, Malenfant S, Lucas SJE, Bailey DM, Smirl JD, Brassard P (2017) Diminished dynamic cerebral autoregulatory capacity with forced oscillations in mean arterial pressure with elevated cardiorespiratory fitness. Physiol Rep 5:e13486
93.
go back to reference Aengevaeren VL, Claassen JA, Levine BD, Zhang R (2013) Cardiac baroreflex function and dynamic cerebral autoregulation in elderly Masters athletes. J Appl Physiol 114:195–202PubMedCrossRef Aengevaeren VL, Claassen JA, Levine BD, Zhang R (2013) Cardiac baroreflex function and dynamic cerebral autoregulation in elderly Masters athletes. J Appl Physiol 114:195–202PubMedCrossRef
94.
go back to reference Klein T, Bailey TG, Wollseiffen P, Schneider S, Askew CD (2020) The effect of age on cerebral blood flow responses during repeated and sustained stand to sit transitions. Physiol Rep 8:e14421PubMedPubMedCentralCrossRef Klein T, Bailey TG, Wollseiffen P, Schneider S, Askew CD (2020) The effect of age on cerebral blood flow responses during repeated and sustained stand to sit transitions. Physiol Rep 8:e14421PubMedPubMedCentralCrossRef
95.
go back to reference van Beek AH, Olde Rikkert MG, Pasman JW, Hopman MT, Claassen JA (2010) Dynamic cerebral autoregulation in the old using a repeated sit-stand maneuver. Ultrasound Med Biol 36:192–201PubMedCrossRef van Beek AH, Olde Rikkert MG, Pasman JW, Hopman MT, Claassen JA (2010) Dynamic cerebral autoregulation in the old using a repeated sit-stand maneuver. Ultrasound Med Biol 36:192–201PubMedCrossRef
96.
go back to reference Brothers RM, Zhang R, Wingo JE, Hubing KA, Crandall CG (2009) Effects of heat stress on dynamic cerebral autoregulation during large fluctuations in arterial blood pressure. J Appl Physiol 107:1722–1729PubMedPubMedCentralCrossRef Brothers RM, Zhang R, Wingo JE, Hubing KA, Crandall CG (2009) Effects of heat stress on dynamic cerebral autoregulation during large fluctuations in arterial blood pressure. J Appl Physiol 107:1722–1729PubMedPubMedCentralCrossRef
97.
go back to reference Smirl JD, Hoffman K, Tzeng YC, Hansen A, Ainslie PN (2015) Methodological comparison of active- and passive-driven oscillations in blood pressure; implications for the assessment of cerebral pressure-flow relationships. J Appl Physiol 119:487–501PubMedPubMedCentralCrossRef Smirl JD, Hoffman K, Tzeng YC, Hansen A, Ainslie PN (2015) Methodological comparison of active- and passive-driven oscillations in blood pressure; implications for the assessment of cerebral pressure-flow relationships. J Appl Physiol 119:487–501PubMedPubMedCentralCrossRef
98.
go back to reference Diehl RR, Linden D, Lucke D, Berlit P (1995) Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of autoregulation. Stroke 26:1801–1804PubMedCrossRef Diehl RR, Linden D, Lucke D, Berlit P (1995) Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of autoregulation. Stroke 26:1801–1804PubMedCrossRef
99.
go back to reference Reinhard M, Muller T, Guschlbauer B, Timmer J, Hetzel A (2003) Transfer function analysis for clinical evaluation of dynamic cerebral autoregulation–a comparison between spontaneous and respiratory-induced oscillations. Physiol Meas 24:27–43PubMedCrossRef Reinhard M, Muller T, Guschlbauer B, Timmer J, Hetzel A (2003) Transfer function analysis for clinical evaluation of dynamic cerebral autoregulation–a comparison between spontaneous and respiratory-induced oscillations. Physiol Meas 24:27–43PubMedCrossRef
100.
go back to reference Elting JW, Aries MJ, van der Hoeven JH, Vroomen PC, Maurits NM (2014) Reproducibility and variability of dynamic cerebral autoregulation during passive cyclic leg raising. Med Eng Phys 36:585–591PubMedCrossRef Elting JW, Aries MJ, van der Hoeven JH, Vroomen PC, Maurits NM (2014) Reproducibility and variability of dynamic cerebral autoregulation during passive cyclic leg raising. Med Eng Phys 36:585–591PubMedCrossRef
101.
go back to reference Barnes SC, Ball N, Panerai RB, Robinson TG, Haunton VJ (2017) Random squat/stand maneuvers: a novel approach for assessment of dynamic cerebral autoregulation? J Appl Physiol 123:558–566PubMedCrossRef Barnes SC, Ball N, Panerai RB, Robinson TG, Haunton VJ (2017) Random squat/stand maneuvers: a novel approach for assessment of dynamic cerebral autoregulation? J Appl Physiol 123:558–566PubMedCrossRef
102.
go back to reference Katsogridakis E, Bush G, Fan L, Birch AA, Simpson DM, Allen R, Potter JF, Panerai RB (2013) Detection of impaired cerebral autoregulation improves by increasing arterial blood pressure variability. J Cereb Blood Flow Metab 33:519–523PubMedCrossRef Katsogridakis E, Bush G, Fan L, Birch AA, Simpson DM, Allen R, Potter JF, Panerai RB (2013) Detection of impaired cerebral autoregulation improves by increasing arterial blood pressure variability. J Cereb Blood Flow Metab 33:519–523PubMedCrossRef
103.
go back to reference Carey BJ, Panerai RB, Potter JF (2003) Effect of aging on dynamic cerebral autoregulation during head-up tilt. Stroke 34:1871–1875PubMedCrossRef Carey BJ, Panerai RB, Potter JF (2003) Effect of aging on dynamic cerebral autoregulation during head-up tilt. Stroke 34:1871–1875PubMedCrossRef
104.
go back to reference Castro P, Freitas J, Santos R, Panerai R, Azevedo E (2017) Indexes of cerebral autoregulation do not reflect impairment in syncope: insights from head-up tilt test of vasovagal and autonomic failure subjects. Eur J Appl Physiol 117:1817–1831PubMedCrossRef Castro P, Freitas J, Santos R, Panerai R, Azevedo E (2017) Indexes of cerebral autoregulation do not reflect impairment in syncope: insights from head-up tilt test of vasovagal and autonomic failure subjects. Eur J Appl Physiol 117:1817–1831PubMedCrossRef
105.
go back to reference Herrington BA, Thrall SF, Mann LM, Tymko MM, Day TA (2019) The effect of steady-state CO2 on regional brain blood flow responses to increases in blood pressure via the cold pressor test. Auton Neurosci 222:102581PubMedCrossRef Herrington BA, Thrall SF, Mann LM, Tymko MM, Day TA (2019) The effect of steady-state CO2 on regional brain blood flow responses to increases in blood pressure via the cold pressor test. Auton Neurosci 222:102581PubMedCrossRef
106.
go back to reference Panerai RB, Dawson SL, Eames PJ, Potter JF (2001) Cerebral blood flow velocity response to induced and spontaneous sudden changes in arterial blood pressure. Am J Physiol Heart Circ Physiol 280:H2162–2174PubMedCrossRef Panerai RB, Dawson SL, Eames PJ, Potter JF (2001) Cerebral blood flow velocity response to induced and spontaneous sudden changes in arterial blood pressure. Am J Physiol Heart Circ Physiol 280:H2162–2174PubMedCrossRef
107.
go back to reference Washio T, Watanabe H, Ogoh S (2020) Dynamic cerebral autoregulation in anterior and posterior cerebral circulation during cold pressor test. J Physiol Sci 70:1PubMedPubMedCentralCrossRef Washio T, Watanabe H, Ogoh S (2020) Dynamic cerebral autoregulation in anterior and posterior cerebral circulation during cold pressor test. J Physiol Sci 70:1PubMedPubMedCentralCrossRef
108.
go back to reference Nogueira RC, Bor-Seng-Shu E, Santos MR, Negrao CE, Teixeira MJ, Panerai RB (2013) Dynamic cerebral autoregulation changes during sub-maximal handgrip maneuver. PLoS ONE 8:e70821PubMedPubMedCentralCrossRef Nogueira RC, Bor-Seng-Shu E, Santos MR, Negrao CE, Teixeira MJ, Panerai RB (2013) Dynamic cerebral autoregulation changes during sub-maximal handgrip maneuver. PLoS ONE 8:e70821PubMedPubMedCentralCrossRef
110.
go back to reference Porta A, Fantinato A, Bari V, Gelpi F, Cairo B, De Maria B, Bertoldo EG, Fiolo V, Callus E, De Vincentiis C, Volpe M, Molfetta R, Ranucci M (2020) Evaluation of the impact of surgical aortic valve replacement on short-term cardiovascular and cerebrovascular controls through spontaneous variability analysis. PLoS ONE 15:e0243869PubMedPubMedCentralCrossRef Porta A, Fantinato A, Bari V, Gelpi F, Cairo B, De Maria B, Bertoldo EG, Fiolo V, Callus E, De Vincentiis C, Volpe M, Molfetta R, Ranucci M (2020) Evaluation of the impact of surgical aortic valve replacement on short-term cardiovascular and cerebrovascular controls through spontaneous variability analysis. PLoS ONE 15:e0243869PubMedPubMedCentralCrossRef
111.
go back to reference Friedman JH, Stuetzle W (1981) Projection pursuit regression. J Am Stat Assoc 76:817–823CrossRef Friedman JH, Stuetzle W (1981) Projection pursuit regression. J Am Stat Assoc 76:817–823CrossRef
112.
go back to reference Hamner JW, Ishibashi K, Tan CO (2019) Revisiting human cerebral blood flow responses to augmented blood pressure oscillations. J Physiol 597:1553–1564PubMedPubMedCentralCrossRef Hamner JW, Ishibashi K, Tan CO (2019) Revisiting human cerebral blood flow responses to augmented blood pressure oscillations. J Physiol 597:1553–1564PubMedPubMedCentralCrossRef
113.
go back to reference Latka M, Turalska M, Glaubic-Latka M, Kolodziej W, Latka D, West BJ (2005) Phase dynamics in cerebral autoregulation. Am J Physiol Heart Circ Physiol 289:H2272–2279PubMedCrossRef Latka M, Turalska M, Glaubic-Latka M, Kolodziej W, Latka D, West BJ (2005) Phase dynamics in cerebral autoregulation. Am J Physiol Heart Circ Physiol 289:H2272–2279PubMedCrossRef
114.
go back to reference Saleem S, Teal PD, Kleijn WB, Ainslie PN, Tzeng YC (2016) Identification of human sympathetic neurovascular control using multivariate wavelet decomposition analysis. Am J Physiol Heart Circ Physiol 311:H837–848PubMedCrossRef Saleem S, Teal PD, Kleijn WB, Ainslie PN, Tzeng YC (2016) Identification of human sympathetic neurovascular control using multivariate wavelet decomposition analysis. Am J Physiol Heart Circ Physiol 311:H837–848PubMedCrossRef
115.
go back to reference Saleem S, Tzeng YC, Kleijn WB, Teal PD (2016) Detection of impaired sympathetic cerebrovascular control using functional biomarkers based on principal dynamic mode analysis. Front Physiol 7:685PubMed Saleem S, Tzeng YC, Kleijn WB, Teal PD (2016) Detection of impaired sympathetic cerebrovascular control using functional biomarkers based on principal dynamic mode analysis. Front Physiol 7:685PubMed
116.
go back to reference Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD (1997) Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 41:11–17; discussion 17–19 Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD (1997) Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 41:11–17; discussion 17–19
117.
go back to reference Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD (1996) Monitoring of cerebral autoregulation in head-injured patients. Stroke 27:1829–1834PubMedCrossRef Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD (1996) Monitoring of cerebral autoregulation in head-injured patients. Stroke 27:1829–1834PubMedCrossRef
118.
go back to reference Brady KM, Lee JK, Kibler KK, Smielewski P, Czosnyka M, Easley RB, Koehler RC, Shaffner DH (2007) Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke 38:2818–2825PubMedPubMedCentralCrossRef Brady KM, Lee JK, Kibler KK, Smielewski P, Czosnyka M, Easley RB, Koehler RC, Shaffner DH (2007) Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke 38:2818–2825PubMedPubMedCentralCrossRef
119.
go back to reference Lee JK, Kibler KK, Benni PB, Easley RB, Czosnyka M, Smielewski P, Koehler RC, Shaffner DH, Brady KM (2009) Cerebrovascular reactivity measured by near-infrared spectroscopy. Stroke 40:1820–1826PubMedCrossRef Lee JK, Kibler KK, Benni PB, Easley RB, Czosnyka M, Smielewski P, Koehler RC, Shaffner DH, Brady KM (2009) Cerebrovascular reactivity measured by near-infrared spectroscopy. Stroke 40:1820–1826PubMedCrossRef
120.
go back to reference Tiecks FP, Lam AM, Aaslid R, Newell DW (1995) Comparison of static and dynamic cerebral autoregulation measurements. Stroke 26:1014–1019PubMedCrossRef Tiecks FP, Lam AM, Aaslid R, Newell DW (1995) Comparison of static and dynamic cerebral autoregulation measurements. Stroke 26:1014–1019PubMedCrossRef
121.
go back to reference Tzeng YC, Ainslie PN, Cooke WH, Peebles KC, Willie CK, MacRae BA, Smirl JD, Horsman HM, Rickards CA (2012) Assessment of cerebral autoregulation: the quandary of quantification. Am J Physiol Heart Circ Physiol 303:H658–671PubMedCrossRef Tzeng YC, Ainslie PN, Cooke WH, Peebles KC, Willie CK, MacRae BA, Smirl JD, Horsman HM, Rickards CA (2012) Assessment of cerebral autoregulation: the quandary of quantification. Am J Physiol Heart Circ Physiol 303:H658–671PubMedCrossRef
122.
go back to reference Panerai RB, Dawson SL, Potter JF (1999) Linear and nonlinear analysis of human dynamic cerebral autoregulation. Am J Physiol 277:H1089–1099PubMed Panerai RB, Dawson SL, Potter JF (1999) Linear and nonlinear analysis of human dynamic cerebral autoregulation. Am J Physiol 277:H1089–1099PubMed
123.
go back to reference Marmarelis VZ (1993) Identification of nonlinear biological systems using Laguerre expansions of kernels. Ann Biomed Eng 21:573–589PubMedCrossRef Marmarelis VZ (1993) Identification of nonlinear biological systems using Laguerre expansions of kernels. Ann Biomed Eng 21:573–589PubMedCrossRef
124.
go back to reference Liu Y, Allen R (2002) Analysis of dynamic cerebral autoregulation using an ARX model based on arterial blood pressure and middle cerebral artery velocity simulation. Med Biol Eng Comput 40:600–605PubMedCrossRef Liu Y, Allen R (2002) Analysis of dynamic cerebral autoregulation using an ARX model based on arterial blood pressure and middle cerebral artery velocity simulation. Med Biol Eng Comput 40:600–605PubMedCrossRef
125.
go back to reference Panerai RB, Simpson DM, Deverson ST, Mahony P, Hayes P, Evans DH (2000) Multivariate dynamic analysis of cerebral blood flow regulation in humans. IEEE Trans Biomed Eng 47:419–423PubMedCrossRef Panerai RB, Simpson DM, Deverson ST, Mahony P, Hayes P, Evans DH (2000) Multivariate dynamic analysis of cerebral blood flow regulation in humans. IEEE Trans Biomed Eng 47:419–423PubMedCrossRef
126.
go back to reference Mitsis GD, Zhang R, Levine BD, Marmarelis VZ (2002) Modeling of nonlinear physiological systems with fast and slow dynamics. II. Application to cerebral autoregulation. Ann Biomed Eng 30:555–565PubMedCrossRef Mitsis GD, Zhang R, Levine BD, Marmarelis VZ (2002) Modeling of nonlinear physiological systems with fast and slow dynamics. II. Application to cerebral autoregulation. Ann Biomed Eng 30:555–565PubMedCrossRef
127.
go back to reference Panerai RB, Eames PJ, Potter JF (2003) Variability of time-domain indices of dynamic cerebral autoregulation. Physiol Meas 24:367–381PubMedCrossRef Panerai RB, Eames PJ, Potter JF (2003) Variability of time-domain indices of dynamic cerebral autoregulation. Physiol Meas 24:367–381PubMedCrossRef
128.
go back to reference Abbariki F, Roy MA, Labrecque L, Drapeau A, Imhoff S, Smirl JD, Brassard P (2022) Influence of high-intensity interval training to exhaustion on the directional sensitivity of the cerebral pressure-flow relationship in young endurance-trained men. Physiol Rep 10:e15384PubMedPubMedCentralCrossRef Abbariki F, Roy MA, Labrecque L, Drapeau A, Imhoff S, Smirl JD, Brassard P (2022) Influence of high-intensity interval training to exhaustion on the directional sensitivity of the cerebral pressure-flow relationship in young endurance-trained men. Physiol Rep 10:e15384PubMedPubMedCentralCrossRef
129.
go back to reference Brassard P, Ferland-Dutil H, Smirl JD, Paquette M, Le Blanc O, Malenfant S, Ainslie PN (2017) Evidence for hysteresis in the cerebral pressure-flow relationship in healthy men. Am J Physiol Heart Circ Physiol 312:H701–H704PubMedCrossRef Brassard P, Ferland-Dutil H, Smirl JD, Paquette M, Le Blanc O, Malenfant S, Ainslie PN (2017) Evidence for hysteresis in the cerebral pressure-flow relationship in healthy men. Am J Physiol Heart Circ Physiol 312:H701–H704PubMedCrossRef
130.
go back to reference Labrecque L, Burma JS, Roy MA, Smirl JD, Brassard P (2022) Reproducibility and diurnal variation of the directional sensitivity of the cerebral pressure-flow relationship in men and women. J Appl Physiol 132:154–166PubMedCrossRef Labrecque L, Burma JS, Roy MA, Smirl JD, Brassard P (2022) Reproducibility and diurnal variation of the directional sensitivity of the cerebral pressure-flow relationship in men and women. J Appl Physiol 132:154–166PubMedCrossRef
131.
go back to reference Labrecque L, Smirl JD, Brassard P (2021) Utilization of the repeated squat-stand model for studying the directional sensitivity of the cerebral pressure-flow relationship. J Appl Physiol 131:927–936PubMedCrossRef Labrecque L, Smirl JD, Brassard P (2021) Utilization of the repeated squat-stand model for studying the directional sensitivity of the cerebral pressure-flow relationship. J Appl Physiol 131:927–936PubMedCrossRef
132.
go back to reference Panerai RB, Barnes SC, Batterham AP, Robinson TG, Haunton VJ (2023) Directional sensitivity of dynamic cerebral autoregulation during spontaneous fluctuations in arterial blood pressure at rest. J Cereb Blood Flow Metab 43:552–564PubMedCrossRef Panerai RB, Barnes SC, Batterham AP, Robinson TG, Haunton VJ (2023) Directional sensitivity of dynamic cerebral autoregulation during spontaneous fluctuations in arterial blood pressure at rest. J Cereb Blood Flow Metab 43:552–564PubMedCrossRef
133.
go back to reference Panerai RB, Barnes SC, Nath M, Ball N, Robinson TG, Haunton VJ (2018) Directional sensitivity of dynamic cerebral autoregulation in squat-stand maneuvers. Am J Physiol Regul Integr Comp Physiol 315:R730–R740PubMedCrossRef Panerai RB, Barnes SC, Nath M, Ball N, Robinson TG, Haunton VJ (2018) Directional sensitivity of dynamic cerebral autoregulation in squat-stand maneuvers. Am J Physiol Regul Integr Comp Physiol 315:R730–R740PubMedCrossRef
134.
go back to reference Roy MA, Labrecque L, Perry BG, Korad S, Smirl JD, Brassard P (2022) Directional sensitivity of the cerebral pressure-flow relationship in young healthy individuals trained in endurance and resistance exercise. Exp Physiol 107:299–311PubMedCrossRef Roy MA, Labrecque L, Perry BG, Korad S, Smirl JD, Brassard P (2022) Directional sensitivity of the cerebral pressure-flow relationship in young healthy individuals trained in endurance and resistance exercise. Exp Physiol 107:299–311PubMedCrossRef
135.
go back to reference Tzeng YC, Willie CK, Atkinson G, Lucas SJ, Wong A, Ainslie PN (2010) Cerebrovascular regulation during transient hypotension and hypertension in humans. Hypertension 56:268–273PubMedCrossRef Tzeng YC, Willie CK, Atkinson G, Lucas SJ, Wong A, Ainslie PN (2010) Cerebrovascular regulation during transient hypotension and hypertension in humans. Hypertension 56:268–273PubMedCrossRef
136.
go back to reference Wilson MH (2016) Monro-Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab 36:1338–1350PubMedPubMedCentralCrossRef Wilson MH (2016) Monro-Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab 36:1338–1350PubMedPubMedCentralCrossRef
137.
go back to reference Barnes SC, Ball N, Haunton VJ, Robinson TG, Panerai RB (2017) The cerebrocardiovascular response to periodic squat-stand maneuvers in healthy subjects: a time-domain analysis. Am J Physiol Heart Circ Physiol 313:H1240–H1248PubMedCrossRef Barnes SC, Ball N, Haunton VJ, Robinson TG, Panerai RB (2017) The cerebrocardiovascular response to periodic squat-stand maneuvers in healthy subjects: a time-domain analysis. Am J Physiol Heart Circ Physiol 313:H1240–H1248PubMedCrossRef
138.
go back to reference Katsogridakis E, Simpson DM, Bush G, Fan L, Birch AA, Allen R, Potter JF, Panerai RB (2017) Coherent averaging of pseudorandom binary stimuli: is the dynamic cerebral autoregulatory response symmetrical? Physiol Meas 38:2164–2175PubMedCrossRef Katsogridakis E, Simpson DM, Bush G, Fan L, Birch AA, Allen R, Potter JF, Panerai RB (2017) Coherent averaging of pseudorandom binary stimuli: is the dynamic cerebral autoregulatory response symmetrical? Physiol Meas 38:2164–2175PubMedCrossRef
139.
go back to reference Bari V, De Maria B, Mazzucco CE, Rossato G, Tonon D, Nollo G, Faes L, Porta A (2017) Cerebrovascular and cardiovascular variability interactions investigated through conditional joint transfer entropy in subjects prone to postural syncope. Physiol Meas 38:976–991PubMedCrossRef Bari V, De Maria B, Mazzucco CE, Rossato G, Tonon D, Nollo G, Faes L, Porta A (2017) Cerebrovascular and cardiovascular variability interactions investigated through conditional joint transfer entropy in subjects prone to postural syncope. Physiol Meas 38:976–991PubMedCrossRef
140.
go back to reference Cushing H (1902) Some experimental and clinical observations concerning states of increased intracranial tension. Am J Med Sci 124:375–400CrossRef Cushing H (1902) Some experimental and clinical observations concerning states of increased intracranial tension. Am J Med Sci 124:375–400CrossRef
141.
go back to reference McBryde FD, Malpas SC, Paton JF (2017) Intracranial mechanisms for preserving brain blood flow in health and disease. Acta Physiol (Oxf) 219:274–287PubMedCrossRef McBryde FD, Malpas SC, Paton JF (2017) Intracranial mechanisms for preserving brain blood flow in health and disease. Acta Physiol (Oxf) 219:274–287PubMedCrossRef
142.
go back to reference Porta A, Gelpi F, Bari V, Cairo B, De Maria B, Tonon D, Rossato G, Ranucci M, Faes L (2022) Categorizing the role of respiration in cardiovascular and cerebrovascular variability interactions. IEEE Trans Biomed Eng 69:2065–2076PubMedCrossRef Porta A, Gelpi F, Bari V, Cairo B, De Maria B, Tonon D, Rossato G, Ranucci M, Faes L (2022) Categorizing the role of respiration in cardiovascular and cerebrovascular variability interactions. IEEE Trans Biomed Eng 69:2065–2076PubMedCrossRef
143.
go back to reference Saleem S, Teal PD, Howe CA, Tymko MM, Ainslie PN, Tzeng YC (2018) Is the Cushing mechanism a dynamic blood pressure-stabilizing system? Insights from Granger causality analysis of spontaneous blood pressure and cerebral blood flow. Am J Physiol Regul Integr Comp Physiol 315:R484–R495PubMedCrossRef Saleem S, Teal PD, Howe CA, Tymko MM, Ainslie PN, Tzeng YC (2018) Is the Cushing mechanism a dynamic blood pressure-stabilizing system? Insights from Granger causality analysis of spontaneous blood pressure and cerebral blood flow. Am J Physiol Regul Integr Comp Physiol 315:R484–R495PubMedCrossRef
144.
go back to reference Shanlin RJ, Sole MJ, Rahimifar M, Tator CH, Factor SM (1988) Increased intracranial pressure elicits hypertension, increased sympathetic activity, electrocardiographic abnormalities and myocardial damage in rats. J Am Coll Cardiol 12:727–736PubMedCrossRef Shanlin RJ, Sole MJ, Rahimifar M, Tator CH, Factor SM (1988) Increased intracranial pressure elicits hypertension, increased sympathetic activity, electrocardiographic abnormalities and myocardial damage in rats. J Am Coll Cardiol 12:727–736PubMedCrossRef
145.
go back to reference Saleem S, Sarafis ZK, Lee AHX, Squair JW, Barak OF, Sober-Williams E, Suraj R, Coombs GB, Mijacika T, West CR, Krassioukov AV, Ainslie PN, Dujic Z, Tzeng YC, Phillips AA (2019) Spinal cord disruption is associated with a loss of cushing-like blood pressure interactions. J Neurotrauma 36:1487–1490PubMedCrossRef Saleem S, Sarafis ZK, Lee AHX, Squair JW, Barak OF, Sober-Williams E, Suraj R, Coombs GB, Mijacika T, West CR, Krassioukov AV, Ainslie PN, Dujic Z, Tzeng YC, Phillips AA (2019) Spinal cord disruption is associated with a loss of cushing-like blood pressure interactions. J Neurotrauma 36:1487–1490PubMedCrossRef
146.
go back to reference Gelpi F, Bari V, Cairo B, De Maria B, Wells R, Baumert M, Porta A (2023) Evaluation of cardiovascular and cerebrovascular control mechanisms in postural orthostatic tachycardia syndrome via conditional transfer entropy: the impact of the respiratory signal type. Physiol Meas 44(6). https://doi.org/10.1088/1361-6579/acdb47 Gelpi F, Bari V, Cairo B, De Maria B, Wells R, Baumert M, Porta A (2023) Evaluation of cardiovascular and cerebrovascular control mechanisms in postural orthostatic tachycardia syndrome via conditional transfer entropy: the impact of the respiratory signal type. Physiol Meas 44(6). https://​doi.​org/​10.​1088/​1361-6579/​acdb47
147.
go back to reference Budohoski KP, Reinhard M, Aries MJ, Czosnyka Z, Smielewski P, Pickard JD, Kirkpatrick PJ, Czosnyka M (2012) Monitoring cerebral autoregulation after head injury. Which component of transcranial Doppler flow velocity is optimal? Neurocrit Care 17:211–218PubMedCrossRef Budohoski KP, Reinhard M, Aries MJ, Czosnyka Z, Smielewski P, Pickard JD, Kirkpatrick PJ, Czosnyka M (2012) Monitoring cerebral autoregulation after head injury. Which component of transcranial Doppler flow velocity is optimal? Neurocrit Care 17:211–218PubMedCrossRef
148.
go back to reference Rosengarten B, Kaps M (2002) Peak systolic velocity Doppler index reflects most appropriately the dynamic time course of intact cerebral autoregulation. Cerebrovasc Dis 13:230–234PubMedCrossRef Rosengarten B, Kaps M (2002) Peak systolic velocity Doppler index reflects most appropriately the dynamic time course of intact cerebral autoregulation. Cerebrovasc Dis 13:230–234PubMedCrossRef
149.
go back to reference Smielewski P, Czosnyka M, Kirkpatrick P, Pickard JD (1997) Evaluation of the transient hyperemic response test in head-injured patients. J Neurosurg 86:773–778PubMedCrossRef Smielewski P, Czosnyka M, Kirkpatrick P, Pickard JD (1997) Evaluation of the transient hyperemic response test in head-injured patients. J Neurosurg 86:773–778PubMedCrossRef
150.
go back to reference Smirl JD, Wright AD, Ainslie PN, Tzeng YC, van Donkelaar P (2018) Differential systolic and diastolic regulation of the cerebral pressure-flow relationship during squat-stand manoeuvres. Acta Neurochir Suppl 126:263–268PubMedCrossRef Smirl JD, Wright AD, Ainslie PN, Tzeng YC, van Donkelaar P (2018) Differential systolic and diastolic regulation of the cerebral pressure-flow relationship during squat-stand manoeuvres. Acta Neurochir Suppl 126:263–268PubMedCrossRef
151.
go back to reference Wright AD, Smirl JD, Bryk K, van Donkelaar P (2018) Systolic and diastolic regulation of the cerebral pressure-flow relationship differentially affected by acute sport-related concussion. Acta Neurochir Suppl 126:303–308PubMedCrossRef Wright AD, Smirl JD, Bryk K, van Donkelaar P (2018) Systolic and diastolic regulation of the cerebral pressure-flow relationship differentially affected by acute sport-related concussion. Acta Neurochir Suppl 126:303–308PubMedCrossRef
152.
go back to reference Labrecque L, Smirl JD, Tzeng YC, Brassard P (2022) Point/counterpoint: we should take the direction of blood pressure change into consideration for dynamic cerebral autoregulation quantification. J Cereb Blood Flow Metab 42:2351–2353PubMedPubMedCentralCrossRef Labrecque L, Smirl JD, Tzeng YC, Brassard P (2022) Point/counterpoint: we should take the direction of blood pressure change into consideration for dynamic cerebral autoregulation quantification. J Cereb Blood Flow Metab 42:2351–2353PubMedPubMedCentralCrossRef
153.
go back to reference Burma JS, Copeland P, Macaulay A, Khatra O, Wright AD, Smirl JD (2020) Dynamic cerebral autoregulation across the cardiac cycle during 8 hr of recovery from acute exercise. Physiol Rep 8:e14367PubMedPubMedCentralCrossRef Burma JS, Copeland P, Macaulay A, Khatra O, Wright AD, Smirl JD (2020) Dynamic cerebral autoregulation across the cardiac cycle during 8 hr of recovery from acute exercise. Physiol Rep 8:e14367PubMedPubMedCentralCrossRef
154.
go back to reference Newel KT, Burma JS, Carere J, Kennedy CM, Smirl JD (2022) Does oscillation size matter? Impact of added resistance on the cerebral pressure-flow relationship in females and males. Physiol Rep 10:e15278PubMedPubMedCentralCrossRef Newel KT, Burma JS, Carere J, Kennedy CM, Smirl JD (2022) Does oscillation size matter? Impact of added resistance on the cerebral pressure-flow relationship in females and males. Physiol Rep 10:e15278PubMedPubMedCentralCrossRef
155.
go back to reference Abercrombie J (1836) Pathological and practical researches of diseases of the brain and spinal cord, 3rd ed. Carfrae, Edinburgh Abercrombie J (1836) Pathological and practical researches of diseases of the brain and spinal cord, 3rd ed. Carfrae, Edinburgh
156.
go back to reference Macintyre I (2013) A hotbed of medical innovation: George Kellie (1770–1829), his colleagues at Leith and the Monro-Kellie doctrine. J Med Biogr 22:93–100PubMedCrossRef Macintyre I (2013) A hotbed of medical innovation: George Kellie (1770–1829), his colleagues at Leith and the Monro-Kellie doctrine. J Med Biogr 22:93–100PubMedCrossRef
157.
go back to reference Madhok DY, Vitt JR, Nguyen AT (2018) Overview of neurovascular physiology. Curr Neurol Neurosci Rep 18:99PubMedCrossRef Madhok DY, Vitt JR, Nguyen AT (2018) Overview of neurovascular physiology. Curr Neurol Neurosci Rep 18:99PubMedCrossRef
158.
go back to reference Magid-Bernstein J, Girard R, Polster S, Srinath A, Romanos S, Awad IA, Sansing LH (2022) Cerebral hemorrhage: pathophysiology, treatment, and future directions. Circ Res 130:1204–1229PubMedPubMedCentralCrossRef Magid-Bernstein J, Girard R, Polster S, Srinath A, Romanos S, Awad IA, Sansing LH (2022) Cerebral hemorrhage: pathophysiology, treatment, and future directions. Circ Res 130:1204–1229PubMedPubMedCentralCrossRef
159.
go back to reference Haykowsky MJ, Eves ND, Warburton DE, Findlay MJ (2003) Resistance exercise, the Valsalva maneuver, and cerebrovascular transmural pressure. Med Sci Sports Exercise 35:65–68CrossRef Haykowsky MJ, Eves ND, Warburton DE, Findlay MJ (2003) Resistance exercise, the Valsalva maneuver, and cerebrovascular transmural pressure. Med Sci Sports Exercise 35:65–68CrossRef
160.
161.
go back to reference Olsen MH, Capion T, Riberholt CG, Bache S, Berg RMG, Moller K (2022) Reliability of cerebral autoregulation using different measures of perfusion pressure in patients with subarachnoid hemorrhage. Physiol Rep 10:e15203PubMedPubMedCentralCrossRef Olsen MH, Capion T, Riberholt CG, Bache S, Berg RMG, Moller K (2022) Reliability of cerebral autoregulation using different measures of perfusion pressure in patients with subarachnoid hemorrhage. Physiol Rep 10:e15203PubMedPubMedCentralCrossRef
162.
go back to reference Caldas J, Quispe-Cornejo AA, Crippa IA, Subira C, Creteur J, Panerai R, Taccone FS (2022) Cerebral autoregulation indices are not interchangeable in patients with sepsis. Front Neurol 13:760293PubMedPubMedCentralCrossRef Caldas J, Quispe-Cornejo AA, Crippa IA, Subira C, Creteur J, Panerai R, Taccone FS (2022) Cerebral autoregulation indices are not interchangeable in patients with sepsis. Front Neurol 13:760293PubMedPubMedCentralCrossRef
163.
go back to reference Czosnyka M, Smielewski P, Lavinio A, Pickard JD, Panerai R (2008) An assessment of dynamic autoregulation from spontaneous fluctuations of cerebral blood flow velocity: a comparison of two models, index of autoregulation and mean flow index. Anesth Analg 106:234–239 Czosnyka M, Smielewski P, Lavinio A, Pickard JD, Panerai R (2008) An assessment of dynamic autoregulation from spontaneous fluctuations of cerebral blood flow velocity: a comparison of two models, index of autoregulation and mean flow index. Anesth Analg 106:234–239
164.
go back to reference Liu X, Czosnyka M, Donnelly J, Budohoski KP, Varsos GV, Nasr N, Brady KM, Reinhard M, Hutchinson PJ, Smielewski P (2015) Comparison of frequency and time domain methods of assessment of cerebral autoregulation in traumatic brain injury. J Cereb Blood Flow Metab 35:248–256PubMedCrossRef Liu X, Czosnyka M, Donnelly J, Budohoski KP, Varsos GV, Nasr N, Brady KM, Reinhard M, Hutchinson PJ, Smielewski P (2015) Comparison of frequency and time domain methods of assessment of cerebral autoregulation in traumatic brain injury. J Cereb Blood Flow Metab 35:248–256PubMedCrossRef
165.
go back to reference Zhang Y, Liu X, Steiner L, Smielewski P, Feen E, Pickard JD, Czosnyka M (2016) Correlation between cerebral autoregulation and carbon dioxide reactivity in patients with traumatic brain injury. Acta Neurochir Suppl 122:205–209PubMedCrossRef Zhang Y, Liu X, Steiner L, Smielewski P, Feen E, Pickard JD, Czosnyka M (2016) Correlation between cerebral autoregulation and carbon dioxide reactivity in patients with traumatic brain injury. Acta Neurochir Suppl 122:205–209PubMedCrossRef
166.
go back to reference Eriksen VR, Hahn GH, Greisen G (2015) Cerebral autoregulation in the preterm newborn using near-infrared spectroscopy: a comparison of time-domain and frequency-domain analyses. J Biomed Opt 20:037009PubMedCrossRef Eriksen VR, Hahn GH, Greisen G (2015) Cerebral autoregulation in the preterm newborn using near-infrared spectroscopy: a comparison of time-domain and frequency-domain analyses. J Biomed Opt 20:037009PubMedCrossRef
167.
go back to reference Subudhi AW, Grajzel K, Langolf RJ, Roach RC, Panerai RB, Davis JE (2015) Cerebral autoregulation index at high altitude assessed by thigh-cuff and transfer function analysis techniques. Exp Physiol 100:173–181PubMedCrossRef Subudhi AW, Grajzel K, Langolf RJ, Roach RC, Panerai RB, Davis JE (2015) Cerebral autoregulation index at high altitude assessed by thigh-cuff and transfer function analysis techniques. Exp Physiol 100:173–181PubMedCrossRef
168.
go back to reference Purkayastha S, Sorond F (2012) Transcranial Doppler ultrasound: technique and application. Semin Neurol 32:411–420PubMedCrossRef Purkayastha S, Sorond F (2012) Transcranial Doppler ultrasound: technique and application. Semin Neurol 32:411–420PubMedCrossRef
169.
go back to reference Nagata K, Yamazaki T, Takano D, Maeda T, Fujimaki Y, Nakase T, Sato Y (2016) Cerebral circulation in aging. Ageing Res Rev 30:49–60PubMedCrossRef Nagata K, Yamazaki T, Takano D, Maeda T, Fujimaki Y, Nakase T, Sato Y (2016) Cerebral circulation in aging. Ageing Res Rev 30:49–60PubMedCrossRef
170.
go back to reference Ferrari M, Quaresima V (2012) A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63:921–935PubMedCrossRef Ferrari M, Quaresima V (2012) A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63:921–935PubMedCrossRef
171.
go back to reference Herold F, Wiegel P, Scholkmann F, Thiers A, Hamacher D, Schega L (2017) Functional near-infrared spectroscopy in movement science: a systematic review on cortical activity in postural and walking tasks. Neurophotonics 4:041403PubMedPubMedCentralCrossRef Herold F, Wiegel P, Scholkmann F, Thiers A, Hamacher D, Schega L (2017) Functional near-infrared spectroscopy in movement science: a systematic review on cortical activity in postural and walking tasks. Neurophotonics 4:041403PubMedPubMedCentralCrossRef
172.
go back to reference Henry JC (2006) Electroencephalography: basic principles, clinical applications, and related fields, 5th edn. Neurology 67:2092–2092a Henry JC (2006) Electroencephalography: basic principles, clinical applications, and related fields, 5th edn. Neurology 67:2092–2092a
173.
go back to reference McKiernan S, Selmes C (2017) Transcranial colour-coded duplex of the intracranial large arteries. Sonography 4:156–165CrossRef McKiernan S, Selmes C (2017) Transcranial colour-coded duplex of the intracranial large arteries. Sonography 4:156–165CrossRef
174.
go back to reference Koep JL, Taylor CE, Coombes JS, Bond B, Ainslie PN, Bailey TG (2022) Autonomic control of cerebral blood flow: fundamental comparisons between peripheral and cerebrovascular circulations in humans. J Physiol 600:15–39PubMedCrossRef Koep JL, Taylor CE, Coombes JS, Bond B, Ainslie PN, Bailey TG (2022) Autonomic control of cerebral blood flow: fundamental comparisons between peripheral and cerebrovascular circulations in humans. J Physiol 600:15–39PubMedCrossRef
175.
go back to reference Kuriakose D, Xiao Z (2020) Pathophysiology and treatment of stroke: present status and future perspectives. Int J Mol Sci 21:7609 Kuriakose D, Xiao Z (2020) Pathophysiology and treatment of stroke: present status and future perspectives. Int J Mol Sci 21:7609
Metadata
Title
Quantification of dynamic cerebral autoregulation: welcome to the jungle!
Authors
Patrice Brassard
Marc-Antoine Roy
Joel S. Burma
Lawrence Labrecque
Jonathan D. Smirl
Publication date
27-09-2023
Publisher
Springer Berlin Heidelberg
Published in
Clinical Autonomic Research / Issue 6/2023
Print ISSN: 0959-9851
Electronic ISSN: 1619-1560
DOI
https://doi.org/10.1007/s10286-023-00986-2

Other articles of this Issue 6/2023

Clinical Autonomic Research 6/2023 Go to the issue