Skip to main content
Top

Open Access 13-11-2024 | Psychodynamic Regression

Technical Note: Neural Network Architectures for Self-Supervised Body Part Regression Models with Automated Localized Segmentation Application

Authors: Michael Fei, Alan B. McMillan

Published in: Journal of Imaging Informatics in Medicine

Login to get access

Abstract

The advancement of medical image deep learning necessitates tools that can accurately identify body regions from whole-body scans to serve as an essential pre-processing step for downstream tasks. Typically, these deep learning models rely on labeled data and supervised learning, which is labor-intensive. However, the emergence of self-supervised learning is revolutionizing the field by eliminating the need for labels. The purpose of this study was to compare neural network architectures of self-supervised models that produced a body part regression (BPR) slice score to aid in the development of anatomically localized segmentation models. VGG, ResNet, DenseNet, ConvNext, and EfficientNet BPR models were implemented in the MONAI/Pytorch framework. Landmark organs were correlated to slice scores and mean absolute error (MAE) was calculated from the predicted slice and the actual slice of various organ landmarks. Four localized DynUNet segmentation models (thorax, upper abdomen, lower abdomen, and pelvis) were developed using the BPR slice scores. Dice similarity coefficient (DSC) was compared between the localized and baseline segmentation models. The best performing BPR model was the EfficientNet architecture with an overall 3.18 MAE, compared to the VGG baseline model with a MAE of 6.29. The localized segmentation model significantly outperformed the baseline in 16 out of 20 organs with a DSC of 0.88. Enhanced neural networks like EfficientNet have a large performance increase in localizing anatomical structures in a CT compared in BPR task. Utilizing BPR slice score is shown to be effective in anatomically localized segmentation tasks with improved performance.
Literature
1.
go back to reference Wani MA, Bhat FA, Afzal S, Khan AI: Advances in Deep Learning. Singapore, Singapore: Springer, 2020CrossRef Wani MA, Bhat FA, Afzal S, Khan AI: Advances in Deep Learning. Singapore, Singapore: Springer, 2020CrossRef
12.
go back to reference Wasserthal J, Breit HC, Meyer MT, Pradella M, Hinck D, Sauter A., Heye T, Boll DT, Cyriac J, Yang S, Bach M, Segeroth M: TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images. Radiol Artif Intell. https://doi.org/10.1148/ryai.230024, Jul 5, 2023 Wasserthal J, Breit HC, Meyer MT, Pradella M, Hinck D, Sauter A., Heye T, Boll DT, Cyriac J, Yang S, Bach M, Segeroth M: TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images. Radiol Artif Intell. https://​doi.​org/​10.​1148/​ryai.​230024, Jul 5, 2023
14.
go back to reference Jordan P, Adamson PM, Bhattbhatt V, Beriwal S, Shen S, Radermecker O, Bose S, Strain LS, Offe M, Fraley D, Principi S, Ye DH, Wang AS, van Heteren J, Vo N, Schmidt TG: Pediatric chest‐abdomen‐pelvis and abdomen‐pelvis CT images with expert organ contours. Med Phys. https://doi.org/10.1002/mp.15485, Feb 4, 2022. Jordan P, Adamson PM, Bhattbhatt V, Beriwal S, Shen S, Radermecker O, Bose S, Strain LS, Offe M, Fraley D, Principi S, Ye DH, Wang AS, van Heteren J, Vo N, Schmidt TG: Pediatric chest‐abdomen‐pelvis and abdomen‐pelvis CT images with expert organ contours. Med Phys. https://​doi.​org/​10.​1002/​mp.​15485, Feb 4, 2022.
15.
go back to reference Cardoso MJ, Li W, Brown R, Ma N, Kerfoot E, Wang Y, Murrey B, Myronenko A, Zhao C, Yang D, Nath V, He Y, Xu Z, Hatamizadeh A, Myronenko A, Zhu W, Liu Y, Zheng M, Tang Y, Yang I, Zephyr M, Hashemian B, Alle S, Darestani MZ, Budd C, Modat M, Vercauteren T, Wang G, Li Y, Hu Y, Fu Y, Gorman B, Johnson H, Genereaux B, Erdal BS, Gupta V, Diaz-Pinto A, Dourson A, Maier-Hein L, Jaeger PF, Baumgartner M, Kalpathy-Cramer J, Flores M, Kirby J, Cooper LAD, Roth HR, Xu D, Bericat D, Floca R, Zhou SK, Shuaib H, Farahani K, Maier-Hein KH, Aylward S, Dogra P, Ourselin S, Feng A: MONAI: An open-source framework for deep learning in healthcare. arXiv [cs.LG], https://doi.org/10.48550/arXiv.2211.02701, 2022 Cardoso MJ, Li W, Brown R, Ma N, Kerfoot E, Wang Y, Murrey B, Myronenko A, Zhao C, Yang D, Nath V, He Y, Xu Z, Hatamizadeh A, Myronenko A, Zhu W, Liu Y, Zheng M, Tang Y, Yang I, Zephyr M, Hashemian B, Alle S, Darestani MZ, Budd C, Modat M, Vercauteren T, Wang G, Li Y, Hu Y, Fu Y, Gorman B, Johnson H, Genereaux B, Erdal BS, Gupta V, Diaz-Pinto A, Dourson A, Maier-Hein L, Jaeger PF, Baumgartner M, Kalpathy-Cramer J, Flores M, Kirby J, Cooper LAD, Roth HR, Xu D, Bericat D, Floca R, Zhou SK, Shuaib H, Farahani K, Maier-Hein KH, Aylward S, Dogra P, Ourselin S, Feng A: MONAI: An open-source framework for deep learning in healthcare. arXiv [cs.LG], https://​doi.​org/​10.​48550/​arXiv.​2211.​02701, 2022
16.
go back to reference Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Köpf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv [cs.LG], https://doi.org/10.48550/arXiv.1912.01703, 2019 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Köpf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv [cs.LG], https://​doi.​org/​10.​48550/​arXiv.​1912.​01703, 2019
19.
go back to reference Adamson PM, Bhattbhatt V, Principi S, Beriwal S, Strain LS, Offe M, Wang AS, Vo N, Gilat Schmidt T, Jordan P: Technical note: Evaluation of a V‐Net autosegmentation algorithm for pediatric CT scans: Performance, generalizability, and application to patient‐specific CT dosimetry. Med Phys. https://doi.org/10.1002/mp.15521, Feb 22, 2022 Adamson PM, Bhattbhatt V, Principi S, Beriwal S, Strain LS, Offe M, Wang AS, Vo N, Gilat Schmidt T, Jordan P: Technical note: Evaluation of a V‐Net autosegmentation algorithm for pediatric CT scans: Performance, generalizability, and application to patient‐specific CT dosimetry. Med Phys. https://​doi.​org/​10.​1002/​mp.​15521, Feb 22, 2022
20.
go back to reference Sundar LKS, Yu J, Muzik O, Kulterer OC, Fueger B, Kifjak D, Nakuz T, Shin HM, Sima AK, Kitzmantl D, Badawi RD, Nardo L, Cherry SR, Spencer BA, Hacker M, Beyer T: Fully Automated, Semantic Segmentation of Whole-Body 18 F-FDG PET/CT Images Based on Data-Centric Artificial Intelligence. Journal of Nuclear Medicine. https://doi.org/10.2967/jnumed.122.264063, Dec 1, 2022 Sundar LKS, Yu J, Muzik O, Kulterer OC, Fueger B, Kifjak D, Nakuz T, Shin HM, Sima AK, Kitzmantl D, Badawi RD, Nardo L, Cherry SR, Spencer BA, Hacker M, Beyer T: Fully Automated, Semantic Segmentation of Whole-Body 18 F-FDG PET/CT Images Based on Data-Centric Artificial Intelligence. Journal of Nuclear Medicine. https://​doi.​org/​10.​2967/​jnumed.​122.​264063, Dec 1, 2022
Metadata
Title
Technical Note: Neural Network Architectures for Self-Supervised Body Part Regression Models with Automated Localized Segmentation Application
Authors
Michael Fei
Alan B. McMillan
Publication date
13-11-2024
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-024-01319-z