Skip to main content
Top
Published in:

Open Access 01-12-2024 | Research

Profiling vivax malaria incidence, residual transmission, and risk factors using reactive case detection in low transmission settings of Ethiopia

Authors: Ashenafi Abossie, Hallelujah Getachew, Assalif Demissew, Kassahun Habtamu, Arega Tsegaye, Daibin Zhong, Xiaoming Wang, Teshome Degefa, Ming-Chieh Lee, Guofa Zhou, Christopher L. King, James W. Kazura, Delenasaw Yewhalaw, Guiyun Yan

Published in: Malaria Journal | Issue 1/2024

Login to get access

Abstract

Background

Identification of local Plasmodium vivax transmission foci and its hidden reservoirs are crucial to eliminating residual vivax malaria transmission. This study assessed whether reactive case detection (RCD) could better identify P. vivax cases and infection incidences in Arjo-Didessa, Southwestern Ethiopia.

Methods

A RCD survey was conducted from November 2019 to October 2021 in Arjo-Didessa and the surrounding vicinity in southwestern Ethiopia. RCD was performed at 0, 30, and 60 days following reports of P. vivax infections by health facilities to detect further cases and potential transmission networks. Household members of the index case and neighbours living within 200 m of the index household were screened for P. vivax. Households 200–500 m away are considered controls and were also screened for P. vivax. Plasmodium vivax was detected by microscopy, rapid diagnostic testing (RDT), and quantitative polymerase chain reaction (qPCR). Risk factors associated with vivax malaria were analysed using generalized estimating equations (GEE).

Results

A total of 3303 blood samples were collected from the index (n = 427), neighbouring (n = 1626), and control (n = 1240) household in the three rounds of follow-up visits for malaria infection, the overall positivity rate of P. vivax malaria was 1.6% (95% CI 1.2–2.2%), 1.9% (95% CI 1.5–2.4), and 3.9% (95% CI 3.2–4.6%) by microscopy, RDT, and qPCR, respectively. Microscopy and RDT detected 41.5% (54 of 130) and 49.1% (64 of 130) of the qPCR-confirmed P. vivax cases, respectively. Of qPCR-positive samples, 77.7% of the total P. vivax infections circulated in the index and neighbouring households, while control households accounted for 23.3% of the infections. Of the P. vivax infections detected 81.0% (95% CI 72.9–87.1%) were asymptomatic. In this study, P. vivax infection incidence was higher in index case households (53.8 cases per 1000 person-months) and (44.0 cases per 1000 person-months) in neighbouring households compared to the control households (25.1 cases per 1000 person-months) with statistical difference (p = 0.02). In index case households, children < 5 years and school-age children were at higher risk of P. vivax infection (AOR: 6.3, 95% CI: 2.24–18.02, p = 0.001 and AOR: 2.7, 95% CI: 1.10–6.64, p = 0.029).

Conclusions

This study found clustering of asymptomatic and sub-microscopic P. vivax infections in the index case household and their neighbours using RCD and molecular methods. Children under 5 years and of school age were more likely to have P. vivax infection in index households. Thus, tailored RCD approaches and targeted interventions for interrupting residual P. vivax transmission networks are needed to eliminate P. vivax malaria in low transmission settings.
Literature
1.
2.
go back to reference Battle KE, Lucas TCD, Nguyen M, Howes RE, Nandi AK, Twohig KA, et al. Mapping the global endemicity and clinical burden of Plasmodium vivax, 2000–17: a spatial and temporal modelling study. Lancet. 2019;394:332–43.PubMedPubMedCentralCrossRef Battle KE, Lucas TCD, Nguyen M, Howes RE, Nandi AK, Twohig KA, et al. Mapping the global endemicity and clinical burden of Plasmodium vivax, 2000–17: a spatial and temporal modelling study. Lancet. 2019;394:332–43.PubMedPubMedCentralCrossRef
4.
5.
go back to reference Commons RJ, Simpson JA, Thriemer K, Hossain MS, Douglas NM, Humphreys GS, et al. Risk of Plasmodium vivax parasitaemia after Plasmodium falciparum infection: a systematic review and meta-analysis. Lancet Infect Dis. 2019;19:91–101.PubMedPubMedCentralCrossRef Commons RJ, Simpson JA, Thriemer K, Hossain MS, Douglas NM, Humphreys GS, et al. Risk of Plasmodium vivax parasitaemia after Plasmodium falciparum infection: a systematic review and meta-analysis. Lancet Infect Dis. 2019;19:91–101.PubMedPubMedCentralCrossRef
6.
go back to reference Auburn S, Cheng Q, Marfurt J, Price RN. The changing epidemiology of Plasmodium vivax: Insights from conventional and novel surveillance tools. PLoS Med. 2021;18: e1003560.PubMedPubMedCentralCrossRef Auburn S, Cheng Q, Marfurt J, Price RN. The changing epidemiology of Plasmodium vivax: Insights from conventional and novel surveillance tools. PLoS Med. 2021;18: e1003560.PubMedPubMedCentralCrossRef
7.
go back to reference Bassat Q, Velarde M, Mueller I, Lin J, Leslie T, Wongsrichanalai C, et al. Key knowledge gaps for Plasmodium vivax control and elimination. Am J Trop Med Hyg. 2016;95:62–71.PubMedPubMedCentralCrossRef Bassat Q, Velarde M, Mueller I, Lin J, Leslie T, Wongsrichanalai C, et al. Key knowledge gaps for Plasmodium vivax control and elimination. Am J Trop Med Hyg. 2016;95:62–71.PubMedPubMedCentralCrossRef
10.
go back to reference Price RN, Commons RJ, Battle KE, Thriemer K, Mendis K. Plasmodium vivax in the era of the shrinking P. falciparum map. Trends Parasitol. 2020;36:560–70.PubMedPubMedCentralCrossRef Price RN, Commons RJ, Battle KE, Thriemer K, Mendis K. Plasmodium vivax in the era of the shrinking P. falciparum map. Trends Parasitol. 2020;36:560–70.PubMedPubMedCentralCrossRef
11.
go back to reference Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, et al. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis. 2009;9:555–66.PubMedCrossRef Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, et al. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis. 2009;9:555–66.PubMedCrossRef
12.
go back to reference Surit T, Sripoorote P, Kumpitak C, Suansomjit C, Maneechai N, Cui L, et al. Transmission efficiency of Plasmodium vivax at low parasitaemia. Malar J. 2023;22:22.PubMedPubMedCentralCrossRef Surit T, Sripoorote P, Kumpitak C, Suansomjit C, Maneechai N, Cui L, et al. Transmission efficiency of Plasmodium vivax at low parasitaemia. Malar J. 2023;22:22.PubMedPubMedCentralCrossRef
13.
go back to reference Angrisano F, Robinson LJ. Plasmodium vivax—how hidden reservoirs hinder global malaria elimination. Parasitol Int. 2022;87: 102526.PubMedCrossRef Angrisano F, Robinson LJ. Plasmodium vivax—how hidden reservoirs hinder global malaria elimination. Parasitol Int. 2022;87: 102526.PubMedCrossRef
14.
go back to reference Twohig KA, Pfeffer DA, Baird JK, Price RN, Zimmerman PA, Hay SI, et al. Growing evidence of Plasmodium vivax across malaria-endemic Africa. PLoS Negl Trop Dis. 2019;13: e0007140.PubMedPubMedCentralCrossRef Twohig KA, Pfeffer DA, Baird JK, Price RN, Zimmerman PA, Hay SI, et al. Growing evidence of Plasmodium vivax across malaria-endemic Africa. PLoS Negl Trop Dis. 2019;13: e0007140.PubMedPubMedCentralCrossRef
15.
go back to reference Tadesse FG, Slater HC, Chali W, Teelen K, Lanke K, Belachew M, et al. The relative Contribution of symptomatic and asymptomatic Plasmodium vivax and Plasmodium falciparum infections to the infectious reservoir in a low-endemic setting in Ethiopia. Clin Infect Dis. 2018;66:1883–91.PubMedCrossRef Tadesse FG, Slater HC, Chali W, Teelen K, Lanke K, Belachew M, et al. The relative Contribution of symptomatic and asymptomatic Plasmodium vivax and Plasmodium falciparum infections to the infectious reservoir in a low-endemic setting in Ethiopia. Clin Infect Dis. 2018;66:1883–91.PubMedCrossRef
16.
go back to reference Ferreira MU, Corder RM, Johansen IC, Kattenberg JH, Moreno M, Rosas-aguirre A, et al. Relative contribution of low-density and asymptomatic infections to Plasmodium vivax transmission in the Amazon: pooled analysis of individual participant data from population-based cross-sectional surveys. Lancet Reg Health Am. 2022;9: 100169.PubMedPubMedCentral Ferreira MU, Corder RM, Johansen IC, Kattenberg JH, Moreno M, Rosas-aguirre A, et al. Relative contribution of low-density and asymptomatic infections to Plasmodium vivax transmission in the Amazon: pooled analysis of individual participant data from population-based cross-sectional surveys. Lancet Reg Health Am. 2022;9: 100169.PubMedPubMedCentral
17.
go back to reference Kaaya RD, Matowo J, Kajeguka D, Tenu F, Shirima B, Mosha F, et al. The impact of submicroscopic parasitemia on malaria rapid diagnosis in Northeastern Tanzania, an area with diverse transmission patterns. Infect Dis Rep. 2022;14:798–809.PubMedPubMedCentralCrossRef Kaaya RD, Matowo J, Kajeguka D, Tenu F, Shirima B, Mosha F, et al. The impact of submicroscopic parasitemia on malaria rapid diagnosis in Northeastern Tanzania, an area with diverse transmission patterns. Infect Dis Rep. 2022;14:798–809.PubMedPubMedCentralCrossRef
18.
go back to reference Okell LC, Bousema T, Griffin JT, Ouédraogo AL, Ghani AC, Drakeley CJ. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat Commun. 2012;3:1237.PubMedCrossRef Okell LC, Bousema T, Griffin JT, Ouédraogo AL, Ghani AC, Drakeley CJ. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat Commun. 2012;3:1237.PubMedCrossRef
19.
go back to reference Lima F, De CJF, Fontoura PS, Finco BF, Vinetz JM, Lima NF, et al. Reactive case detection for Plasmodium vivax malaria elimination in rural Amazonia. PLoS Negl Trop Dis. 2016;10: e000521. Lima F, De CJF, Fontoura PS, Finco BF, Vinetz JM, Lima NF, et al. Reactive case detection for Plasmodium vivax malaria elimination in rural Amazonia. PLoS Negl Trop Dis. 2016;10: e000521.
21.
go back to reference Sturrock HJWW, Novotny JM, Kunene S, Dlamini S, Zulu Z, Cohen JM, et al. Reactive case detection for malaria elimination: real-life experience from an ongoing program in Swaziland. PLoS ONE. 2013;8: e63830.PubMedPubMedCentralCrossRef Sturrock HJWW, Novotny JM, Kunene S, Dlamini S, Zulu Z, Cohen JM, et al. Reactive case detection for malaria elimination: real-life experience from an ongoing program in Swaziland. PLoS ONE. 2013;8: e63830.PubMedPubMedCentralCrossRef
22.
go back to reference Minstry of Health Ethiopia. National Malaria Elimination Roadmap. 2022;5th Edn. Minstry of Health Ethiopia. National Malaria Elimination Roadmap. 2022;5th Edn.
23.
go back to reference Coura JR, Suárez-Mutis M, Ladeia-Andrade S. A new challenge for malaria control in Brazil: asymptomatic Plasmodium infection—a review. Mem Inst Oswaldo Cruz. 2006;101:229–37.PubMedCrossRef Coura JR, Suárez-Mutis M, Ladeia-Andrade S. A new challenge for malaria control in Brazil: asymptomatic Plasmodium infection—a review. Mem Inst Oswaldo Cruz. 2006;101:229–37.PubMedCrossRef
24.
go back to reference Hawaria D, Getachew H, Zhong G, Demissew A, Habitamu K, Raya B, et al. Ten years malaria trend at Arjo-Didessa sugar development site and its vicinity, Southwest Ethiopia: a retrospective study. Malar J. 2019;18:145.PubMedPubMedCentralCrossRef Hawaria D, Getachew H, Zhong G, Demissew A, Habitamu K, Raya B, et al. Ten years malaria trend at Arjo-Didessa sugar development site and its vicinity, Southwest Ethiopia: a retrospective study. Malar J. 2019;18:145.PubMedPubMedCentralCrossRef
25.
go back to reference Getachew H, Demissew A, Abossie A, Habtamu K, Wang X, Zhong D, et al. Asymptomatic and submicroscopic malaria infections in sugar cane and rice development areas of Ethiopia. Malar J. 2023;22:341.PubMedPubMedCentralCrossRef Getachew H, Demissew A, Abossie A, Habtamu K, Wang X, Zhong D, et al. Asymptomatic and submicroscopic malaria infections in sugar cane and rice development areas of Ethiopia. Malar J. 2023;22:341.PubMedPubMedCentralCrossRef
26.
go back to reference Demissew A, Hawaria D, Kibret S, Animut A, Tsegaye A, Lee MC, et al. Impact of sugarcane irrigation on malaria vector Anopheles mosquito fauna, abundance and seasonality in Arjo-Didessa, Ethiopia. Malar J. 2020;19:344.PubMedPubMedCentralCrossRef Demissew A, Hawaria D, Kibret S, Animut A, Tsegaye A, Lee MC, et al. Impact of sugarcane irrigation on malaria vector Anopheles mosquito fauna, abundance and seasonality in Arjo-Didessa, Ethiopia. Malar J. 2020;19:344.PubMedPubMedCentralCrossRef
27.
go back to reference Zemene E, Koepfli C, Tiruneh A, Yeshiwondim AK, Seyoum D, Lee MC, et al. Detection of foci of residual malaria transmission through reactive case detection in Ethiopia. Malar J. 2018;17:390.PubMedPubMedCentralCrossRef Zemene E, Koepfli C, Tiruneh A, Yeshiwondim AK, Seyoum D, Lee MC, et al. Detection of foci of residual malaria transmission through reactive case detection in Ethiopia. Malar J. 2018;17:390.PubMedPubMedCentralCrossRef
28.
go back to reference Tessema SK, Belachew M, Koepfli C, Lanke K, Huwe T, Chali W, et al. Spatial and genetic clustering of Plasmodium falciparum and Plasmodium vivax infections in a low-transmission area of Ethiopia. Sci Rep. 2020;10:19975.PubMedPubMedCentralCrossRef Tessema SK, Belachew M, Koepfli C, Lanke K, Huwe T, Chali W, et al. Spatial and genetic clustering of Plasmodium falciparum and Plasmodium vivax infections in a low-transmission area of Ethiopia. Sci Rep. 2020;10:19975.PubMedPubMedCentralCrossRef
29.
go back to reference Okebe J, Ribera JM, Balen J, Jaiteh F, Masunaga Y, Nwakanma D, et al. Reactive community-based self-administered treatment against residual malaria transmission : study protocol for a randomized controlled trials. Trials. 2018;19:126.PubMedPubMedCentralCrossRef Okebe J, Ribera JM, Balen J, Jaiteh F, Masunaga Y, Nwakanma D, et al. Reactive community-based self-administered treatment against residual malaria transmission : study protocol for a randomized controlled trials. Trials. 2018;19:126.PubMedPubMedCentralCrossRef
30.
go back to reference Reiker T, Chitnis N, Smith T. Modelling reactive case detection strategies for interrupting transmission of Plasmodium falciparum malaria. Malar J. 2019;18:259.PubMedPubMedCentralCrossRef Reiker T, Chitnis N, Smith T. Modelling reactive case detection strategies for interrupting transmission of Plasmodium falciparum malaria. Malar J. 2019;18:259.PubMedPubMedCentralCrossRef
31.
go back to reference Larsen DA, Chisha Z, Winters B, Mwanza M, Kamuliwo M, Mbwili C, et al. Malaria surveillance in low-transmission areas of Zambia using reactive case detection. Malar J. 2015;14:465.PubMedPubMedCentralCrossRef Larsen DA, Chisha Z, Winters B, Mwanza M, Kamuliwo M, Mbwili C, et al. Malaria surveillance in low-transmission areas of Zambia using reactive case detection. Malar J. 2015;14:465.PubMedPubMedCentralCrossRef
32.
go back to reference Searle KM, Shields T, Hamapumbu H, Kobayashi T, Mharakurwa S, Thuma PE, et al. Efficiency of household reactive case detection for malaria in rural Southern Zambia: simulations based on cross-sectional surveys from two epidemiological settings. PLoS ONE. 2013;8: e70972.PubMedPubMedCentralCrossRef Searle KM, Shields T, Hamapumbu H, Kobayashi T, Mharakurwa S, Thuma PE, et al. Efficiency of household reactive case detection for malaria in rural Southern Zambia: simulations based on cross-sectional surveys from two epidemiological settings. PLoS ONE. 2013;8: e70972.PubMedPubMedCentralCrossRef
33.
go back to reference Prairie K. Microscopy for the detection, identification and quantification of malaria parasites on stained thick and thin blood films in research settings. Procedure Methods Manual. 2012;1:1–109. Prairie K. Microscopy for the detection, identification and quantification of malaria parasites on stained thick and thin blood films in research settings. Procedure Methods Manual. 2012;1:1–109.
34.
go back to reference Wooden J, Kyes S, Sibley CH. PCR and strain identification in Plasmodium falciparum. Parasitol Today. 1993;9:303–5.PubMedCrossRef Wooden J, Kyes S, Sibley CH. PCR and strain identification in Plasmodium falciparum. Parasitol Today. 1993;9:303–5.PubMedCrossRef
35.
go back to reference Veron V, Simon S, Carme B. Multiplex real-time PCR detection of P. falciparum, P. vivax and P. malariae in human blood samples. Exp Parasitol. 2009;121:346–51.PubMedCrossRef Veron V, Simon S, Carme B. Multiplex real-time PCR detection of P. falciparum, P. vivax and P. malariae in human blood samples. Exp Parasitol. 2009;121:346–51.PubMedCrossRef
36.
go back to reference Shokoples SE, Ndao M, Kowalewska-Grochowska K, Yanow SK. Multiplexed real-time PCR assay for discrimination of Plasmodium species with improved sensitivity for mixed infections. J Clin Microbiol. 2009;47:975–80.PubMedPubMedCentralCrossRef Shokoples SE, Ndao M, Kowalewska-Grochowska K, Yanow SK. Multiplexed real-time PCR assay for discrimination of Plasmodium species with improved sensitivity for mixed infections. J Clin Microbiol. 2009;47:975–80.PubMedPubMedCentralCrossRef
37.
go back to reference Naing C, Htet NH, Aye SN, Aung HH, Tanner M, Whittaker MA. Detection of asymptomatic malaria in Asian countries : a meta-analysis of diagnostic accuracy. Malar J. 2022;21:50.PubMedPubMedCentralCrossRef Naing C, Htet NH, Aye SN, Aung HH, Tanner M, Whittaker MA. Detection of asymptomatic malaria in Asian countries : a meta-analysis of diagnostic accuracy. Malar J. 2022;21:50.PubMedPubMedCentralCrossRef
38.
go back to reference Leonard CM, Assefa A, Sime H, Mohammed H, Kebede A, Solomon H, et al. Spatial distribution of Plasmodium falciparum and Plasmodium vivax in Northern Ethiopia by microscopic, rapid diagnostic test, laboratory antibody, and antigen data. J Infect Dis. 2022;225:881–90.PubMedCrossRef Leonard CM, Assefa A, Sime H, Mohammed H, Kebede A, Solomon H, et al. Spatial distribution of Plasmodium falciparum and Plasmodium vivax in Northern Ethiopia by microscopic, rapid diagnostic test, laboratory antibody, and antigen data. J Infect Dis. 2022;225:881–90.PubMedCrossRef
39.
go back to reference Molly DF, Hamapumbu H, Lubinda J, Musonda M, Katowa B, Searle KM, et al. Efficiency of a malaria reactive test-and-treat program in Southern Zambia: a prospective, observational study. Am J Trop Med Hyg. 2018;98:1382–8.CrossRef Molly DF, Hamapumbu H, Lubinda J, Musonda M, Katowa B, Searle KM, et al. Efficiency of a malaria reactive test-and-treat program in Southern Zambia: a prospective, observational study. Am J Trop Med Hyg. 2018;98:1382–8.CrossRef
41.
go back to reference Molina Gómez K, Caicedo MA, Gaitán A, Herrera-Varela M, Arce MI, Vallejo AF, et al. Characterizing the malaria rural-to-urban transmission interface: the importance of reactive case detection. PLoS Negl Trop Dis. 2017;11: e0005780.PubMedPubMedCentralCrossRef Molina Gómez K, Caicedo MA, Gaitán A, Herrera-Varela M, Arce MI, Vallejo AF, et al. Characterizing the malaria rural-to-urban transmission interface: the importance of reactive case detection. PLoS Negl Trop Dis. 2017;11: e0005780.PubMedPubMedCentralCrossRef
42.
go back to reference Doum D, Mclver DJ, Hustedt J, Hii J, Sovannaroth S, Lek D, et al. An active and targeted survey reveals asymptomatic malaria infections among high-risk populations in Mondulkiri, Cambodia. Malar J. 2023;22:193.PubMedPubMedCentralCrossRef Doum D, Mclver DJ, Hustedt J, Hii J, Sovannaroth S, Lek D, et al. An active and targeted survey reveals asymptomatic malaria infections among high-risk populations in Mondulkiri, Cambodia. Malar J. 2023;22:193.PubMedPubMedCentralCrossRef
43.
go back to reference Stuck L, Fakih BS, Al-mafazy AH, Hofmann NE, Holzschuh A, Grossenbacher B, et al. Malaria infection prevalence and sensitivity of reactive case detection in Zanzibar. Int J Infect Dis. 2020;97:337–46.PubMedPubMedCentralCrossRef Stuck L, Fakih BS, Al-mafazy AH, Hofmann NE, Holzschuh A, Grossenbacher B, et al. Malaria infection prevalence and sensitivity of reactive case detection in Zanzibar. Int J Infect Dis. 2020;97:337–46.PubMedPubMedCentralCrossRef
44.
go back to reference Searle KM, Katowa B, Musonda M, Pringle JC, Hamapumbu H, Matoba J, et al. Sustained malaria transmission despite reactive screen-and-treat in a low-transmission area of southern Zambia. Am J Trop Med Hyg. 2021;104:671–9.CrossRef Searle KM, Katowa B, Musonda M, Pringle JC, Hamapumbu H, Matoba J, et al. Sustained malaria transmission despite reactive screen-and-treat in a low-transmission area of southern Zambia. Am J Trop Med Hyg. 2021;104:671–9.CrossRef
45.
go back to reference Golassa L, White MT. Population-level estimates of the proportion of Plasmodium vivax blood-stage infections attributable to relapses among febrile patients attending Adama Malaria Diagnostic Centre, East Shoa Zone, Oromia, Ethiopia. Malar J. 2017;16:301.PubMedPubMedCentralCrossRef Golassa L, White MT. Population-level estimates of the proportion of Plasmodium vivax blood-stage infections attributable to relapses among febrile patients attending Adama Malaria Diagnostic Centre, East Shoa Zone, Oromia, Ethiopia. Malar J. 2017;16:301.PubMedPubMedCentralCrossRef
46.
go back to reference Tripura R, Peto TJ, Chalk J, Lee SJ, Sirithiranont P, Nguon C, et al. Persistent Plasmodium falciparum and Plasmodium vivax infections in a western Cambodian population: Implications for prevention, treatment and elimination strategies. Malar J. 2016;15:181.PubMedPubMedCentralCrossRef Tripura R, Peto TJ, Chalk J, Lee SJ, Sirithiranont P, Nguon C, et al. Persistent Plasmodium falciparum and Plasmodium vivax infections in a western Cambodian population: Implications for prevention, treatment and elimination strategies. Malar J. 2016;15:181.PubMedPubMedCentralCrossRef
47.
go back to reference Hustedt J, Canavati SE, Rang C, Ashton RA, Khim N, Berne L, et al. Reactive case-detection of malaria in Pailin Province, Western Cambodia: lessons from a year-long evaluation in a pre-elimination setting. Malar J. 2016;15:132.PubMedPubMedCentralCrossRef Hustedt J, Canavati SE, Rang C, Ashton RA, Khim N, Berne L, et al. Reactive case-detection of malaria in Pailin Province, Western Cambodia: lessons from a year-long evaluation in a pre-elimination setting. Malar J. 2016;15:132.PubMedPubMedCentralCrossRef
48.
go back to reference Barbosa S, Gozze AB, Lima NF, Batista CL, Bastos MS, Nicolete VC, et al. Epidemiology of disappearing Plasmodium vivax malaria: a case study in rural Amazonia. PLoS Negl Trop Dis. 2014;8: e3109.PubMedPubMedCentralCrossRef Barbosa S, Gozze AB, Lima NF, Batista CL, Bastos MS, Nicolete VC, et al. Epidemiology of disappearing Plasmodium vivax malaria: a case study in rural Amazonia. PLoS Negl Trop Dis. 2014;8: e3109.PubMedPubMedCentralCrossRef
49.
51.
go back to reference Fontoura PS, Macedo EG, Calil PR, Corder RM, Rodrigues PT, Tonini J, et al. Changing clinical epidemiology of Plasmodium vivax malaria as transmission decreases: population-based prospective panel survey in the Brazilian Amazon. J Infect Dis. 2024;229:947–58.PubMedCrossRef Fontoura PS, Macedo EG, Calil PR, Corder RM, Rodrigues PT, Tonini J, et al. Changing clinical epidemiology of Plasmodium vivax malaria as transmission decreases: population-based prospective panel survey in the Brazilian Amazon. J Infect Dis. 2024;229:947–58.PubMedCrossRef
52.
go back to reference Harris I, Sharrock WW, Bain LM, Gray KA, Bobogare A, Boaz L, et al. A large proportion of asymptomatic Plasmodium infections with low and submicroscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting. Malar J. 2010;9:254.PubMedPubMedCentralCrossRef Harris I, Sharrock WW, Bain LM, Gray KA, Bobogare A, Boaz L, et al. A large proportion of asymptomatic Plasmodium infections with low and submicroscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting. Malar J. 2010;9:254.PubMedPubMedCentralCrossRef
53.
go back to reference Oyegoke OO, Maharaj L, Akoniyon OP, Kwoji I, Roux AT, Adewumi TS, et al. Malaria diagnostic methods with the elimination goal in view. Parasitol Res. 2022;121:1867–85.PubMedPubMedCentralCrossRef Oyegoke OO, Maharaj L, Akoniyon OP, Kwoji I, Roux AT, Adewumi TS, et al. Malaria diagnostic methods with the elimination goal in view. Parasitol Res. 2022;121:1867–85.PubMedPubMedCentralCrossRef
54.
go back to reference WHO. World Malaria Report 2021. Geneva, World Health Organization, 2021. WHO. World Malaria Report 2021. Geneva, World Health Organization, 2021.
55.
go back to reference Koepfli C, Colborn KL, Kiniboro B, Lin E, Speed TP, Siba PM, et al. A high force of Plasmodium vivax blood-stage infection drives the rapid acquisition of immunity in Papua New Guinean children. PLoS Negl Trop Dis. 2013;7: e2403.PubMedPubMedCentralCrossRef Koepfli C, Colborn KL, Kiniboro B, Lin E, Speed TP, Siba PM, et al. A high force of Plasmodium vivax blood-stage infection drives the rapid acquisition of immunity in Papua New Guinean children. PLoS Negl Trop Dis. 2013;7: e2403.PubMedPubMedCentralCrossRef
56.
go back to reference Barros LB, Calil PR, Rodrigues PT, Tonini J, Fontoura PS, Sato PM, et al. Clinically silent Plasmodium vivax infections in native Amazonians of northwestern Brazil: acquired immunity or low parasite virulence? Mem Inst Oswaldo Cruz. 2022;117: e22017.CrossRef Barros LB, Calil PR, Rodrigues PT, Tonini J, Fontoura PS, Sato PM, et al. Clinically silent Plasmodium vivax infections in native Amazonians of northwestern Brazil: acquired immunity or low parasite virulence? Mem Inst Oswaldo Cruz. 2022;117: e22017.CrossRef
57.
go back to reference Hailemeskel E, Tebeje SK, Behaksra SW, Shumie G, Shitaye G, Keffale M, et al. The epidemiology and detectability of asymptomatic Plasmodium vivax and Plasmodium falciparum infections in low, moderate and high transmission settings in Ethiopia. Malar J. 2021;20:59.PubMedPubMedCentralCrossRef Hailemeskel E, Tebeje SK, Behaksra SW, Shumie G, Shitaye G, Keffale M, et al. The epidemiology and detectability of asymptomatic Plasmodium vivax and Plasmodium falciparum infections in low, moderate and high transmission settings in Ethiopia. Malar J. 2021;20:59.PubMedPubMedCentralCrossRef
58.
go back to reference Gari T, Kenea O, Loha E, Deressa W, Hailu A, Balkew M, et al. Malaria incidence and entomological findings in an area targeted for a cluster-randomized controlled trial to prevent malaria in Ethiopia: results from a pilot study. Malar J. 2016;15:145.PubMedPubMedCentralCrossRef Gari T, Kenea O, Loha E, Deressa W, Hailu A, Balkew M, et al. Malaria incidence and entomological findings in an area targeted for a cluster-randomized controlled trial to prevent malaria in Ethiopia: results from a pilot study. Malar J. 2016;15:145.PubMedPubMedCentralCrossRef
59.
go back to reference Stewart AGA, Zimmerman PA, McCarthy JS. Genetic variation of G6PD and CYP2D6: clinical implications on the use of primaquine for elimination of Plasmodium vivax. Front Pharmacol. 2021;12:7849909.CrossRef Stewart AGA, Zimmerman PA, McCarthy JS. Genetic variation of G6PD and CYP2D6: clinical implications on the use of primaquine for elimination of Plasmodium vivax. Front Pharmacol. 2021;12:7849909.CrossRef
Metadata
Title
Profiling vivax malaria incidence, residual transmission, and risk factors using reactive case detection in low transmission settings of Ethiopia
Authors
Ashenafi Abossie
Hallelujah Getachew
Assalif Demissew
Kassahun Habtamu
Arega Tsegaye
Daibin Zhong
Xiaoming Wang
Teshome Degefa
Ming-Chieh Lee
Guofa Zhou
Christopher L. King
James W. Kazura
Delenasaw Yewhalaw
Guiyun Yan
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2024
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-024-05171-y

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the broader systemic effects of menopause, so you can help patients in your clinics through the transition.

Launching: Thursday 12th December 2024
 

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Register your interest now

Keynote webinar | Spotlight on adolescent vaping

  • Live
  • Webinar | 29-01-2025 | 18:00 (CET)

Growing numbers of young people are using e-cigarettes, despite warnings of respiratory effects and addiction. How can doctors tackle the epidemic, and what health effects should you prepare to manage in your clinics?

Watch it live: Wednesday 29th January, 18:00-19:30 CET
 

Prof. Ann McNeill
Dr. Debbie Robson
Benji Horwell
Developed by: Springer Medicine
Join the webinar

Keynote webinar | Spotlight on modern management of frailty

Frailty has a significant impact on health and wellbeing, especially in older adults. Our experts explain the factors that contribute to the development of frailty and how you can manage the condition and reduce the risk of disability, dependency, and mortality in your patients.

Prof. Alfonso Cruz-Jentoft
Prof. Barbara C. van Munster
Prof. Mirko Petrovic
Developed by: Springer Medicine
Watch now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more