Skip to main content
Top

Open Access 02-08-2024 | Pre-Eclampsia | Preeclampsia (A Kattah and VD Garovic, Section Editors)

Importance of the (Pro)renin Receptor in Activating the Renin-Angiotensin System During Normotensive and Preeclamptic Pregnancies

Authors: Lachlan G. Schofield, Saije K. Endacott, Sarah J. Delforce, Eugenie R. Lumbers, Kirsty G. Pringle

Published in: Current Hypertension Reports

Login to get access

Abstract

Purpose of Review

For a healthy pregnancy to occur, a controlled interplay between the maternal circulating renin–angiotensin–aldosterone system (RAAS), placental renin-angiotensin system (RAS) and intrarenal renin-angiotensin system (iRAS) is necessary. Functionally, both the RAAS and iRAS interact to maintain blood pressure and cardiac output, as well as fluid and electrolyte balance. The placental RAS is important for placental development while also influencing the maternal circulating RAAS and iRAS. This narrative review concentrates on the (pro)renin receptor ((P)RR) and its soluble form (s(P)RR) in the context of the hypertensive pregnancy pathology, preeclampsia.

Recent Findings

The (P)RR and the s(P)RR have become of particular interest as not only can they activate prorenin and renin, thus influencing levels of angiotensin II (Ang II), but s(P)RR has now been shown to directly interact with and stimulate the Angiotensin II type 1 receptor (AT1R). Levels of both placental (P)RR and maternal circulating s(P)RR are elevated in patients with preeclampsia. Furthermore, s(P)RR has been shown to increase blood pressure in non-pregnant and pregnant rats and mice.

Summary

In preeclamptic pregnancies, which are characterised by maternal hypertension and impaired placental development and function, we propose that there is enhanced secretion of s(P)RR from the placenta into the maternal circulation. Due to its ability to both activate prorenin and act as an AT1R agonist, excess maternal circulating s(P)RR can act on both the maternal vasculature, and the kidney, leading to RAS over-activation. This results in dysregulation of the maternal circulating RAAS and overactivation of the iRAS, contributing to maternal hypertension, renal damage, and secondary changes to neurohumoral regulation of fluid and electrolyte balance, ultimately contributing to the pathophysiology of preeclampsia.
Literature
1.
go back to reference Lumbers ER, Pringle KG. Roles of the circulating renin-angiotensin-aldosterone system in human pregnancy. Am J Physiol Regul Integr Comp Physiol. 2014;306:R91–101.PubMedCrossRef Lumbers ER, Pringle KG. Roles of the circulating renin-angiotensin-aldosterone system in human pregnancy. Am J Physiol Regul Integr Comp Physiol. 2014;306:R91–101.PubMedCrossRef
2.
go back to reference Chesley LC. Hypertensive disorders in pregnancy. (Appleton-Century-Crofts, 1978). Chesley LC. Hypertensive disorders in pregnancy. (Appleton-Century-Crofts, 1978).
3.
go back to reference Seldin D, Giebisch G. kidney physiology and pathology, vol. 3. New York: Raven Press; 1992. Seldin D, Giebisch G. kidney physiology and pathology, vol. 3. New York: Raven Press; 1992.
4.
go back to reference Irani RA, Xia Y. Renin angiotensin signaling in normal pregnancy and preeclampsia. in Seminars in nephrology, Vol. 31 47–58 (Elsevier, 2011). Irani RA, Xia Y. Renin angiotensin signaling in normal pregnancy and preeclampsia. in Seminars in nephrology, Vol. 31 47–58 (Elsevier, 2011).
5.
go back to reference Duley L. The global impact of pre-eclampsia and eclampsia. in Seminars in perinatology, Vol. 33 130–137 (Elsevier, 2009). Duley L. The global impact of pre-eclampsia and eclampsia. in Seminars in perinatology, Vol. 33 130–137 (Elsevier, 2009).
6.
go back to reference Young BC, Levine RJ, Karumanchi SA. Pathogenesis of preeclampsia. Annu Rev Pathol. 2010;5:173–92.PubMedCrossRef Young BC, Levine RJ, Karumanchi SA. Pathogenesis of preeclampsia. Annu Rev Pathol. 2010;5:173–92.PubMedCrossRef
7.
go back to reference Lowe SA, et al. SOMANZ guidelines for the management of hypertensive disorders of pregnancy 2014. Aust N Z J Obstet Gynaecol. 2015;55:e1–29.PubMed Lowe SA, et al. SOMANZ guidelines for the management of hypertensive disorders of pregnancy 2014. Aust N Z J Obstet Gynaecol. 2015;55:e1–29.PubMed
9.
go back to reference Pringle KG, et al. Urinary angiotensinogen excretion in Australian Indigenous and non-Indigenous pregnant women. Pregnancy Hypertension. 2018;12:110–7.PubMedCrossRef Pringle KG, et al. Urinary angiotensinogen excretion in Australian Indigenous and non-Indigenous pregnant women. Pregnancy Hypertension. 2018;12:110–7.PubMedCrossRef
10.
go back to reference Herse F, et al. Dysregulation of the circulating and tissue-based renin-angiotensin system in preeclampsia. Hypertension. 2007;49:604–11.PubMedCrossRef Herse F, et al. Dysregulation of the circulating and tissue-based renin-angiotensin system in preeclampsia. Hypertension. 2007;49:604–11.PubMedCrossRef
11.
go back to reference Pringle KG, Lumbers ER, Morosin SK, Delforce SJ. The role of angiotensins in the pathophysiology of human pregnancy. in Angiotensin 179–211 (Elsevier, 2023). Pringle KG, Lumbers ER, Morosin SK, Delforce SJ. The role of angiotensins in the pathophysiology of human pregnancy. in Angiotensin 179–211 (Elsevier, 2023).
12.
go back to reference Nguyen G, et al. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Investig. 2002;109:1417–27.PubMedPubMedCentralCrossRef Nguyen G, et al. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Investig. 2002;109:1417–27.PubMedPubMedCentralCrossRef
13.
go back to reference Sun Y, et al. Megalin: a novel endocytic receptor for prorenin and renin. Hypertension. 2020;75:1242–50.PubMedCrossRef Sun Y, et al. Megalin: a novel endocytic receptor for prorenin and renin. Hypertension. 2020;75:1242–50.PubMedCrossRef
14.
go back to reference Sun Y, Lu X, Danser AJ. Megalin: a novel determinant of renin-angiotensin system activity in the kidney? Curr Hypertens Rep. 2020;22:1–7.CrossRef Sun Y, Lu X, Danser AJ. Megalin: a novel determinant of renin-angiotensin system activity in the kidney? Curr Hypertens Rep. 2020;22:1–7.CrossRef
15.
go back to reference Nehme A, Zouein FA, DerisZayeri Z, Zibara K. An update on the tissue renin angiotensin system and its role in physiology and pathology. J Cardiovasc Dev Dis. 2019;6:14.PubMedPubMedCentral Nehme A, Zouein FA, DerisZayeri Z, Zibara K. An update on the tissue renin angiotensin system and its role in physiology and pathology. J Cardiovasc Dev Dis. 2019;6:14.PubMedPubMedCentral
16.
go back to reference Cousin C, et al. Soluble form of the (pro) renin receptor generated by intracellular cleavage by furin is secreted in plasma. Hypertension. 2009;53:1077–82.PubMedCrossRef Cousin C, et al. Soluble form of the (pro) renin receptor generated by intracellular cleavage by furin is secreted in plasma. Hypertension. 2009;53:1077–82.PubMedCrossRef
17.
go back to reference Fu Z, et al. Soluble (pro) renin receptor induces endothelial dysfunction and hypertension in mice with diet-induced obesity via activation of angiotensin II type 1 receptor. Clin Sci. 2021;135:793–810.CrossRef Fu Z, et al. Soluble (pro) renin receptor induces endothelial dysfunction and hypertension in mice with diet-induced obesity via activation of angiotensin II type 1 receptor. Clin Sci. 2021;135:793–810.CrossRef
18.
go back to reference Nartita T, et al. Placental (pro) renin receptor expression and plasma soluble (pro) renin receptor levels in preeclampsia. Placenta. 2016;37:72–8.CrossRef Nartita T, et al. Placental (pro) renin receptor expression and plasma soluble (pro) renin receptor levels in preeclampsia. Placenta. 2016;37:72–8.CrossRef
19.
go back to reference Burcklé C, Bader M. Prorenin and its ancient receptor. (Am Heart Assoc. 2006). Burcklé C, Bader M. Prorenin and its ancient receptor. (Am Heart Assoc. 2006).
20.
go back to reference Nguyen G, et al. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest. 2002;109:1417–27.PubMedPubMedCentralCrossRef Nguyen G, et al. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest. 2002;109:1417–27.PubMedPubMedCentralCrossRef
23.
go back to reference Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol. 2016;310:H137–52.PubMedCrossRef Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol. 2016;310:H137–52.PubMedCrossRef
24.
go back to reference Tamanna S, Lumbers ER, Morosin SK, Delforce SJ, Pringle KG. ACE2: a key modulator of the renin-angiotensin system and pregnancy. Am J Physiol Regul Integr Comp Physiol. 2021;321:R833–43.PubMedPubMedCentralCrossRef Tamanna S, Lumbers ER, Morosin SK, Delforce SJ, Pringle KG. ACE2: a key modulator of the renin-angiotensin system and pregnancy. Am J Physiol Regul Integr Comp Physiol. 2021;321:R833–43.PubMedPubMedCentralCrossRef
25.
go back to reference Tojo A, Kinugasa S, Fujita T, Wilcox CS. A local renal renin–angiotensin system activation via renal uptake of prorenin and angiotensinogen in diabetic rats. Diabetes Metab Syndr Obes Targets Ther. 2016;1–10. Tojo A, Kinugasa S, Fujita T, Wilcox CS. A local renal renin–angiotensin system activation via renal uptake of prorenin and angiotensinogen in diabetic rats. Diabetes Metab Syndr Obes Targets Ther. 2016;1–10.
26.
go back to reference Reyes-Martinez C, Nguyen QM, Kassan M, Gonzalez AA. (Pro)renin Receptor-Dependent Induction of Profibrotic Factors Is Mediated by COX-2/EP4/NOX-4/Smad Pathway in Collecting Duct Cells. Front Pharmacol. 2019;10:803.PubMedPubMedCentralCrossRef Reyes-Martinez C, Nguyen QM, Kassan M, Gonzalez AA. (Pro)renin Receptor-Dependent Induction of Profibrotic Factors Is Mediated by COX-2/EP4/NOX-4/Smad Pathway in Collecting Duct Cells. Front Pharmacol. 2019;10:803.PubMedPubMedCentralCrossRef
27.
go back to reference Mebratu Y, Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle. 2009;8:1168–75.PubMedCrossRef Mebratu Y, Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle. 2009;8:1168–75.PubMedCrossRef
28.
go back to reference Peters J. The (pro) renin receptor and its interaction partners. Pflüg Arch Eur J Physiol. 2017;469:1245–56.CrossRef Peters J. The (pro) renin receptor and its interaction partners. Pflüg Arch Eur J Physiol. 2017;469:1245–56.CrossRef
29.
go back to reference Pamarthy S, Kulshrestha A, Katara GK, Beaman KD. The curious case of vacuolar ATPase: regulation of signaling pathways. Mol Cancer. 2018;17:1–9.CrossRef Pamarthy S, Kulshrestha A, Katara GK, Beaman KD. The curious case of vacuolar ATPase: regulation of signaling pathways. Mol Cancer. 2018;17:1–9.CrossRef
30.
go back to reference Ichihara A, Yatabe MS. The (pro) renin receptor in health and disease. Nat Rev Nephrol. 2019;15:693–712.PubMedCrossRef Ichihara A, Yatabe MS. The (pro) renin receptor in health and disease. Nat Rev Nephrol. 2019;15:693–712.PubMedCrossRef
31.
go back to reference Pollheimer J, et al. Activation of the canonical wingless/T-cell factor signaling pathway promotes invasive differentiation of human trophoblast. Am J Pathol. 2006;168:1134–47.PubMedPubMedCentralCrossRef Pollheimer J, et al. Activation of the canonical wingless/T-cell factor signaling pathway promotes invasive differentiation of human trophoblast. Am J Pathol. 2006;168:1134–47.PubMedPubMedCentralCrossRef
32.
go back to reference Kanda A, Noda K, Ishida S. ATP6AP2/(pro) renin receptor contributes to glucose metabolism via stabilizing the pyruvate dehydrogenase E1 β subunit. J Biol Chem. 2015;290:9690–700.PubMedPubMedCentralCrossRef Kanda A, Noda K, Ishida S. ATP6AP2/(pro) renin receptor contributes to glucose metabolism via stabilizing the pyruvate dehydrogenase E1 β subunit. J Biol Chem. 2015;290:9690–700.PubMedPubMedCentralCrossRef
33.
go back to reference Suda C, Yatabe J, Yatabe M, Yarita M, Ichihara A. Soluble (pro) renin receptor increased by hypoxia maintains oxidative metabolism in trophoblasts. J Mol Endocrinol. 2020;64:145–54.PubMedCrossRef Suda C, Yatabe J, Yatabe M, Yarita M, Ichihara A. Soluble (pro) renin receptor increased by hypoxia maintains oxidative metabolism in trophoblasts. J Mol Endocrinol. 2020;64:145–54.PubMedCrossRef
34.
go back to reference Yoshikawa A, et al. The (pro) renin receptor is cleaved by ADAM19 in the Golgi leading to its secretion into extracellular space. Hypertens Res. 2011;34:599–605.PubMedCrossRef Yoshikawa A, et al. The (pro) renin receptor is cleaved by ADAM19 in the Golgi leading to its secretion into extracellular space. Hypertens Res. 2011;34:599–605.PubMedCrossRef
35.
go back to reference Nakagawa T, et al. Site-1 protease is required for the generation of soluble (pro) renin receptor. J Biochem. 2017;161:369–79.PubMedCrossRef Nakagawa T, et al. Site-1 protease is required for the generation of soluble (pro) renin receptor. J Biochem. 2017;161:369–79.PubMedCrossRef
36.
go back to reference Lu X, et al. Soluble (pro) renin receptor via β-catenin enhances urine concentration capability as a target of liver X receptor. Proc Natl Acad Sci. 2016;113:E1898–906.PubMedPubMedCentralCrossRef Lu X, et al. Soluble (pro) renin receptor via β-catenin enhances urine concentration capability as a target of liver X receptor. Proc Natl Acad Sci. 2016;113:E1898–906.PubMedPubMedCentralCrossRef
37.
go back to reference Nguyen G, et al. Plasma soluble (pro) renin receptor is independent of plasma renin, prorenin, and aldosterone concentrations but is affected by ethnicity. Hypertension. 2014;63:297–302.PubMedCrossRef Nguyen G, et al. Plasma soluble (pro) renin receptor is independent of plasma renin, prorenin, and aldosterone concentrations but is affected by ethnicity. Hypertension. 2014;63:297–302.PubMedCrossRef
39.
go back to reference Wang F, et al. Antidiuretic action of collecting duct (pro) renin receptor downstream of vasopressin and PGE2 receptor EP4. J Am Soc Nephrol. 2016;27:3022–34.PubMedPubMedCentralCrossRef Wang F, et al. Antidiuretic action of collecting duct (pro) renin receptor downstream of vasopressin and PGE2 receptor EP4. J Am Soc Nephrol. 2016;27:3022–34.PubMedPubMedCentralCrossRef
40.
go back to reference Sasaki N, Morimoto S, Suda C, Shimizu S, Ichihara A. Urinary soluble (pro) renin receptor excretion is associated with urine pH in humans. PLoS ONE. 2021;16:e0254688.PubMedPubMedCentralCrossRef Sasaki N, Morimoto S, Suda C, Shimizu S, Ichihara A. Urinary soluble (pro) renin receptor excretion is associated with urine pH in humans. PLoS ONE. 2021;16:e0254688.PubMedPubMedCentralCrossRef
41.
go back to reference Gatineau E, Gong MC, Yiannikouris F. Soluble prorenin receptor increases blood pressure in high fat–fed male mice. Hypertension. 2019;74:1014–20.PubMedCrossRef Gatineau E, Gong MC, Yiannikouris F. Soluble prorenin receptor increases blood pressure in high fat–fed male mice. Hypertension. 2019;74:1014–20.PubMedCrossRef
42.
43.
go back to reference Fu Z, et al. Mutagenesis of the cleavage site of (pro) renin receptor abrogates aldosterone-salt-induced hypertension and renal injury in mice. Am J Physiol Renal Physiol. 2022. Fu Z, et al. Mutagenesis of the cleavage site of (pro) renin receptor abrogates aldosterone-salt-induced hypertension and renal injury in mice. Am J Physiol Renal Physiol. 2022.
44.
go back to reference Feng Y, Peng K, Luo R, Wang F, Yang T. Site-1 Protease-Derived Soluble (Pro) Renin Receptor Contributes to Angiotensin II–Induced Hypertension in Mice. Hypertension. 2021;77:405–16.PubMedCrossRef Feng Y, Peng K, Luo R, Wang F, Yang T. Site-1 Protease-Derived Soluble (Pro) Renin Receptor Contributes to Angiotensin II–Induced Hypertension in Mice. Hypertension. 2021;77:405–16.PubMedCrossRef
45.
go back to reference Wang F, et al. Soluble (pro) renin receptor regulation of ENaC involved in aldosterone signaling in cultured collecting duct cells. Am J Physiol Renal Physiol. 2020;318:F817–25.PubMedCrossRef Wang F, et al. Soluble (pro) renin receptor regulation of ENaC involved in aldosterone signaling in cultured collecting duct cells. Am J Physiol Renal Physiol. 2020;318:F817–25.PubMedCrossRef
46.
go back to reference Ramkumar N, et al. Renal tubular epithelial cell prorenin receptor regulates blood pressure and sodium transport. Am J Physiol Renal Physiol. 2016;311:F186–94.PubMedPubMedCentralCrossRef Ramkumar N, et al. Renal tubular epithelial cell prorenin receptor regulates blood pressure and sodium transport. Am J Physiol Renal Physiol. 2016;311:F186–94.PubMedPubMedCentralCrossRef
47.
go back to reference Delforce SJ, Lumbers ER, Morosin SK, Wang Y, Pringle KG. The Angiotensin II type 1 receptor mediates the effects of low oxygen on early placental angiogenesis. Placenta. 2019;75:54–61.PubMedCrossRef Delforce SJ, Lumbers ER, Morosin SK, Wang Y, Pringle KG. The Angiotensin II type 1 receptor mediates the effects of low oxygen on early placental angiogenesis. Placenta. 2019;75:54–61.PubMedCrossRef
49.
go back to reference Sharma J, Al-Omran A, Parvathy S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 2007;15:252–9.PubMedCrossRef Sharma J, Al-Omran A, Parvathy S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 2007;15:252–9.PubMedCrossRef
50.
go back to reference Itskovitz J, Sealey JE, Glorioso N, Rosenwaks Z. Plasma prorenin response to human chorionic gonadotropin in ovarian-hyperstimulated women: correlation with the number of ovarian follicles and steroid hormone concentrations. Proc Natl Acad Sci U S A. 1987;84:7285–9.PubMedPubMedCentralCrossRef Itskovitz J, Sealey JE, Glorioso N, Rosenwaks Z. Plasma prorenin response to human chorionic gonadotropin in ovarian-hyperstimulated women: correlation with the number of ovarian follicles and steroid hormone concentrations. Proc Natl Acad Sci U S A. 1987;84:7285–9.PubMedPubMedCentralCrossRef
51.
go back to reference Downing GJ, Maulik D, Poisner AM. Human chorionic gonadotropin stimulates placental prorenin secretion: evidence for autocrine/paracrine regulation. J Clin Endocrinol Metab. 1996;81:1027–30.PubMed Downing GJ, Maulik D, Poisner AM. Human chorionic gonadotropin stimulates placental prorenin secretion: evidence for autocrine/paracrine regulation. J Clin Endocrinol Metab. 1996;81:1027–30.PubMed
52.
go back to reference Pringle K, Tadros M, Callister R, Lumbers E. The expression and localization of the human placental prorenin/renin-angiotensin system throughout pregnancy: roles in trophoblast invasion and angiogenesis? Placenta. 2011;32:956–62.PubMedCrossRef Pringle K, Tadros M, Callister R, Lumbers E. The expression and localization of the human placental prorenin/renin-angiotensin system throughout pregnancy: roles in trophoblast invasion and angiogenesis? Placenta. 2011;32:956–62.PubMedCrossRef
53.
go back to reference Anton L, et al. Activation of local chorionic villi angiotensin II levels but not angiotensin (1–7) in preeclampsia. Hypertension. 2008;51:1066–72.PubMedCrossRef Anton L, et al. Activation of local chorionic villi angiotensin II levels but not angiotensin (1–7) in preeclampsia. Hypertension. 2008;51:1066–72.PubMedCrossRef
54.
go back to reference Tamanna S, et al. Renin-angiotensin system (RAS) enzymes and placental trophoblast syncytialisation. Mol Cell Endocrinol. 2022;547: 111609.PubMedCrossRef Tamanna S, et al. Renin-angiotensin system (RAS) enzymes and placental trophoblast syncytialisation. Mol Cell Endocrinol. 2022;547: 111609.PubMedCrossRef
55.
go back to reference Morosin SK, Delforce SJ, Lumbers ER, Pringle KG. The (pro) renin receptor (ATP6AP2) does not play a role in syncytialisation of term human primary trophoblast cells. Placenta. 2020;97:89–94.PubMedCrossRef Morosin SK, Delforce SJ, Lumbers ER, Pringle KG. The (pro) renin receptor (ATP6AP2) does not play a role in syncytialisation of term human primary trophoblast cells. Placenta. 2020;97:89–94.PubMedCrossRef
56.
go back to reference Nonn O, et al. Maternal angiotensin increases placental leptin in early gestation via an alternative renin-angiotensin system pathway: suggesting a link to preeclampsia. Hypertension. 2021;77:1723–36.PubMedCrossRef Nonn O, et al. Maternal angiotensin increases placental leptin in early gestation via an alternative renin-angiotensin system pathway: suggesting a link to preeclampsia. Hypertension. 2021;77:1723–36.PubMedCrossRef
57.
58.
go back to reference Williams P, Mistry H, Innes B, Bulmer J, Pipkin FB. Expression of AT1R, AT2R and AT4R and their roles in extravillous trophoblast invasion in the human. Placenta. 2010;31:448–55.PubMedCrossRef Williams P, Mistry H, Innes B, Bulmer J, Pipkin FB. Expression of AT1R, AT2R and AT4R and their roles in extravillous trophoblast invasion in the human. Placenta. 2010;31:448–55.PubMedCrossRef
59.
go back to reference Li X, et al. Cellular localization of AT1 receptor mRNA and protein in normal placenta and its reduced expression in intrauterine growth restriction. Angiotensin II stimulates the release of vasorelaxants. J Clin Invest. 1998;101:442–54.PubMedPubMedCentralCrossRef Li X, et al. Cellular localization of AT1 receptor mRNA and protein in normal placenta and its reduced expression in intrauterine growth restriction. Angiotensin II stimulates the release of vasorelaxants. J Clin Invest. 1998;101:442–54.PubMedPubMedCentralCrossRef
60.
go back to reference Morosin SK, Delforce SJ, Lumbers ER, Pringle KG. Cleavage of the soluble (pro) renin receptor (sATP6AP2) in the placenta. Placenta. 2020;101:49–56.PubMedCrossRef Morosin SK, Delforce SJ, Lumbers ER, Pringle KG. Cleavage of the soluble (pro) renin receptor (sATP6AP2) in the placenta. Placenta. 2020;101:49–56.PubMedCrossRef
61.
62.
go back to reference Almeida LF, Tofteng SS, Madsen K, Jensen BL. Role of the renin–angiotensin system in kidney development and programming of adult blood pressure. Clin Sci. 2020;134:641–56.CrossRef Almeida LF, Tofteng SS, Madsen K, Jensen BL. Role of the renin–angiotensin system in kidney development and programming of adult blood pressure. Clin Sci. 2020;134:641–56.CrossRef
63.
go back to reference Schofield LG, et al. Placental deficiency of the (pro) renin receptor ((P) RR) reduces placental development and functional capacity. Front Cell Dev Biol. 11:1212898. Schofield LG, et al. Placental deficiency of the (pro) renin receptor ((P) RR) reduces placental development and functional capacity. Front Cell Dev Biol. 11:1212898.
64.
go back to reference Tower C, et al. Differential expression of angiotensin II type 1 and type 2 receptors at the maternal-fetal interface: potential roles in early placental development. Reproduction. 2010;140:931.PubMedCrossRef Tower C, et al. Differential expression of angiotensin II type 1 and type 2 receptors at the maternal-fetal interface: potential roles in early placental development. Reproduction. 2010;140:931.PubMedCrossRef
65.
go back to reference Araki-Taguchi M, et al. Angiotensin II mimics the hypoxic effect on regulating trophoblast proliferation and differentiation in human placental explant cultures. Life Sci. 2008;82:59–67.PubMedCrossRef Araki-Taguchi M, et al. Angiotensin II mimics the hypoxic effect on regulating trophoblast proliferation and differentiation in human placental explant cultures. Life Sci. 2008;82:59–67.PubMedCrossRef
66.
go back to reference Squires PM, Kennedy TG. Evidence for a role for a uterine renin–angiotensin system in decidualization in rats. Reproduction. 1992;95:791–802.CrossRef Squires PM, Kennedy TG. Evidence for a role for a uterine renin–angiotensin system in decidualization in rats. Reproduction. 1992;95:791–802.CrossRef
67.
go back to reference Walther T, Jank A, Heringer-Walther S, Horn LC, Stepan H. Angiotensin II Type 1 Receptor Has Impact on Murine Placentation. Placenta. 2008;29:905–9.PubMedCrossRef Walther T, Jank A, Heringer-Walther S, Horn LC, Stepan H. Angiotensin II Type 1 Receptor Has Impact on Murine Placentation. Placenta. 2008;29:905–9.PubMedCrossRef
68.
go back to reference Many A, Hubel C, Roberts J. Hyperuricemia and xanthine oxidase in preeclampsia, revisited. Am J Obstet Gynecol. 1996;174:288–91.PubMedCrossRef Many A, Hubel C, Roberts J. Hyperuricemia and xanthine oxidase in preeclampsia, revisited. Am J Obstet Gynecol. 1996;174:288–91.PubMedCrossRef
69.
go back to reference Stanek J. Histological features of shallow placental implantation unify early-onset and late-onset preeclampsia [published online October 9, 2018]. Pediatr Dev Pathol. 10. Stanek J. Histological features of shallow placental implantation unify early-onset and late-onset preeclampsia [published online October 9, 2018]. Pediatr Dev Pathol. 10.
71.
go back to reference Mistry H, Kurlak L, Pipkin FB. The placental renin–angiotensin system and oxidative stress in pre-eclampsia. Placenta. 2013;34:182–6.PubMedCrossRef Mistry H, Kurlak L, Pipkin FB. The placental renin–angiotensin system and oxidative stress in pre-eclampsia. Placenta. 2013;34:182–6.PubMedCrossRef
72.
go back to reference Higuchi S, et al. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci. 2007;112:417–28.CrossRef Higuchi S, et al. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci. 2007;112:417–28.CrossRef
73.
go back to reference Herse F, Dechend R, Harsem NK, Wallukat G, Janke J, Qadri F, Hering L, Muller DN, Luft FC, Staff AC. Dysregulation of the circulating and tissue-based renin-angiotensin system in preeclampsia. Hypertension. 2007;49:604–11.PubMedCrossRef Herse F, Dechend R, Harsem NK, Wallukat G, Janke J, Qadri F, Hering L, Muller DN, Luft FC, Staff AC. Dysregulation of the circulating and tissue-based renin-angiotensin system in preeclampsia. Hypertension. 2007;49:604–11.PubMedCrossRef
74.
go back to reference Shah DM, Banu JM, Chirgwin JM, Tekmal RR. Reproductive tissue renin gene expression in preeclampsia. Hypertens Pregnancy. 2000;19:341–51.PubMedCrossRef Shah DM, Banu JM, Chirgwin JM, Tekmal RR. Reproductive tissue renin gene expression in preeclampsia. Hypertens Pregnancy. 2000;19:341–51.PubMedCrossRef
76.
go back to reference Derkx F, et al. Source of plasma prorenin in early and late pregnancy: observations in a patient with primary ovarian failure. J Clin Endocrinol Metab. 1987;65:349–54.PubMedCrossRef Derkx F, et al. Source of plasma prorenin in early and late pregnancy: observations in a patient with primary ovarian failure. J Clin Endocrinol Metab. 1987;65:349–54.PubMedCrossRef
77.
go back to reference Merrill DC, Karoly M, Chen K, Ferrario CM, Brosnihan KB. Angiotensin-(1–7) in normal and preeclamptic pregnancy. Endocrine. 2002;18:239–45.PubMedCrossRef Merrill DC, Karoly M, Chen K, Ferrario CM, Brosnihan KB. Angiotensin-(1–7) in normal and preeclamptic pregnancy. Endocrine. 2002;18:239–45.PubMedCrossRef
78.
go back to reference Hsueh W, et al. Changes in active and inactive renin throughout pregnancy. J Clin Endocrinol Metab. 1982;54:1010–6.PubMedCrossRef Hsueh W, et al. Changes in active and inactive renin throughout pregnancy. J Clin Endocrinol Metab. 1982;54:1010–6.PubMedCrossRef
79.
go back to reference Brosnihan K, et al. Enhanced expression of Ang-(1–7) during pregnancy. Braz J Med Biol Res. 2004;37:1255–62.PubMedCrossRef Brosnihan K, et al. Enhanced expression of Ang-(1–7) during pregnancy. Braz J Med Biol Res. 2004;37:1255–62.PubMedCrossRef
80.
go back to reference Schefe JH, et al. A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocytic zinc finger protein. Circ Res. 2006;99:1355–66.PubMedCrossRef Schefe JH, et al. A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocytic zinc finger protein. Circ Res. 2006;99:1355–66.PubMedCrossRef
81.
go back to reference Schefe JH, et al. Prorenin engages the (pro) renin receptor like renin and both ligand activities are unopposed by aliskiren. J Hypertens. 2008;26:1787–94.PubMedCrossRef Schefe JH, et al. Prorenin engages the (pro) renin receptor like renin and both ligand activities are unopposed by aliskiren. J Hypertens. 2008;26:1787–94.PubMedCrossRef
82.
go back to reference Lumbers ER. Peripheral vascular reactivity to angiotensin and noradrenaline in pregnant and non-pregnant women. Aust J Exp Biol Med Sci. 1970;48:493–500.PubMedCrossRef Lumbers ER. Peripheral vascular reactivity to angiotensin and noradrenaline in pregnant and non-pregnant women. Aust J Exp Biol Med Sci. 1970;48:493–500.PubMedCrossRef
83.
go back to reference Gant NF, Daley GL, Chand S, Whalley PJ, MacDonald PC. A study of angiotensin II pressor response throughout primigravid pregnancy. J Clin Investig. 1973;52:2682–9.PubMedPubMedCentralCrossRef Gant NF, Daley GL, Chand S, Whalley PJ, MacDonald PC. A study of angiotensin II pressor response throughout primigravid pregnancy. J Clin Investig. 1973;52:2682–9.PubMedPubMedCentralCrossRef
84.
go back to reference Neves LA, et al. Pregnancy enhances the angiotensin (Ang)-(1–7) vasodilator response in mesenteric arteries and increases the renal concentration and urinary excretion of Ang-(1–7). Endocrinology. 2003;144:3338–43.PubMedCrossRef Neves LA, et al. Pregnancy enhances the angiotensin (Ang)-(1–7) vasodilator response in mesenteric arteries and increases the renal concentration and urinary excretion of Ang-(1–7). Endocrinology. 2003;144:3338–43.PubMedCrossRef
85.
go back to reference Watanabe N, et al. Soluble (pro) renin receptor and blood pressure during pregnancy: a prospective cohort study. Hypertension. 2012;60:1250–6.PubMedCrossRef Watanabe N, et al. Soluble (pro) renin receptor and blood pressure during pregnancy: a prospective cohort study. Hypertension. 2012;60:1250–6.PubMedCrossRef
86.
go back to reference Thomason J, et al. Elevation of (pro) renin and (pro) renin receptor in preeclampsia. Am J Hypertens. 2015;28:1277–84.PubMedCrossRef Thomason J, et al. Elevation of (pro) renin and (pro) renin receptor in preeclampsia. Am J Hypertens. 2015;28:1277–84.PubMedCrossRef
87.
go back to reference Sugulle M, et al. Soluble (pro) renin receptor in preeclampsia and diabetic pregnancies. J Am Soc Hypertens. 2017;11:644–52.PubMedCrossRef Sugulle M, et al. Soluble (pro) renin receptor in preeclampsia and diabetic pregnancies. J Am Soc Hypertens. 2017;11:644–52.PubMedCrossRef
88.
go back to reference Ohwaki A, et al. Altered serum soluble furin and prorenin receptor levels in pregnancies with pre-eclampsia and fetal growth restriction. J Gynecol Obstet Hum Reprod. 2021;50.PubMedCrossRef Ohwaki A, et al. Altered serum soluble furin and prorenin receptor levels in pregnancies with pre-eclampsia and fetal growth restriction. J Gynecol Obstet Hum Reprod. 2021;50.PubMedCrossRef
89.
go back to reference Schofield LG, et al. The soluble (pro) renin receptor promotes a preeclampsia-like phenotype both in vitro and in vivo. Hypertens Res. 2024;1–15. Schofield LG, et al. The soluble (pro) renin receptor promotes a preeclampsia-like phenotype both in vitro and in vivo. Hypertens Res. 2024;1–15.
90.
go back to reference Verdonk K, Visser W, Van Den Meiracker AH, Danser AJ. The renin–angiotensin–aldosterone system in pre-eclampsia: the delicate balance between good and bad. Clin Sci. 2014;126:537–44.CrossRef Verdonk K, Visser W, Van Den Meiracker AH, Danser AJ. The renin–angiotensin–aldosterone system in pre-eclampsia: the delicate balance between good and bad. Clin Sci. 2014;126:537–44.CrossRef
92.
go back to reference AbdAlla S, Lother H, el Massiery A, Quitterer U. Increased AT 1 receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat Med. 2001;7:1003–9.PubMedCrossRef AbdAlla S, Lother H, el Massiery A, Quitterer U. Increased AT 1 receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat Med. 2001;7:1003–9.PubMedCrossRef
93.
go back to reference Quitterer U, Lother H, Abdalla S. AT1 receptor heterodimers and angiotensin II responsiveness in preeclampsia. in Seminars in nephrology, Vol. 24 115–119 (Elsevier, 2004). Quitterer U, Lother H, Abdalla S. AT1 receptor heterodimers and angiotensin II responsiveness in preeclampsia. in Seminars in nephrology, Vol. 24 115–119 (Elsevier, 2004).
94.
go back to reference AbdAlla S, Abdel-Baset A, Lother H, El Massiery A, Quitterer U. Mesangial AT 1/B 2 receptor heterodimers contribute to angiotensin II hyperresponsiveness in experimental hypertension. J Mol Neurosci. 2005;26:185–92.PubMedCrossRef AbdAlla S, Abdel-Baset A, Lother H, El Massiery A, Quitterer U. Mesangial AT 1/B 2 receptor heterodimers contribute to angiotensin II hyperresponsiveness in experimental hypertension. J Mol Neurosci. 2005;26:185–92.PubMedCrossRef
97.
go back to reference LaMarca B, Wallace K, Granger J. Role of angiotensin II type I receptor agonistic autoantibodies (AT1-AA) in preeclampsia. Curr Opin Pharmacol. 2011;11:175–9.PubMedPubMedCentralCrossRef LaMarca B, Wallace K, Granger J. Role of angiotensin II type I receptor agonistic autoantibodies (AT1-AA) in preeclampsia. Curr Opin Pharmacol. 2011;11:175–9.PubMedPubMedCentralCrossRef
100.
go back to reference Schnermann J. Cyclooxygenase-2 and macula densa control of renin secretion. Nephrol Dial Transplant. 2001;16:1735–8.PubMedCrossRef Schnermann J. Cyclooxygenase-2 and macula densa control of renin secretion. Nephrol Dial Transplant. 2001;16:1735–8.PubMedCrossRef
101.
go back to reference Shao W, Seth DM, Navar LG. Augmentation of endogenous intrarenal angiotensin II levels in Val5-ANG II-infused rats. Am J Physiol Renal Physiol. 2009;296:F1067–71.PubMedPubMedCentralCrossRef Shao W, Seth DM, Navar LG. Augmentation of endogenous intrarenal angiotensin II levels in Val5-ANG II-infused rats. Am J Physiol Renal Physiol. 2009;296:F1067–71.PubMedPubMedCentralCrossRef
102.
go back to reference Tanabe A, et al. Angiotensin II stimulates both aldosterone secretion and DNA synthesis via type 1 but not type 2 receptors in bovine adrenocortical cells. J Endocrinol Invest. 1998;21:668–72.PubMedCrossRef Tanabe A, et al. Angiotensin II stimulates both aldosterone secretion and DNA synthesis via type 1 but not type 2 receptors in bovine adrenocortical cells. J Endocrinol Invest. 1998;21:668–72.PubMedCrossRef
103.
go back to reference Matsukawa T, Miyamoto T. Angiotensin II-stimulated secretion of arginine vasopressin is inhibited by atrial natriuretic peptide in humans. Am J Physiol Regul Integr Comp Physiol. 2011;300:R624–9.PubMedCrossRef Matsukawa T, Miyamoto T. Angiotensin II-stimulated secretion of arginine vasopressin is inhibited by atrial natriuretic peptide in humans. Am J Physiol Regul Integr Comp Physiol. 2011;300:R624–9.PubMedCrossRef
104.
go back to reference McKinley MJ, et al. Physiological and pathophysiological influences on thirst. Physiol Behav. 2004;81:795–803.PubMedCrossRef McKinley MJ, et al. Physiological and pathophysiological influences on thirst. Physiol Behav. 2004;81:795–803.PubMedCrossRef
105.
go back to reference Ramchandra R, Yao ST, May CN. Organ selective regulation of sympathetic outflow by the brain angiotensin system. Curr Hypertens Rep. 2013;15:401–8.PubMedCrossRef Ramchandra R, Yao ST, May CN. Organ selective regulation of sympathetic outflow by the brain angiotensin system. Curr Hypertens Rep. 2013;15:401–8.PubMedCrossRef
106.
go back to reference Fu Z, Hu J. (Pro)renin receptor contributes to pregnancy-induced sodium-water retention in rats via activation of intrarenal RAAS and -ENaC. Am J Physiol Renal Physiol. 2019;316:F530–8.PubMedCrossRef Fu Z, Hu J. (Pro)renin receptor contributes to pregnancy-induced sodium-water retention in rats via activation of intrarenal RAAS and -ENaC. Am J Physiol Renal Physiol. 2019;316:F530–8.PubMedCrossRef
107.
go back to reference Zou L-X, et al. Receptor-mediated intrarenal angiotensin II augmentation in angiotensin II–infused rats. Hypertension. 1996;28:669–77.PubMedCrossRef Zou L-X, et al. Receptor-mediated intrarenal angiotensin II augmentation in angiotensin II–infused rats. Hypertension. 1996;28:669–77.PubMedCrossRef
108.
go back to reference Nishiyama A, Seth DM, Navar LG. Renal interstitial fluid concentrations of angiotensins I and II in anesthetized rats. Hypertension. 2002;39:129–34.PubMedCrossRef Nishiyama A, Seth DM, Navar LG. Renal interstitial fluid concentrations of angiotensins I and II in anesthetized rats. Hypertension. 2002;39:129–34.PubMedCrossRef
109.
go back to reference Wang Y, et al. (Pro) renin receptor antagonist PRO20 attenuates nephrectomy-induced nephropathy in rats via inhibition of intrarenal RAS and Wnt/β-catenin signaling. Physiol Rep. 2021;9: e14881.PubMedPubMedCentralCrossRef Wang Y, et al. (Pro) renin receptor antagonist PRO20 attenuates nephrectomy-induced nephropathy in rats via inhibition of intrarenal RAS and Wnt/β-catenin signaling. Physiol Rep. 2021;9: e14881.PubMedPubMedCentralCrossRef
110.
go back to reference Velauthar L, et al. First-trimester uterine artery Doppler and adverse pregnancy outcome: a meta-analysis involving 55 974 women. Ultrasound Obstet Gynecol. 2014;43:500–7.PubMedCrossRef Velauthar L, et al. First-trimester uterine artery Doppler and adverse pregnancy outcome: a meta-analysis involving 55 974 women. Ultrasound Obstet Gynecol. 2014;43:500–7.PubMedCrossRef
111.
go back to reference O’Gorman N, et al. Accuracy of competing-risks model in screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation. Ultrasound Obstet Gynecol. 2017;49:751–5.PubMedCrossRef O’Gorman N, et al. Accuracy of competing-risks model in screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation. Ultrasound Obstet Gynecol. 2017;49:751–5.PubMedCrossRef
112.
go back to reference Zeisler H, et al. Predictive value of the sFlt-1: PlGF ratio in women with suspected preeclampsia. N Engl J Med. 2016;374:13–22.PubMedCrossRef Zeisler H, et al. Predictive value of the sFlt-1: PlGF ratio in women with suspected preeclampsia. N Engl J Med. 2016;374:13–22.PubMedCrossRef
113.
go back to reference Leaños-Miranda A, et al. Changes in circulating concentrations of soluble fms-like tyrosine kinase-1 and placental growth factor measured by automated electrochemiluminescence immunoassays methods are predictors of preeclampsia. J Hypertens. 2012;30:2173–81.PubMedCrossRef Leaños-Miranda A, et al. Changes in circulating concentrations of soluble fms-like tyrosine kinase-1 and placental growth factor measured by automated electrochemiluminescence immunoassays methods are predictors of preeclampsia. J Hypertens. 2012;30:2173–81.PubMedCrossRef
114.
go back to reference Roberts JM, Escudero C. The placenta in preeclampsia. Pregnancy Hypertension: An International Journal of Women’s Cardiovascular Health. 2012;2:72–83.CrossRef Roberts JM, Escudero C. The placenta in preeclampsia. Pregnancy Hypertension: An International Journal of Women’s Cardiovascular Health. 2012;2:72–83.CrossRef
118.
go back to reference Mah GT, Tejani AM, Musini VM. Methyldopa for primary hypertension. Cochrane Database Syst Rev. 2009. Mah GT, Tejani AM, Musini VM. Methyldopa for primary hypertension. Cochrane Database Syst Rev. 2009.
120.
go back to reference Dasgupta S, Sarkhel A, Jain A. Single loading dose of magnesium sulphate in severe preeclampsia and eclampsia-is it effective? A randomized prospective study. Obstet Gynecol Int J. 2015;2:59.CrossRef Dasgupta S, Sarkhel A, Jain A. Single loading dose of magnesium sulphate in severe preeclampsia and eclampsia-is it effective? A randomized prospective study. Obstet Gynecol Int J. 2015;2:59.CrossRef
121.
go back to reference Li X, et al. An analysis of the differences between early and late preeclampsia with severe hypertension. Pregnancy Hypertension: An International Journal of Women’s Cardiovascular Health. 2016;6:47–52.CrossRef Li X, et al. An analysis of the differences between early and late preeclampsia with severe hypertension. Pregnancy Hypertension: An International Journal of Women’s Cardiovascular Health. 2016;6:47–52.CrossRef
122.
go back to reference Guron G, Friberg P. An intact renin–angiotensin system is a prerequisite for normal renal development. J Hypertens. 2000;18:123–37.PubMedCrossRef Guron G, Friberg P. An intact renin–angiotensin system is a prerequisite for normal renal development. J Hypertens. 2000;18:123–37.PubMedCrossRef
123.
go back to reference Hanssens M, Keirse M, Vankelecom F, Van Assche FA. Fetal and neonatal effects of treatment with angiotensin-converting enzyme inhibitors in pregnancy. Obstet Gynecol. 1991;78:128–35.PubMed Hanssens M, Keirse M, Vankelecom F, Van Assche FA. Fetal and neonatal effects of treatment with angiotensin-converting enzyme inhibitors in pregnancy. Obstet Gynecol. 1991;78:128–35.PubMed
124.
126.
go back to reference Chappell MC. S1P (Site-1 Protease)-Induced Release of the Soluble Prorenin Receptor in Hypertension: Do All Roads Lead to Ang II (Angiotensin II)? Hypertension. 2021;77:417–9.PubMedCrossRef Chappell MC. S1P (Site-1 Protease)-Induced Release of the Soluble Prorenin Receptor in Hypertension: Do All Roads Lead to Ang II (Angiotensin II)? Hypertension. 2021;77:417–9.PubMedCrossRef
127.
go back to reference Couture F, D'Anjou F, Day R. On the cutting edge of proprotein convertase pharmacology: from molecular concepts to clinical applications. 2011. Couture F, D'Anjou F, Day R. On the cutting edge of proprotein convertase pharmacology: from molecular concepts to clinical applications. 2011.
128.
go back to reference Jean F, et al. α1-Antitrypsin Portland, a bioengineered serpin highly selective for furin: application as an antipathogenic agent. Proc Natl Acad Sci. 1998;95:7293–8.PubMedPubMedCentralCrossRef Jean F, et al. α1-Antitrypsin Portland, a bioengineered serpin highly selective for furin: application as an antipathogenic agent. Proc Natl Acad Sci. 1998;95:7293–8.PubMedPubMedCentralCrossRef
129.
go back to reference Li W, et al. Intracerebroventricular infusion of the (pro) renin receptor antagonist PRO20 attenuates deoxycorticosterone acetate-salt–induced hypertension. Hypertension. 2015;65:352–61.PubMedCrossRef Li W, et al. Intracerebroventricular infusion of the (pro) renin receptor antagonist PRO20 attenuates deoxycorticosterone acetate-salt–induced hypertension. Hypertension. 2015;65:352–61.PubMedCrossRef
130.
go back to reference Mishima S, et al. Endothelin-1 production via placental (pro)renin receptor in a mouse model of preeclampsia. Placenta. 2023;138:44–50.PubMedCrossRef Mishima S, et al. Endothelin-1 production via placental (pro)renin receptor in a mouse model of preeclampsia. Placenta. 2023;138:44–50.PubMedCrossRef
131.
go back to reference Mishima S, et al. Elucidation of blood pressure elevation mechanism mediated by placental (pro)renin receptors in preeclampsia model mice. Placenta. 2023;140:e79.CrossRef Mishima S, et al. Elucidation of blood pressure elevation mechanism mediated by placental (pro)renin receptors in preeclampsia model mice. Placenta. 2023;140:e79.CrossRef
Metadata
Title
Importance of the (Pro)renin Receptor in Activating the Renin-Angiotensin System During Normotensive and Preeclamptic Pregnancies
Authors
Lachlan G. Schofield
Saije K. Endacott
Sarah J. Delforce
Eugenie R. Lumbers
Kirsty G. Pringle
Publication date
02-08-2024
Publisher
Springer US
Keyword
Pre-Eclampsia
Published in
Current Hypertension Reports
Print ISSN: 1522-6417
Electronic ISSN: 1534-3111
DOI
https://doi.org/10.1007/s11906-024-01316-1

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more