Thromb Haemost 2009; 101(05): 916-928
DOI: 10.1160/TH08-04-0271
Wound Healing and Inflammation/Infection
Schattauer GmbH

Modification of the cytoprotective protein C pathway during Dengue virus infection of human endothelial vascular cells

Carlos Cabello-Gutiérrez
1   Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF, México
,
Maria Eugenia Manjarrez-Zavala
2   Departamento de Virología, Instituto Nacional de Enfermedades Respiratorias, México, DF, México
,
Alejandra Huerta-Zepeda
1   Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF, México
,
Jorge Cime-Castillo
1   Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF, México
,
Verónica Monroy-Martínez
1   Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF, México
,
Benjamín Biruete-Correa
3   División de Obstetricia UMAE, Hospital de Ginecología y Obstetricia del IMSS “Luís Castelazo Ayala”, México, DF, México
,
Blanca H. Ruiz-Ordaz
1   Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF, México
› Author Affiliations
Financial support: This study was supported in part by the PAPIIT and CONACYT programs.
Further Information

Publication History

Received: 30 April 2008

Accepted after major revision: 25 January 2009

Publication Date:
24 November 2017 (online)

Summary

Dengue fever (DF) is the most prevalent arthropod-borne viral disease of humans. No safe vaccine is available, there is no experimental animal model and no specific treatment (antiviral) for Dengue virus (DV) infection exists. The pathogenic mechanisms of the severe forms of the disease, such as Dengue shock syndrome (DSS) and Dengue haemorrhagic fever (DHF), in which endothelial damage is the pathognomonic sign, are not fully understood. Clinical observations have revealed significant abnormalities in the coagulation and inflammation systems, with increased levels of soluble thrombomodulin (sTM) in the plasma of patients with DHF/DSS (grade III or IV). Blood sTM was proposed as an early predictor of DSS during the febrile stage. However, the role of the DV in endothelial injury during DSS is unclear. Here, we present novel insights into the participation of DV in the downregulation of the thrombomodulin-thrombin-protein C complex formation at the endothelial surface, with a reduction in activated protein C (APC). APC is the most important vasoprotective protein because it downregulates thrombin generation (by the inactivation of procoagulant factors Va and VIIIa) and has anti-inflammatory, antiapoptotic, and barrier protection properties. These biological functions of APC are associated with the endothelial protein C receptor (EPCR) and pro-tease-activated receptor 1 (PAR-1) signalling pathways, which link the coagulation-inflammation responses. We found alterations in the antithrombotic and cytoprotective protein C pathways during DV infection of human endothelial vascular cells, which may explain the vasculopathy observed during DHF/DSS. Clarification of the basic principles that underlie these processes has important implications for the design of new therapeutic strategies for DHF/DSS.

 
  • References

  • 1 World Health Organization.. www.who.int/entity/mediacentre/factsheets/fs117/en/
  • 2 Hasltead SB. Pathogenesis of dengue: challenge to molecular biology. Science 1988; 239: 476-481.
  • 3 Suharti C, van Gorp EC, Setiati TE. et al. The role of cytokines in activation of coagulation and fibrinolysis in dengue shock syndrome. Thromb Haemost 2001; 87: 42-46.
  • 4 Sosothikul D, Seksarn P, Pongsewalak S. et al. Activation of endothelial cells, coagulation and fibrinolysis in children with Dengue virus infection. Tromb Haemost 2007; 97: 627-634.
  • 5 Strukova S. Blood coagulation-dependent inflammation. Coagulation-dependent inflammation and inflammation-dependent thrombosis. Front Biosci 2006; 11: 59-80.
  • 6 Schouten M, Wiersinga WJ, Levin M. et al. Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol 2008; 83: 1-10.
  • 7 Griffin JH, Fernández JA, Gale AJ. et al. Activated protein C. J Thromb Haemost 2007; 01: 73-80.
  • 8 Knobe KE, Berntsdotter A, Shen L. et al. Probing the activation of protein C by the thrombin-thrombomodulin complex using structural analysis, site-directed mutagenesis, and computer modeling. Proteins 1999; 35: 218-234.
  • 9 Faust SN, Heyderman RS, Levin M. Coagulation in severe sepsis: A central role for thrombomodulin and activated protein C. Crit Care Med 2001; 29: S62-S68.
  • 10 Lakhiaev AV, Rezaie AR, Idell S. Thrombomodulin-mediated catabolism of protein C by pleural mesothelial and vascular endothelial cells. Thromb Haemost 2007; 98: 627-634.
  • 11 Weiler H. Mouse models of thrombosis: thrombomodulin. Thromb Haemost 2004; 92: 467-477.
  • 12 Mosnier LO, Zlokovic BV, Griffin JH. The cytoprotective protein C pathway. Blood 2007; 109: 3161-3172.
  • 13 España F, Medina P, Navarro S. et al. The multi-functional protein C system. Curr Med Chem Cardiovasc Hematol Agents 2005; 03: 119-131.
  • 14 Bae JS, Rezaie AR. Protease activated receptor 1 (PAR-1) activation by thrombin is protective in human pulmonary artery endothelial cells if endothelial protein C receptor is occupied by its natural ligand. Thromb Haemost 2008; 100: 101-109.
  • 15 Faust SN, Levin M, Harrison OB. et al. Dysfunction of endothelial protein C activation in severe meningococcal sepsis. N Engl J Med 2001; 345: 408-416.
  • 16 Butthep P, Chunhakan S, Tangnararatchakit K. et al. Elevated soluble thrombomodulin in the febrile stage related to patients at risk for dengue shock syndrome. Pediatr Infect Dis J 2006; 25: 894-897.
  • 17 Sánchez JI, Ruiz BH. A single nucleotide change in the E protein gene of dengue virus 2 mexican strain affects neurovirulence in mice. J Gen Virol 1996; 77: 2541-2545.
  • 18 Olsen E. Culturing of human umbilical vein and dermal microvascular endothelial cells. In Cell Biology 1994; 01: 142-147.
  • 19 Boehme MW, Deng Y, Raeth U. et al. Release of thrombomodulin from endothelial cells by concerted action of TNF-alpha and neutrophils: in vivo and in vitro studies. Immunology 1996; 87: 134-140.
  • 20 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254.
  • 21 Cadroy Y, Diquélou A, Dupouy D. et al. The thrombomodulin/protein S antiacoagulant pathway modulates the thrombogenic properties of the normal resting and stimulated endothelium. Arterioscler Thromb Vasc 1997; 17: 520-527.
  • 22 Kittigul L, Temprom W, Sujirarat D. et al. Determination of tumor necrosis factor-alpha levels in dengue virus infected patients by sensitive biotinstreptavidin enzyme-linked immunosorbent assay. J Virol Methods 2000; 90: 51-57.
  • 23 Chiang ET, Persaud-Sawin DA, Kulkarni S. et al. Bluetongue virus and doublestranded RNA increase human vascular permeability: role of p38 MAPK. J Clin Immunol 2006; 26: 406-416.
  • 24 Branger J, van den Blink B, Weijer S. et al. Inhibition of coagulation, fibrinolysis, and endothelial cell activation by a p38 mitogen-activated protein kinase inhibitor during human endotoxemia. Blood 2003; 101: 4446-4448.
  • 25 Nold M, Nold-Petry C, Fischer D. et al. Activated protein C downregulates p38 mitogen-activated protein kinase and improves clinical parameters in an in-vivo model of septic shock. Thromb Haemost 2007; 98: 1118-1126.
  • 26 Riewald M, Petrovan RJ, Donner A. et al. Activated protein C signals through the thrombin receptor PAR1 in endothelial cells. J Endotoxin Res 2003; 09: 317-321.
  • 27 Joyce DE, Gelbert L, Ciaccia A. et al. Gene expression profile of antithrombotic protein c defines new mechanisms modulating inflammation and apoptosis. J Biol Chem 2001; 276: 11199-11203.
  • 28 Feistritzer C, Schuepbach RA, Mosnier LO. et al. Protective signalling by activated protein C is mechanistically linked to protein C activation on endothelial cells. J Biol Chem 2006; 281: 20077-20084.
  • 29 Okajima K. Regulation of inflammatory responses by activated protein C: the molecular mechanism(s) and therapeutic implications. Clin Chem Lab Med 2004; 42: 132-141.
  • 30 Macias WL, Yan SB, Williams MD. et al. New insights into the protein C pathway: potential implications for the biological activities of drotrecogin alfa (activated). Crit Care 2005; 09: S38-S45.
  • 31 Barnes WJS, Rosen L. Fatal hemorrhagic disease and shock associated with primary dengue infection on a pacific island. Am J Trop Med Hyg 1974; 23: 495-505.
  • 32 Rosen L. The emperor’s new clothes revisited, or reflections on the pathogenesis of dengue hemorrhagic fever. Am J Trop Med Hyg 1977; 26: 337-343.
  • 33 Halstead SB. Im munopathological parameterts of togavirus disease syndromes. In: The togaviruses. New York: Academic Press; 1980: 107-173.
  • 34 Sahaphong S, Riengrojpitak S, Bhamarapravati N. et al. Electron microscopic study of the vascular endothelial cell in dengue hemorrhagic fever. Southeast Asian J Trop Med Public Health 1980; 11: 194-204.
  • 35 Ramos C, Sánchez G, Pando RH. et al. Dengue virus in the brain microvascular endothelial cells of a fatal case of hemorrhagic dengue fever. J Neuroviol 1998; 04: 465-468.
  • 36 Bhamarapravati N, Tuchinda P, Boonyapaknavik V. Pathology of Thailand haemorrhagic fever: A study of 100 autopsy cases. Ann Trop Med Parasitol 1967; 61: 500-510.
  • 37 Bonner S, O’Sullivan MA. Endothelial cell mono-layers as a model system to investigate dengue shock syndrome. J Virol Methods 1998; 71: 159-167.
  • 38 Peyrefitte ChN, Pastorino B, Grau GE. et al. Dengue virus infection of human microvascular endothelial cells from different vascular beds promotes both common and specific functional changes. J Med Virol 2006; 78: 229-242.
  • 39 Basu A, Chaturvedi UC. Vascular endothelium: the battlefield of dengue viruses. FEMS Immunol Med Microbiol 2008; 53: 287-299.
  • 40 Limonta D, Capó V, Torres G. et al. Apoptosis in tissues from fatal dengue shock syndrome. J Clin Virol 2007; 40: 50-54.
  • 41 Jessie K, Fong MY, Devi S. et al. Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 2004; 189: 1411-1418.
  • 42 Barth OM, Barreto DF, Paes MV. et al. Morphological studies in a model for dengue-2 virus infection in mice. Mem Inst Oswaldo Cruz 2006; 101: 905-915.
  • 43 Raghupathy R, Chatuvuerdi UC, Al-Sayer H. et al. Elevated levels of IL-8 in dengue hemorrhagic fever. J Med Virol 1998; 56: 280-285.
  • 44 Talavera D, Castillo AM, Dominguez MC. et al. IL8 release, tight junction and cytoskeleton dynamic reorganization conducive to permeability increase are induced by dengue virus infection of microvascular endothelial monolayers. J Gen Virol 2004; 85: 1801-1813.
  • 45 Lee YR, Liu MT, Lei HY. et al. MCP-1, a highly expressed chemokine in dengue haemorrhagic fever/ dengue shock syndrome patients, may cause permeability change, possibly through reduced tight junctions of vascular endothelium cells. J Gen Virol 2006; 87: 3623-3630.
  • 46 Espina LM, Valero NJ, Hernandez JM. et al. Increased apoptosis and expression of tumor necrosis factor-_ caused by infection of cultured human monocytes with dengue virus. Am J Trop Med Hyg 2003; 68: 48-53.
  • 47 Matsuda T, Almasan A, Tomita M. et al. Dengue virus-induced apoptosis in hepatic cells is partly mediated by Apo2 ligand/tumour necrosis factor-related apoptosis-inducing ligand. J Gen Virol 2005; 86: 1055-1065.
  • 48 Cheng T, Liu D, Griffin JH. et al. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nature Med 2003; 09: 338-342.
  • 49 Domotor E, Benzakour O, Griffin JH. et al. Activated protein C alters cytosolic calcium flux in human brain endothelium via binding to endothelial protein C receptor and activation of protease activated receptor-1. Blood 2003; 101: 4797-4801.
  • 50 Mosnier LO, Gale AJ, Yegneswaran S. et al. Activated protein C variants with normal cytoprotective but reduced anticoagulant activity. Blood 2004; 104: 1740-1744.
  • 51 Bernard GR, Vincent JL, Laterre PF. et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001; 344: 699-709.
  • 52 Bernard GR, Macias WL, Joyce DE. et al. Safety assessment of drotrecogin alfa (activated) in the treatment of adult patients with severe sepsis. Crit Care 2003; 07: 155-163.