Skip to main content
Top

Open Access 08-05-2025 | Positron Emission Tomography

Modified Dice Coefficients for Evaluation of Tumor Segmentation from PET Images: A Proof-of-Concept Study

Authors: Oona Rainio, Riku Klén

Published in: Journal of Imaging Informatics in Medicine

Login to get access

Abstract

The Sørensen-Dice similarity coefficient (DSC) is the most common evaluation metric used for image segmentation but it is not always ideal. Namely, the DSC values only depend on the number of misplaced elements instead of their location with respect to the correct segments. Because of this, the DSC is ill-suited for such tasks where the correct location of the borders of an object is difficult to define in an objective way, as is the case in tumor segmentation in positron emission tomography (PET) images. To avoid this issue, we introduce two different modifications of the DSC, one with weights and one with an additional loss term, which also evaluate the distance between the real and the predicted segments. We computed the values of DSC and our new coefficient from 191 predicted tumor segmentation masks created by using PET images of 89 head and neck squamous cell carcinoma patients. We compared the values of all three coefficients with the scores given to these masks by human evaluators. According to our results, the weighted modification of DSC had a higher correlation with the scores given by the human evaluators than the original DSC, and it also produced significantly less variation within the two highest score classes (p-value\(\le \)0.018). The new weighted coefficient introduced here has much potential in the evaluation of segmentation results from medical imaging.
Literature
This content is only visible if you are logged in and have the appropriate permissions.
Metadata
Title
Modified Dice Coefficients for Evaluation of Tumor Segmentation from PET Images: A Proof-of-Concept Study
Authors
Oona Rainio
Riku Klén
Publication date
08-05-2025
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-025-01535-1

How can your team use biomarkers to improve management of AD? (Link opens in a new window)

Our experts explore using biomarker tests and interpreting results, establishing a shared decision-making approach with patients and caregivers, and applying biomarker testing to guide treatment strategies.

This content is intended for healthcare professionals outside of the UK.

Supported by:
  • Lilly
Developed by: Springer Healthcare IME
Register your interest

How can you integrate PET into your practice? (Link opens in a new window)

1.5 AMA PRA Category 1 Credit(s)™

PET imaging is playing an increasingly critical role in managing AD. Our expert-led program will empower you with practical strategies and real-world case studies to effectively integrate it into clinical practice.

This content is intended for healthcare professionals outside of the UK.

Supported by:
  • Lilly
Developed by: Springer Healthcare IME
Register your interest