Skip to main content
Top

Open Access 12-03-2025 | Positron Emission Tomography | Research Article

Initial demonstration of the Scratch-PET concept: an intraoperative PET with a hand-held detector

Authors: Taiyo Ishikawa, Yuma Iwao, Go Akamatsu, Sodai Takyu, Hideaki Tashima, Takayuki Okamoto, Taiga Yamaya, Hideaki Haneishi

Published in: Radiological Physics and Technology

Login to get access

Abstract

Positron emission tomography (PET) is a valuable tool for diagnosing malignant tumors. Intraoperative PET imaging is expected to allow the more accurate localization of tumors that need resections. However, conventional devices feature a large detector ring that obstructs surgical procedures, preventing their intraoperative application. This paper proposes a new PET device, Scratch-PET, for image-guided tumor resection. The key feature of Scratch-PET is its use of a hand-held detector to scan the surgical field, ensuring open space for surgery while measuring annihilation radiation with a fixed detector array placed below the patient. We developed a prototype device using two detectors: the hand-held detector and a fixed detector, to demonstrate the feasibility of the proposed concept. Both detectors consisted of 16 × 16 arrays of lutetium yttrium orthosilicates (3 × 3 × 15 mm3) coupled one-to-one with 16 × 16 silicon photomultiplier arrays. The position and orientation of the hand-held detector are tracked using an optical tracking sensor that detects attached markers. We measured a 22Na multi-rod phantom and two 22Na point sources separately for 180 s while moving the hand-held detector. The rod diameters were 6.0, 5.0, 4.0, 3.0, 2.2, and 1.6 mm. Each point source was placed at the field-of-view center and 35 mm off-center which was outside the sensitive area when the hand-held detector was positioned facing the fixed detector. The 2.2 mm rods were partially resolved, and both point sources were successfully visualized. The potential of the proposed device to visualize small tumors was validated.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sanai N, Berger MS. Surgical oncology for gliomas: the state of the art. Nat Rev Clin Oncol. 2018;15:112–25.PubMedCrossRef Sanai N, Berger MS. Surgical oncology for gliomas: the state of the art. Nat Rev Clin Oncol. 2018;15:112–25.PubMedCrossRef
2.
go back to reference Haque R, Contreras R, McNicoll MP, Eckberg EC, Petitti DB. Surgical margins and survival after head and neck cancer surgery. BMC Ear Nose Throat Disord. 2006;6:2.PubMedPubMedCentralCrossRef Haque R, Contreras R, McNicoll MP, Eckberg EC, Petitti DB. Surgical margins and survival after head and neck cancer surgery. BMC Ear Nose Throat Disord. 2006;6:2.PubMedPubMedCentralCrossRef
3.
go back to reference Houssami N, Macaskill P, Luke Marinovich M, Morrow M. The association of surgical margins and local recurrence in women with early-stage invasive breast cancer treated with breast-conserving therapy: a meta-analysis. Ann Surg Oncol. 2014;21:717–30.PubMedPubMedCentralCrossRef Houssami N, Macaskill P, Luke Marinovich M, Morrow M. The association of surgical margins and local recurrence in women with early-stage invasive breast cancer treated with breast-conserving therapy: a meta-analysis. Ann Surg Oncol. 2014;21:717–30.PubMedPubMedCentralCrossRef
4.
go back to reference Sugarbaker PH. Colorectal cancer: prevention and management of metastatic disease. Biomed Res Int. 2014;2014: e782890.CrossRef Sugarbaker PH. Colorectal cancer: prevention and management of metastatic disease. Biomed Res Int. 2014;2014: e782890.CrossRef
5.
go back to reference Meershoek P, van Oosterom MN, Simon H, Mengus L, Maurer T, van Leeuwen PJ, et al. Robot-assisted laparoscopic surgery using DROP-IN radioguidance: first-in-human translation. Eur J Nucl Med Mol Imaging. 2019;46:49–53.PubMedCrossRef Meershoek P, van Oosterom MN, Simon H, Mengus L, Maurer T, van Leeuwen PJ, et al. Robot-assisted laparoscopic surgery using DROP-IN radioguidance: first-in-human translation. Eur J Nucl Med Mol Imaging. 2019;46:49–53.PubMedCrossRef
6.
go back to reference Heidkamp J, Scholte M, Rosman C, Manohar S, Fütterer JJ, Rovers MM. Novel imaging techniques for intraoperative margin assessment in surgical oncology: a systematic review. Int J Cancer. 2021;149:635–45.PubMedPubMedCentralCrossRef Heidkamp J, Scholte M, Rosman C, Manohar S, Fütterer JJ, Rovers MM. Novel imaging techniques for intraoperative margin assessment in surgical oncology: a systematic review. Int J Cancer. 2021;149:635–45.PubMedPubMedCentralCrossRef
7.
go back to reference Vahrmeijer AL, Hutteman M, Van Der Vorst JR, Van De Velde CJH, Frangioni JV. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol. 2013;10:507–18.PubMedPubMedCentralCrossRef Vahrmeijer AL, Hutteman M, Van Der Vorst JR, Van De Velde CJH, Frangioni JV. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol. 2013;10:507–18.PubMedPubMedCentralCrossRef
8.
go back to reference Tummers WS, Miller SE, Teraphongphom NT, Gomez A, Steinberg I, Huland DM, et al. Intraoperative pancreatic cancer detection using tumor-specific multimodality molecular imaging. Ann Surg Oncol. 2018;25:1880–8.PubMedPubMedCentralCrossRef Tummers WS, Miller SE, Teraphongphom NT, Gomez A, Steinberg I, Huland DM, et al. Intraoperative pancreatic cancer detection using tumor-specific multimodality molecular imaging. Ann Surg Oncol. 2018;25:1880–8.PubMedPubMedCentralCrossRef
9.
go back to reference Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen H-J. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7:392–401.PubMedCrossRef Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen H-J. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7:392–401.PubMedCrossRef
10.
go back to reference Van Oosterom MN, Rietbergen DDD, Welling MM, Van Der Poel HG, Maurer T, Van Leeuwen FWB. Recent advances in nuclear and hybrid detection modalities for image-guided surgery. Expert Rev Med Devices. 2019;16:711–34.PubMedCrossRef Van Oosterom MN, Rietbergen DDD, Welling MM, Van Der Poel HG, Maurer T, Van Leeuwen FWB. Recent advances in nuclear and hybrid detection modalities for image-guided surgery. Expert Rev Med Devices. 2019;16:711–34.PubMedCrossRef
11.
go back to reference Vidal-Sicart S, Valdés Olmos RA. New devices in radioguided surgery. Clin Transl Imaging. 2023;11:545–57.CrossRef Vidal-Sicart S, Valdés Olmos RA. New devices in radioguided surgery. Clin Transl Imaging. 2023;11:545–57.CrossRef
12.
go back to reference Pitre S, Ménard L, Ricard M, Solal M, Garbay J-R, Charon Y. A hand-held imaging probe for radio-guided surgery: physical performance and preliminary clinical experience. Eur J Nucl Med. 2003;30:339–43.CrossRef Pitre S, Ménard L, Ricard M, Solal M, Garbay J-R, Charon Y. A hand-held imaging probe for radio-guided surgery: physical performance and preliminary clinical experience. Eur J Nucl Med. 2003;30:339–43.CrossRef
13.
go back to reference Fusco JC, Seynnaeve BKN, Davit AJ, Czachowski MR, Joyce JM, Gaines BA, et al. Use of intraoperative nuclear imaging leads to decreased anesthesia time and real-time confirmation of lesion removal. J Pediatr Surg. 2018;53:77–80.CrossRef Fusco JC, Seynnaeve BKN, Davit AJ, Czachowski MR, Joyce JM, Gaines BA, et al. Use of intraoperative nuclear imaging leads to decreased anesthesia time and real-time confirmation of lesion removal. J Pediatr Surg. 2018;53:77–80.CrossRef
14.
go back to reference Yamamoto S, Matsumoto K, Senda M. A large field of view coincidence imaging system based on one-dimensional sharing block detectors. IEEE Trans Nucl Sci. 2009;56:2672–7.CrossRef Yamamoto S, Matsumoto K, Senda M. A large field of view coincidence imaging system based on one-dimensional sharing block detectors. IEEE Trans Nucl Sci. 2009;56:2672–7.CrossRef
15.
go back to reference Heller S, Zanzonico P. Nuclear probes and intraoperative gamma cameras. Semin Nucl Med. 2011;41:166–81.PubMedCrossRef Heller S, Zanzonico P. Nuclear probes and intraoperative gamma cameras. Semin Nucl Med. 2011;41:166–81.PubMedCrossRef
16.
go back to reference Matthies P, Gardiazabal J, Okur A, Vogel J, Lasser T, Navab N. Mini gamma cameras for intra-operative nuclear tomographic reconstruction. Med Image Anal. 2014;18:1329–36.PubMedCrossRef Matthies P, Gardiazabal J, Okur A, Vogel J, Lasser T, Navab N. Mini gamma cameras for intra-operative nuclear tomographic reconstruction. Med Image Anal. 2014;18:1329–36.PubMedCrossRef
17.
go back to reference Mathelin C, Salvador S, Huss D, Guyonnet J-L. Precise localization of sentinel lymph nodes and estimation of their depth using a prototype intraoperative mini γ-camera in patients with breast cancer. J Nucl Med. 2007;48:623–9.PubMedCrossRef Mathelin C, Salvador S, Huss D, Guyonnet J-L. Precise localization of sentinel lymph nodes and estimation of their depth using a prototype intraoperative mini γ-camera in patients with breast cancer. J Nucl Med. 2007;48:623–9.PubMedCrossRef
18.
go back to reference Bluemel C, Schnelzer A, Okur A, Ehlerding A, Paepke S, Scheidhauer K, et al. Freehand SPECT for image-guided sentinel lymph node biopsy in breast cancer. Eur J Nucl Med Mol Imaging. 2013;40:1656–61.PubMedCrossRef Bluemel C, Schnelzer A, Okur A, Ehlerding A, Paepke S, Scheidhauer K, et al. Freehand SPECT for image-guided sentinel lymph node biopsy in breast cancer. Eur J Nucl Med Mol Imaging. 2013;40:1656–61.PubMedCrossRef
19.
go back to reference Kogler AK, Polemi AM, Nair S, Majewski S, Dengel LT, Slingluff CL, et al. Evaluation of camera-based freehand SPECT in preoperative sentinel lymph node mapping for melanoma patients. EJNMMI Res. 2020;10:139.PubMedPubMedCentralCrossRef Kogler AK, Polemi AM, Nair S, Majewski S, Dengel LT, Slingluff CL, et al. Evaluation of camera-based freehand SPECT in preoperative sentinel lymph node mapping for melanoma patients. EJNMMI Res. 2020;10:139.PubMedPubMedCentralCrossRef
20.
go back to reference Hall NC, Nichols SD, Povoski SP, James IAO, Wright CL, Harris R, et al. Intraoperative use of a portable large field of view gamma camera and handheld gamma detection probe for radioguided localization and prediction of complete surgical resection of Gastrinoma: proof of concept. J Am Coll Surg. 2015;221:300–8.PubMedCrossRef Hall NC, Nichols SD, Povoski SP, James IAO, Wright CL, Harris R, et al. Intraoperative use of a portable large field of view gamma camera and handheld gamma detection probe for radioguided localization and prediction of complete surgical resection of Gastrinoma: proof of concept. J Am Coll Surg. 2015;221:300–8.PubMedCrossRef
21.
go back to reference Alci E, Ozdemir M, Miftari A, Oral A, Gumus T, Icoz G, et al. Intraoperative freehand SPECT as an alternative imaging technique for use in radioguided parathyroidectomy. Updates Surg. 2022;74:1429–34.PubMedCrossRef Alci E, Ozdemir M, Miftari A, Oral A, Gumus T, Icoz G, et al. Intraoperative freehand SPECT as an alternative imaging technique for use in radioguided parathyroidectomy. Updates Surg. 2022;74:1429–34.PubMedCrossRef
22.
go back to reference Schilling C, Gnansegaran G, Thavaraj S, McGurk M. Intraoperative sentinel node imaging versus SPECT/CT in oral cancer—a blinded comparison. Eur J Surg Oncol. 2018;44:1901–7.PubMedCrossRef Schilling C, Gnansegaran G, Thavaraj S, McGurk M. Intraoperative sentinel node imaging versus SPECT/CT in oral cancer—a blinded comparison. Eur J Surg Oncol. 2018;44:1901–7.PubMedCrossRef
23.
go back to reference Yamamoto S, Higashi T, Matsumoto K, Senda M. Preliminary study for the development of a tweezers-type coincidence detector for tumor detection. Nucl Instrum Methods Phys Res A. 2005;548:564–70.CrossRef Yamamoto S, Higashi T, Matsumoto K, Senda M. Preliminary study for the development of a tweezers-type coincidence detector for tumor detection. Nucl Instrum Methods Phys Res A. 2005;548:564–70.CrossRef
24.
go back to reference Yamamoto S, Sakamoto Y, Matsumoto K, Senda M. Development of a tweezers-type coincidence imaging detector. Ann Nucl Med. 2008;22:387–93.PubMedCrossRef Yamamoto S, Sakamoto Y, Matsumoto K, Senda M. Development of a tweezers-type coincidence imaging detector. Ann Nucl Med. 2008;22:387–93.PubMedCrossRef
25.
go back to reference Takahashi M, Yoshimura S, Takyu S, Aikou S, Okumura Y, Yagi K, et al. A design of forceps-type coincidence radiation detector for intraoperative LN diagnosis: clinical impact estimated from LNs data of 20 esophageal cancer patients. Ann Nucl Med. 2022;36:285–92.PubMedCrossRef Takahashi M, Yoshimura S, Takyu S, Aikou S, Okumura Y, Yagi K, et al. A design of forceps-type coincidence radiation detector for intraoperative LN diagnosis: clinical impact estimated from LNs data of 20 esophageal cancer patients. Ann Nucl Med. 2022;36:285–92.PubMedCrossRef
26.
go back to reference Raylman RR, Fisher SJ, Brown RS, Ethier SP, Wahl RL. Fluorine-18-Fluorodeoxyglucose-guided breast cancer surgery with a positron-sensitive probe: validation in preclinical studies. J Nucl Med. 1995;36:1869–74.PubMed Raylman RR, Fisher SJ, Brown RS, Ethier SP, Wahl RL. Fluorine-18-Fluorodeoxyglucose-guided breast cancer surgery with a positron-sensitive probe: validation in preclinical studies. J Nucl Med. 1995;36:1869–74.PubMed
27.
go back to reference Levin CS, Tornai MP, MacDonald LR, Hoffman EJ. Annihilation/spl gamma/-ray background characterization and rejection for a small beta camera used for tumor localization during surgery. IEEE Trans Nucl Sci. 1997;44:1120–6.CrossRef Levin CS, Tornai MP, MacDonald LR, Hoffman EJ. Annihilation/spl gamma/-ray background characterization and rejection for a small beta camera used for tumor localization during surgery. IEEE Trans Nucl Sci. 1997;44:1120–6.CrossRef
28.
go back to reference Yamamoto S, Matsumoto K, Sakamoto S, Tarutani K, Minato K, Senda M. An intra-operative positron probe with background rejection capability for FDG-guided surgery. Ann Nucl Med. 2005;19:23–8.PubMedCrossRef Yamamoto S, Matsumoto K, Sakamoto S, Tarutani K, Minato K, Senda M. An intra-operative positron probe with background rejection capability for FDG-guided surgery. Ann Nucl Med. 2005;19:23–8.PubMedCrossRef
29.
go back to reference Sabet H, Stack BC, Nagarkar VV. A hand-held, intra-operative positron imaging probe for surgical applications. IEEE Trans Nucl Sci. 2015;62:1927–34.CrossRef Sabet H, Stack BC, Nagarkar VV. A hand-held, intra-operative positron imaging probe for surgical applications. IEEE Trans Nucl Sci. 2015;62:1927–34.CrossRef
30.
go back to reference Povoski SP, Hall NC, Murrey DA, Chow AZ, Gaglani JR, Bahnson EE, et al. Multimodal imaging and detection approach to 18F-FDG-directed surgery for patients with known or suspected malignancies: a comprehensive description of the specific methodology utilized in a single-institution cumulative retrospective experience. World J Surg Oncol. 2011;9:152.PubMedPubMedCentralCrossRef Povoski SP, Hall NC, Murrey DA, Chow AZ, Gaglani JR, Bahnson EE, et al. Multimodal imaging and detection approach to 18F-FDG-directed surgery for patients with known or suspected malignancies: a comprehensive description of the specific methodology utilized in a single-institution cumulative retrospective experience. World J Surg Oncol. 2011;9:152.PubMedPubMedCentralCrossRef
31.
go back to reference Arabi H, Manesh AS, Zaidi H. Innovations in dedicated PET instrumentation: from the operating room to specimen imaging. Phys Med Biol. 2024;69:11TR03.CrossRef Arabi H, Manesh AS, Zaidi H. Innovations in dedicated PET instrumentation: from the operating room to specimen imaging. Phys Med Biol. 2024;69:11TR03.CrossRef
33.
go back to reference Tashima H, Yoshida E, Kinouchi S, Nishikido F, Inadama N, Murayama H, et al. Real-time imaging system for the OpenPET. IEEE Trans Nucl Sci. 2012;59:40–6.CrossRef Tashima H, Yoshida E, Kinouchi S, Nishikido F, Inadama N, Murayama H, et al. Real-time imaging system for the OpenPET. IEEE Trans Nucl Sci. 2012;59:40–6.CrossRef
34.
go back to reference Tashima H, Yoshida E, Inadama N, Nishikido F, Nakajima Y, Wakizaka H, et al. Development of a small single-ring OpenPET prototype with a novel transformable architecture. Phys Med Biol. 2016;61:1795–809.PubMedCrossRef Tashima H, Yoshida E, Inadama N, Nishikido F, Nakajima Y, Wakizaka H, et al. Development of a small single-ring OpenPET prototype with a novel transformable architecture. Phys Med Biol. 2016;61:1795–809.PubMedCrossRef
35.
go back to reference Tashima H, Yoshida E, Iwao Y, Wakizaka H, Mohammadi A, Nitta M, et al. Development of a multiuse human-scale single-ring OpenPET system. IEEE Trans Radiat Plasma Med Sci. 2021;5:807–16.CrossRef Tashima H, Yoshida E, Iwao Y, Wakizaka H, Mohammadi A, Nitta M, et al. Development of a multiuse human-scale single-ring OpenPET system. IEEE Trans Radiat Plasma Med Sci. 2021;5:807–16.CrossRef
36.
go back to reference Yoshii Y, Yoshimoto M, Matsumoto H, Tashima H, Iwao Y, Takuwa H, et al. Integrated treatment using intraperitoneal radioimmunotherapy and positron emission tomography-guided surgery with 64Cu-labeled cetuximab to treat early- and late-phase peritoneal dissemination in human gastrointestinal cancer xenografts. Oncotarget. 2018;9:28935–50.PubMedPubMedCentralCrossRef Yoshii Y, Yoshimoto M, Matsumoto H, Tashima H, Iwao Y, Takuwa H, et al. Integrated treatment using intraperitoneal radioimmunotherapy and positron emission tomography-guided surgery with 64Cu-labeled cetuximab to treat early- and late-phase peritoneal dissemination in human gastrointestinal cancer xenografts. Oncotarget. 2018;9:28935–50.PubMedPubMedCentralCrossRef
37.
go back to reference Yoshii Y, Tashima H, Iwao Y, Yoshida E, Wakizaka H, Akamatsu G, et al. Immuno-OpenPET: a novel approach for early diagnosis and image-guided surgery for small resectable pancreatic cancer. Sci Rep. 2020;10:4143.PubMedPubMedCentralCrossRef Yoshii Y, Tashima H, Iwao Y, Yoshida E, Wakizaka H, Akamatsu G, et al. Immuno-OpenPET: a novel approach for early diagnosis and image-guided surgery for small resectable pancreatic cancer. Sci Rep. 2020;10:4143.PubMedPubMedCentralCrossRef
38.
go back to reference Jiang J, Li K, Komarov S, O’Sullivan JA, Tai Y. Feasibility study of a point-of-care positron emission tomography system with interactive imaging capability. Med Phys. 2019;46:1798–813.PubMedPubMedCentralCrossRef Jiang J, Li K, Komarov S, O’Sullivan JA, Tai Y. Feasibility study of a point-of-care positron emission tomography system with interactive imaging capability. Med Phys. 2019;46:1798–813.PubMedPubMedCentralCrossRef
39.
go back to reference Song SH, Kang HG, Han YB, Lee H-Y, Jeong DH, Kim SM, et al. Characterization and validation of multimodal annihilation-gamma/near-infrared/visible laparoscopic system. J Biomed Opt. 2019;24:1.PubMedCrossRef Song SH, Kang HG, Han YB, Lee H-Y, Jeong DH, Kim SM, et al. Characterization and validation of multimodal annihilation-gamma/near-infrared/visible laparoscopic system. J Biomed Opt. 2019;24:1.PubMedCrossRef
41.
go back to reference Liyanaarachchi MR, Shimazoe K, Takahashi H, Nakagawa K, Kobayashi E, Sakuma I. Development and evaluation of a prototype detector for an intraoperative laparoscopic coincidence imaging system with PET tracers. Int J Comput Assist Radiol Surg. 2021;16:29–39.PubMedCrossRef Liyanaarachchi MR, Shimazoe K, Takahashi H, Nakagawa K, Kobayashi E, Sakuma I. Development and evaluation of a prototype detector for an intraoperative laparoscopic coincidence imaging system with PET tracers. Int J Comput Assist Radiol Surg. 2021;16:29–39.PubMedCrossRef
42.
go back to reference Akamatsu G, Takyu S, Yoshida E, Iwao Y, Tashima H, Nishikido F, et al. Evaluation of a Hamamatsu TOF-PET detector module with 3.2-mm pitch LFS scintillators and a 256-channel SiPM array. IEEE Trans Radiat Plasma Med Sci. 2021;5:645–50.CrossRef Akamatsu G, Takyu S, Yoshida E, Iwao Y, Tashima H, Nishikido F, et al. Evaluation of a Hamamatsu TOF-PET detector module with 3.2-mm pitch LFS scintillators and a 256-channel SiPM array. IEEE Trans Radiat Plasma Med Sci. 2021;5:645–50.CrossRef
43.
go back to reference Takyu S, Ahmed AM, Yoshida E, Tashima H, Kumagai M, Yamashita T, et al. Design study of a brain-dedicated time-of-flight PET system with a hemispherical detector arrangement. Phys Med Biol. 2020;65: 035012.PubMedCrossRef Takyu S, Ahmed AM, Yoshida E, Tashima H, Kumagai M, Yamashita T, et al. Design study of a brain-dedicated time-of-flight PET system with a hemispherical detector arrangement. Phys Med Biol. 2020;65: 035012.PubMedCrossRef
44.
go back to reference Li X, Burr KC, Wang G-C, Du H, Gagnon D. Timing calibration for time-of-flight PET using positron-emitting isotopes and annihilation targets. IEEE Trans Nucl Sci. 2016;63:1351–8. Li X, Burr KC, Wang G-C, Du H, Gagnon D. Timing calibration for time-of-flight PET using positron-emitting isotopes and annihilation targets. IEEE Trans Nucl Sci. 2016;63:1351–8.
46.
go back to reference Tanaka E, Kudo H. Subset-dependent relaxation in block-iterative algorithms for image reconstruction in emission tomography. Phys Med Biol. 2003;48:1405.PubMedCrossRef Tanaka E, Kudo H. Subset-dependent relaxation in block-iterative algorithms for image reconstruction in emission tomography. Phys Med Biol. 2003;48:1405.PubMedCrossRef
47.
go back to reference Carson RE, Barker WC, Jeih-San Liow, Johnson CA. Design of a motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction for the HRRT. In: 2003 IEEE nuclear science symposium conference record (IEEE Cat No03CH37515), vol 5. 2003. p. 3281–5. http://ieeexplore.ieee.org/document/1352597/. Accessed 2 Dec 2023. Carson RE, Barker WC, Jeih-San Liow, Johnson CA. Design of a motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction for the HRRT. In: 2003 IEEE nuclear science symposium conference record (IEEE Cat No03CH37515), vol 5. 2003. p. 3281–5. http://​ieeexplore.​ieee.​org/​document/​1352597/​. Accessed 2 Dec 2023.
48.
49.
go back to reference Iwao Y, Akamatsu G, Tashima H, Takahashi M, Yamaya T. Marker-less and calibration-less motion correction method for brain PET. Radiol Phys Technol. 2022;15:125–34.PubMedCrossRef Iwao Y, Akamatsu G, Tashima H, Takahashi M, Yamaya T. Marker-less and calibration-less motion correction method for brain PET. Radiol Phys Technol. 2022;15:125–34.PubMedCrossRef
50.
go back to reference Pratx G, Chinn G, Olcott PD, Levin CS. Fast, accurate and shift-varying line projections for iterative reconstruction using the GPU. IEEE Trans Med Imaging. 2009;28:435–45.PubMedPubMedCentralCrossRef Pratx G, Chinn G, Olcott PD, Levin CS. Fast, accurate and shift-varying line projections for iterative reconstruction using the GPU. IEEE Trans Med Imaging. 2009;28:435–45.PubMedPubMedCentralCrossRef
51.
go back to reference Picard Y, Thompson CJ. Motion correction of PET images using multiple acquisition frames. IEEE Trans Med Imaging. 1997;16:137–44.PubMedCrossRef Picard Y, Thompson CJ. Motion correction of PET images using multiple acquisition frames. IEEE Trans Med Imaging. 1997;16:137–44.PubMedCrossRef
52.
go back to reference Akamatsu G, Yoshida E, Mikamoto T, Maeda T, Wakizaka H, Tashima H, et al. Development of sealed 22 Na phantoms for PET system QA/QC: uniformity and stability evaluation. In: 2019 IEEE nuclear science symposium and medical imaging conference (NSS/MIC). 2019. p. 1–3. Akamatsu G, Yoshida E, Mikamoto T, Maeda T, Wakizaka H, Tashima H, et al. Development of sealed 22 Na phantoms for PET system QA/QC: uniformity and stability evaluation. In: 2019 IEEE nuclear science symposium and medical imaging conference (NSS/MIC). 2019. p. 1–3.
53.
go back to reference van Sluis J, de Jong J, Schaar J, Noordzij W, van Snick P, Dierckx R, et al. Performance characteristics of the digital biograph vision PET/CT system. J Nucl Med. 2019;60:1031–6.PubMedCrossRef van Sluis J, de Jong J, Schaar J, Noordzij W, van Snick P, Dierckx R, et al. Performance characteristics of the digital biograph vision PET/CT system. J Nucl Med. 2019;60:1031–6.PubMedCrossRef
54.
go back to reference Theodorakis L, Loudos G, Prassopoulos V, Kappas C, Tsougos I, Georgoulias P. A review of PET normalization: striving for count rate uniformity. Nucl Med Commun. 2013;34:1033.PubMedCrossRef Theodorakis L, Loudos G, Prassopoulos V, Kappas C, Tsougos I, Georgoulias P. A review of PET normalization: striving for count rate uniformity. Nucl Med Commun. 2013;34:1033.PubMedCrossRef
55.
go back to reference Thompson CJ, Murthy K, Weinberg IN, Mako F. Feasibility study for positron emission mammography. Med Phys. 1994;21:529–38.PubMedCrossRef Thompson CJ, Murthy K, Weinberg IN, Mako F. Feasibility study for positron emission mammography. Med Phys. 1994;21:529–38.PubMedCrossRef
56.
go back to reference Murthy K, Aznar M, Thompson CJ, Loutfi A, Lisbona R, Gagnon JH. Results of preliminary clinical trials of the positron emission mammography system PEM-I: a dedicated breast imaging system producing glucose metabolic images using FDG. J Nucl Med. 2000;41:1851–8.PubMed Murthy K, Aznar M, Thompson CJ, Loutfi A, Lisbona R, Gagnon JH. Results of preliminary clinical trials of the positron emission mammography system PEM-I: a dedicated breast imaging system producing glucose metabolic images using FDG. J Nucl Med. 2000;41:1851–8.PubMed
57.
go back to reference Doshi NK, Shao Y, Silverman RW, Cherry SR. Design and evaluation of an LSO PET detector for breast cancer imaging. Med Phys. 2000;27:1535–43.PubMedCrossRef Doshi NK, Shao Y, Silverman RW, Cherry SR. Design and evaluation of an LSO PET detector for breast cancer imaging. Med Phys. 2000;27:1535–43.PubMedCrossRef
58.
go back to reference Surti S, Karp JS. Design considerations for a limited angle, dedicated breast. TOF PET scanner Phys Med Biol. 2008;53:2911.PubMedCrossRef Surti S, Karp JS. Design considerations for a limited angle, dedicated breast. TOF PET scanner Phys Med Biol. 2008;53:2911.PubMedCrossRef
59.
go back to reference Yanai A, Itoh M, Hirakawa H, Yanai K, Tashiro M, Harada R, et al. Newly-developed positron emission mammography (PEM) device for the detection of small breast cancer. Tohoku J Exp Med. 2018;245:13–9.PubMedCrossRef Yanai A, Itoh M, Hirakawa H, Yanai K, Tashiro M, Harada R, et al. Newly-developed positron emission mammography (PEM) device for the detection of small breast cancer. Tohoku J Exp Med. 2018;245:13–9.PubMedCrossRef
61.
go back to reference Matej S, Li Y, Panetta J, Karp JS, Surti S. Image-based modeling of PSF deformation with application to limited angle PET data. IEEE Trans Nucl Sci. 2016;63:2599–606.PubMedPubMedCentralCrossRef Matej S, Li Y, Panetta J, Karp JS, Surti S. Image-based modeling of PSF deformation with application to limited angle PET data. IEEE Trans Nucl Sci. 2016;63:2599–606.PubMedPubMedCentralCrossRef
62.
go back to reference Gravel P, Li Y, Matej S. Effects of TOF resolution models on edge artifacts in PET reconstruction from limited-angle data. IEEE Trans Radiat Plasma Med Sci. 2020;4:603–12.PubMedPubMedCentralCrossRef Gravel P, Li Y, Matej S. Effects of TOF resolution models on edge artifacts in PET reconstruction from limited-angle data. IEEE Trans Radiat Plasma Med Sci. 2020;4:603–12.PubMedPubMedCentralCrossRef
63.
go back to reference Ota R, Nakajima K, Ogawa I, Tamagawa Y, Shimoi H, Suyama M, et al. Coincidence time resolution of 30 ps FWHM using a pair of Cherenkov-radiator-integrated MCP-PMTs. Phys Med Biol. 2019;64:07LT01.PubMedCrossRef Ota R, Nakajima K, Ogawa I, Tamagawa Y, Shimoi H, Suyama M, et al. Coincidence time resolution of 30 ps FWHM using a pair of Cherenkov-radiator-integrated MCP-PMTs. Phys Med Biol. 2019;64:07LT01.PubMedCrossRef
64.
go back to reference Kwon SI, Ota R, Berg E, Hashimoto F, Nakajima K, Ogawa I, et al. Ultrafast timing enables reconstruction-free positron emission imaging. Nat Photon. 2021;15:914–8.CrossRef Kwon SI, Ota R, Berg E, Hashimoto F, Nakajima K, Ogawa I, et al. Ultrafast timing enables reconstruction-free positron emission imaging. Nat Photon. 2021;15:914–8.CrossRef
65.
go back to reference Yoshimura S, Takahashi M, Aikou S, Okumura Y, Jinbo K, Onoyama H, et al. One-by-one comparison of lymph nodes between 18F-FDG uptake and pathological diagnosis in esophageal cancer. Clin Nucl Med. 2020;45:741.PubMedPubMedCentralCrossRef Yoshimura S, Takahashi M, Aikou S, Okumura Y, Jinbo K, Onoyama H, et al. One-by-one comparison of lymph nodes between 18F-FDG uptake and pathological diagnosis in esophageal cancer. Clin Nucl Med. 2020;45:741.PubMedPubMedCentralCrossRef
66.
go back to reference Piñero-Madrona A, Monserrat-Coll JL, Ruiz-Pardo J, Cabezas-Herrera J, Nicolás-Ruiz F. PET-CT gamma probe-guided lymph node biopsy: a new diagnostic surgical approach. Tumori. 2017;103:S34–6.CrossRef Piñero-Madrona A, Monserrat-Coll JL, Ruiz-Pardo J, Cabezas-Herrera J, Nicolás-Ruiz F. PET-CT gamma probe-guided lymph node biopsy: a new diagnostic surgical approach. Tumori. 2017;103:S34–6.CrossRef
67.
go back to reference Heuveling DA, Karagozoglu KH, Van Lingen A, Hoekstra OS, Van Dongen GAMS, De Bree R. Feasibility of intraoperative detection of sentinel lymph nodes with 89-zirconium-labelled nanocolloidal albumin PET-CT and a handheld high-energy gamma probe. EJNMMI Res. 2018;8:15.PubMedPubMedCentralCrossRef Heuveling DA, Karagozoglu KH, Van Lingen A, Hoekstra OS, Van Dongen GAMS, De Bree R. Feasibility of intraoperative detection of sentinel lymph nodes with 89-zirconium-labelled nanocolloidal albumin PET-CT and a handheld high-energy gamma probe. EJNMMI Res. 2018;8:15.PubMedPubMedCentralCrossRef
Metadata
Title
Initial demonstration of the Scratch-PET concept: an intraoperative PET with a hand-held detector
Authors
Taiyo Ishikawa
Yuma Iwao
Go Akamatsu
Sodai Takyu
Hideaki Tashima
Takayuki Okamoto
Taiga Yamaya
Hideaki Haneishi
Publication date
12-03-2025
Publisher
Springer Nature Singapore
Published in
Radiological Physics and Technology
Print ISSN: 1865-0333
Electronic ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-025-00889-z