Skip to main content
Top

25-04-2024 | Positron Emission Tomography | Research Article

Molecular Imaging of Fibroblast Activation in Rabbit Atherosclerotic Plaques: a Preclinical PET/CT Study

Authors: Tianxiong Ji, Chunfang Zan, Lina Li, Jianbo Cao, Yao Su, Hongliang Wang, Zhifang Wu, Min-Fu Yang, Kefei Dou, Sijin Li

Published in: Molecular Imaging and Biology

Login to get access

Abstract

Aim

Atherosclerosis remains the pathological basis of myocardial infarction and ischemic stroke. Early and accurate identification of plauqes is crucial to improve clinical outcomes of atherosclerosis patients. Our study aims to evaluate the potential value of fibroblast activation protein inhibitor (FAPI)-04 PET/CT in identifying plaques via a preclinical rabbit model of atherosclerosis.

Methods

New Zealand white rabbits were fed high-fat diet (HFD), and randomly divided into the model group injured by the balloon, and the sham group only with incisions. Ultrasound was performed to detect plaques, and FAPI-avid was determined through Al18F-NOTA-FAPI-04 PET/CT. Mean standardized uptake values (SUVmean) in lesions were compared, and biodistribution of Al18F-NOTA-FAPI-04 and target-to-background ratios (TBRs) were calculated. Histological staining was performed to display arterial plaques, and autoradiography (ARG) was employed to measure the in vitro intensity of Al18F-NOTA-FAPI-04. At last, the correlation among FAP levels, plaque area, SUVmean values and fibrous cap thickness was assessed.

Results

The rabbit carotid and abdominal atherosclerosis model was established. Al18F-NOTA-FAPI-04 showed a higher uptake in carotid plaques (SUVmean 1.32 ± 0.11) and abdominal plaques (SUVmean 0.73 ± 0.13) compared to corresponding controls (SUVmean 1.07 ± 0.06; 0.46 ± 0.03) (P < 0.05). Biodistribution analysis of Al18F-NOTA-FAPI-04 revealed that the bigger plaques were delineated with higher TBRs. Pathological staining showed the formation of arterial plaques, and ARG staining exhibited a higher intensity of Al18F-NOTA-FAPI-04 in the bigger plaques. Lastly, plaque area was found to be positively correlated to FAP expression and SUVmean, while FAP expression was negatively correlated to fibrous cap thickness of plaques.

Conclusions

We successfully achieve molecular imaging of fibroblast activation in atherosclerotic lesions of rabbits, suggesting Al18F-NOTA-FAPI-04 PET/CT may be a potentially valuable tool to identify plaques.
Literature
1.
go back to reference Mohanta SK, Peng L, Li Y et al (2022) Neuroimmune cardiovascular interfaces control atherosclerosis. Nature 605:152–159PubMedCrossRef Mohanta SK, Peng L, Li Y et al (2022) Neuroimmune cardiovascular interfaces control atherosclerosis. Nature 605:152–159PubMedCrossRef
2.
go back to reference Stone PH, Libby P, Boden WE (2023) Fundamental pathobiology of coronary atherosclerosis and clinical implications for chronic ischemic heart disease management-the plaque hypothesis: a narrative review. JAMA Cardiol 8:192–201PubMedPubMedCentralCrossRef Stone PH, Libby P, Boden WE (2023) Fundamental pathobiology of coronary atherosclerosis and clinical implications for chronic ischemic heart disease management-the plaque hypothesis: a narrative review. JAMA Cardiol 8:192–201PubMedPubMedCentralCrossRef
3.
go back to reference Tufaro V, Serruys PW, Räber L et al (2023) Intravascular imaging assessment of pharmacotherapies targeting atherosclerosis: advantages and limitations in predicting their prognostic implications. Cardiovasc Res 119:121–135PubMedCrossRef Tufaro V, Serruys PW, Räber L et al (2023) Intravascular imaging assessment of pharmacotherapies targeting atherosclerosis: advantages and limitations in predicting their prognostic implications. Cardiovasc Res 119:121–135PubMedCrossRef
4.
go back to reference Achenbach S, Fuchs F, Goncalves A et al (2022) Non-invasive imaging as the cornerstone of cardiovascular precision medicine. Eur Heart J Cardiovasc Imaging 23:465–475PubMedCrossRef Achenbach S, Fuchs F, Goncalves A et al (2022) Non-invasive imaging as the cornerstone of cardiovascular precision medicine. Eur Heart J Cardiovasc Imaging 23:465–475PubMedCrossRef
5.
go back to reference Derlin T, Werner RA, Weiberg D, Derlin K, Bengel FM (2022) Parametric imaging of biologic activity of atherosclerosis using dynamic whole-body positron emission tomography. JACC Cardiovasc Imaging 15:2098–2108PubMedCrossRef Derlin T, Werner RA, Weiberg D, Derlin K, Bengel FM (2022) Parametric imaging of biologic activity of atherosclerosis using dynamic whole-body positron emission tomography. JACC Cardiovasc Imaging 15:2098–2108PubMedCrossRef
6.
go back to reference Feil S, Stowbur D, Schörg BF et al (2023) Noninvasive detection of smooth muscle cell-derived hot spots to study atherosclerosis by PET/MRI in mice. Circ Res 132:747–750PubMedPubMedCentralCrossRef Feil S, Stowbur D, Schörg BF et al (2023) Noninvasive detection of smooth muscle cell-derived hot spots to study atherosclerosis by PET/MRI in mice. Circ Res 132:747–750PubMedPubMedCentralCrossRef
7.
go back to reference van Velzen SGM, Dobrolinska MM, Knaapen P et al (2023) Automated cardiovascular risk categorization through AI-driven coronary calcium quantification in cardiac PET acquired attenuation correction CT. J Nucl Cardiol 30:955–969PubMedCrossRef van Velzen SGM, Dobrolinska MM, Knaapen P et al (2023) Automated cardiovascular risk categorization through AI-driven coronary calcium quantification in cardiac PET acquired attenuation correction CT. J Nucl Cardiol 30:955–969PubMedCrossRef
8.
go back to reference Zan C, An J, Wu Z, Li S (2023) Engineering molecular nanoprobes to target early atherosclerosis: precise diagnostic tools and promising therapeutic carriers. Nanotheranostics 7:327–344PubMedPubMedCentralCrossRef Zan C, An J, Wu Z, Li S (2023) Engineering molecular nanoprobes to target early atherosclerosis: precise diagnostic tools and promising therapeutic carriers. Nanotheranostics 7:327–344PubMedPubMedCentralCrossRef
9.
go back to reference Blach A, Kwiecinski J (2023) The role of positron emission tomography in advancing the understanding of the pathogenesis of heart and vascular diseases. Diagnostics (Basel) 13:1791PubMedCrossRef Blach A, Kwiecinski J (2023) The role of positron emission tomography in advancing the understanding of the pathogenesis of heart and vascular diseases. Diagnostics (Basel) 13:1791PubMedCrossRef
10.
go back to reference Bucerius J, Dijkgraaf I, Mottaghy FM, Schurgers LJ (2019) Target identification for the diagnosis and intervention of vulnerable atherosclerotic plaques beyond 18F-fluorodeoxyglucose positron emission tomography imaging: promising tracers on the horizon. Eur J Nucl Med Mol Imaging 46:251–265PubMedCrossRef Bucerius J, Dijkgraaf I, Mottaghy FM, Schurgers LJ (2019) Target identification for the diagnosis and intervention of vulnerable atherosclerotic plaques beyond 18F-fluorodeoxyglucose positron emission tomography imaging: promising tracers on the horizon. Eur J Nucl Med Mol Imaging 46:251–265PubMedCrossRef
11.
go back to reference Fu Z, Lin Q, Xu Z et al (2022) P2X7 receptor-specific radioligand 18F-FTTM for atherosclerotic plaque PET imaging. Eur J Nucl Med Mol Imaging 49:2595–2604PubMedCrossRef Fu Z, Lin Q, Xu Z et al (2022) P2X7 receptor-specific radioligand 18F-FTTM for atherosclerotic plaque PET imaging. Eur J Nucl Med Mol Imaging 49:2595–2604PubMedCrossRef
12.
go back to reference Maekawa K, Tsuji AB, Yamashita A et al (2021) Translocator protein imaging with 18F-FEDAC-positron emission tomography in rabbit atherosclerosis and its presence in human coronary vulnerable plaques. Atherosclerosis 337:7–17PubMedCrossRef Maekawa K, Tsuji AB, Yamashita A et al (2021) Translocator protein imaging with 18F-FEDAC-positron emission tomography in rabbit atherosclerosis and its presence in human coronary vulnerable plaques. Atherosclerosis 337:7–17PubMedCrossRef
13.
go back to reference Stein S, Weber J, Nusser-Stein S et al (2021) Deletion of fibroblast activation protein provides atheroprotection. Cardiovasc Res 117:1060–1069PubMedCrossRef Stein S, Weber J, Nusser-Stein S et al (2021) Deletion of fibroblast activation protein provides atheroprotection. Cardiovasc Res 117:1060–1069PubMedCrossRef
14.
go back to reference Kosmala A, Serfling SE, Michalski K et al (2023) Molecular imaging of arterial fibroblast activation protein: association with calcified plaque burden and cardiovascular risk factors. Eur J Nucl Med Mol Imaging 50:3011–3021PubMedPubMedCentralCrossRef Kosmala A, Serfling SE, Michalski K et al (2023) Molecular imaging of arterial fibroblast activation protein: association with calcified plaque burden and cardiovascular risk factors. Eur J Nucl Med Mol Imaging 50:3011–3021PubMedPubMedCentralCrossRef
15.
go back to reference Wei Y, Zheng J, Ma L et al (2022) [18F]AlF-NOTA-FAPI-04: FAP-targeting specificity, biodistribution, and PET/CT imaging of various cancers. Eur J Nucl Med Mol Imaging 49:2761–2773PubMedCrossRef Wei Y, Zheng J, Ma L et al (2022) [18F]AlF-NOTA-FAPI-04: FAP-targeting specificity, biodistribution, and PET/CT imaging of various cancers. Eur J Nucl Med Mol Imaging 49:2761–2773PubMedCrossRef
16.
go back to reference Wang S, Zhou X, Xu X et al (2021) Clinical translational evaluation of Al18F-NOTA-FAPI for fibroblast activation protein-targeted tumour imaging. Eur J Nucl Med Mol Imaging 48:4259–4271PubMedCrossRef Wang S, Zhou X, Xu X et al (2021) Clinical translational evaluation of Al18F-NOTA-FAPI for fibroblast activation protein-targeted tumour imaging. Eur J Nucl Med Mol Imaging 48:4259–4271PubMedCrossRef
17.
go back to reference Gong JN, Chen BX, Xing HQ, Huo L, Yang YH, Yang MF (2023) Pulmonary artery imaging with 68 Ga-FAPI-04 in patients with chronic thromboembolic pulmonary hypertension. J Nucl Cardiol 30:1166–1172PubMedCrossRef Gong JN, Chen BX, Xing HQ, Huo L, Yang YH, Yang MF (2023) Pulmonary artery imaging with 68 Ga-FAPI-04 in patients with chronic thromboembolic pulmonary hypertension. J Nucl Cardiol 30:1166–1172PubMedCrossRef
18.
19.
go back to reference Izquierdo-Garcia D, Diyabalanage H, Ramsay IA et al (2022) Imaging high-risk atherothrombosis using a novel fibrin-binding positron emission tomography probe. Stroke 53:595–604PubMedCrossRef Izquierdo-Garcia D, Diyabalanage H, Ramsay IA et al (2022) Imaging high-risk atherothrombosis using a novel fibrin-binding positron emission tomography probe. Stroke 53:595–604PubMedCrossRef
20.
go back to reference Huang Z, Cheng XQ, Liu HY et al (2022) Relation of carotid plaque features detected with ultrasonography-based radiomics to clinical symptoms. Transl Stroke Res 13:970–982PubMedCrossRef Huang Z, Cheng XQ, Liu HY et al (2022) Relation of carotid plaque features detected with ultrasonography-based radiomics to clinical symptoms. Transl Stroke Res 13:970–982PubMedCrossRef
21.
go back to reference Zhang J, Lin Z, Zhang X et al (2022) 68Ga-DOTA-DiPSMA PET/CT imaging: biodistribution, dosimetry, and preliminary application in prostate cancer. Front Bioeng Biotechnol 9:811972PubMedPubMedCentralCrossRef Zhang J, Lin Z, Zhang X et al (2022) 68Ga-DOTA-DiPSMA PET/CT imaging: biodistribution, dosimetry, and preliminary application in prostate cancer. Front Bioeng Biotechnol 9:811972PubMedPubMedCentralCrossRef
22.
go back to reference Yruela I, Oldfield CJ, Niklas KJ, Dunker AK (2017) Evidence for a strong correlation between transcription factor protein disorder and organismic complexity. Genome Biol Evol 9:1248–1265PubMedPubMedCentralCrossRef Yruela I, Oldfield CJ, Niklas KJ, Dunker AK (2017) Evidence for a strong correlation between transcription factor protein disorder and organismic complexity. Genome Biol Evol 9:1248–1265PubMedPubMedCentralCrossRef
23.
go back to reference Kafouris PP, Koutagiar IP, Georgakopoulos AT, Spyrou GM, Visvikis D, Anagnostopoulos CD (2021) Fluorine-18 fluorodeoxyglucose positron emission tomography-based textural features for prediction of event prone carotid atherosclerotic plaques. J Nucl Cardiol 28:1861–1871PubMedCrossRef Kafouris PP, Koutagiar IP, Georgakopoulos AT, Spyrou GM, Visvikis D, Anagnostopoulos CD (2021) Fluorine-18 fluorodeoxyglucose positron emission tomography-based textural features for prediction of event prone carotid atherosclerotic plaques. J Nucl Cardiol 28:1861–1871PubMedCrossRef
24.
go back to reference Brokopp CE, Schoenauer R, Richards P et al (2011) Fibroblast activation protein is induced by inflammation and degrades type I collagen in thin-cap fibroatheromata. Eur Heart J 32:2713–2722PubMedPubMedCentralCrossRef Brokopp CE, Schoenauer R, Richards P et al (2011) Fibroblast activation protein is induced by inflammation and degrades type I collagen in thin-cap fibroatheromata. Eur Heart J 32:2713–2722PubMedPubMedCentralCrossRef
25.
go back to reference Piri R, Lici G, Riyahimanesh P, Gerke O, Alavi A, Høilund-Carlsen PF (2021) Two-year change in 18F-sodium fluoride uptake in major arteries of healthy subjects and angina pectoris patients. Int J Cardiovasc Imaging 37:3115–3126PubMedCrossRef Piri R, Lici G, Riyahimanesh P, Gerke O, Alavi A, Høilund-Carlsen PF (2021) Two-year change in 18F-sodium fluoride uptake in major arteries of healthy subjects and angina pectoris patients. Int J Cardiovasc Imaging 37:3115–3126PubMedCrossRef
26.
go back to reference Bacour YAA, van Kanten MP, Smit F et al (2023) Development of a simple standardized scoring system for assessing large vessel vasculitis by 18F-FDG PET-CT and differentiation from atherosclerosis. Eur J Nucl Med Mol Imaging 50:2647–2655PubMedPubMedCentralCrossRef Bacour YAA, van Kanten MP, Smit F et al (2023) Development of a simple standardized scoring system for assessing large vessel vasculitis by 18F-FDG PET-CT and differentiation from atherosclerosis. Eur J Nucl Med Mol Imaging 50:2647–2655PubMedPubMedCentralCrossRef
27.
go back to reference Patel NH, Osborne MT, Teague H et al (2021) Heightened splenic and bone marrow uptake of 18F-FDG PET/CT is associated with systemic inflammation and subclinical atherosclerosis by CCTA in psoriasis: an observational study. Atherosclerosis 339:20–26PubMedPubMedCentralCrossRef Patel NH, Osborne MT, Teague H et al (2021) Heightened splenic and bone marrow uptake of 18F-FDG PET/CT is associated with systemic inflammation and subclinical atherosclerosis by CCTA in psoriasis: an observational study. Atherosclerosis 339:20–26PubMedPubMedCentralCrossRef
28.
go back to reference Kitagawa T, Nakano Y (2022) Innovative atherosclerosis imaging using 18F-NaF PET/CT: Its clinical potential. J Nucl Cardiol 29:1724–1728PubMedCrossRef Kitagawa T, Nakano Y (2022) Innovative atherosclerosis imaging using 18F-NaF PET/CT: Its clinical potential. J Nucl Cardiol 29:1724–1728PubMedCrossRef
29.
go back to reference Oliveira-Santos M, Castelo-Branco M, Silva R et al (2017) Atherosclerotic plaque metabolism in high cardiovascular risk subjects - a subclinical atherosclerosis imaging study with 18F-NaF PET-CT. Atherosclerosis 260:41–46PubMedCrossRef Oliveira-Santos M, Castelo-Branco M, Silva R et al (2017) Atherosclerotic plaque metabolism in high cardiovascular risk subjects - a subclinical atherosclerosis imaging study with 18F-NaF PET-CT. Atherosclerosis 260:41–46PubMedCrossRef
30.
go back to reference Kircher M, Tran-Gia J, Kemmer L et al (2020) Imaging Inflammation in Atherosclerosis with CXCR4-Directed 68Ga-Pentixafor PET/CT: correlation with 18F-FDG PET/CT. J Nucl Med 61:751–756PubMedCrossRef Kircher M, Tran-Gia J, Kemmer L et al (2020) Imaging Inflammation in Atherosclerosis with CXCR4-Directed 68Ga-Pentixafor PET/CT: correlation with 18F-FDG PET/CT. J Nucl Med 61:751–756PubMedCrossRef
31.
go back to reference Weiberg D, Thackeray JT, Daum G et al (2018) Clinical molecular imaging of chemokine receptor CXCR4 expression in atherosclerotic plaque using 68Ga-pentixafor PET: correlation with cardiovascular risk factors and calcified plaque burden. J Nucl Med 59:266–272PubMedCrossRef Weiberg D, Thackeray JT, Daum G et al (2018) Clinical molecular imaging of chemokine receptor CXCR4 expression in atherosclerotic plaque using 68Ga-pentixafor PET: correlation with cardiovascular risk factors and calcified plaque burden. J Nucl Med 59:266–272PubMedCrossRef
32.
go back to reference Li X, Heber D, Leike T et al (2018) [68Ga]Pentixafor-PET/MRI for the detection of Chemokine receptor 4 expression in atherosclerotic plaques. Eur J Nucl Med Mol Imaging 45:558–566PubMedCrossRef Li X, Heber D, Leike T et al (2018) [68Ga]Pentixafor-PET/MRI for the detection of Chemokine receptor 4 expression in atherosclerotic plaques. Eur J Nucl Med Mol Imaging 45:558–566PubMedCrossRef
34.
go back to reference Francque SM, van der Graaff D, Kwanten WJ (2016) Non-alcoholic fatty liver disease and cardiovascular risk: pathophysiological mechanisms and implications. J Hepatol 65:425–443PubMedCrossRef Francque SM, van der Graaff D, Kwanten WJ (2016) Non-alcoholic fatty liver disease and cardiovascular risk: pathophysiological mechanisms and implications. J Hepatol 65:425–443PubMedCrossRef
35.
go back to reference Emrich T, Schattenberg JM (2021) Letter: coronary atherosclerosis in patients with significant hepatic fibrosis in non-alcoholic fatty liver disease-the role for non-invasive testing. Aliment Pharmacol Ther 54:214–215PubMedCrossRef Emrich T, Schattenberg JM (2021) Letter: coronary atherosclerosis in patients with significant hepatic fibrosis in non-alcoholic fatty liver disease-the role for non-invasive testing. Aliment Pharmacol Ther 54:214–215PubMedCrossRef
36.
go back to reference Park JG, Jung J, Verma KK et al (2021) Liver stiffness by magnetic resonance elastography is associated with increased risk of cardiovascular disease in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 53:1030–1037PubMedPubMedCentralCrossRef Park JG, Jung J, Verma KK et al (2021) Liver stiffness by magnetic resonance elastography is associated with increased risk of cardiovascular disease in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 53:1030–1037PubMedPubMedCentralCrossRef
38.
go back to reference Monslow J, Todd L, Chojnowski JE, Govindaraju PK, Assoian RK, Puré E (2020) Fibroblast activation protein regulates lesion burden and the fibroinflammatory response in apoe-deficient mice in a sexually dimorphic manner. Am J Pathol 190:1118–1136PubMedPubMedCentralCrossRef Monslow J, Todd L, Chojnowski JE, Govindaraju PK, Assoian RK, Puré E (2020) Fibroblast activation protein regulates lesion burden and the fibroinflammatory response in apoe-deficient mice in a sexually dimorphic manner. Am J Pathol 190:1118–1136PubMedPubMedCentralCrossRef
39.
go back to reference Song L, Zan C, Liang Z et al (2023) Potential value of FAPI PET/CT in the detection and treatment of fibrosing mediastinitis: preclinical and pilot clinical investigation. Mol Pharm 20:4307–4318 Song L, Zan C, Liang Z et al (2023) Potential value of FAPI PET/CT in the detection and treatment of fibrosing mediastinitis: preclinical and pilot clinical investigation. Mol Pharm 20:4307–4318
40.
go back to reference Tatar G, Beyhan E, Erol Fenercioğlu Ö, Sevindir İ, Ergül N, Çermik TF (2023) 68Ga-FAPI-04 PET/CT findings in patients with liver cirrhosis. Mol Imaging Radionucl Ther 32:146–149PubMedPubMedCentralCrossRef Tatar G, Beyhan E, Erol Fenercioğlu Ö, Sevindir İ, Ergül N, Çermik TF (2023) 68Ga-FAPI-04 PET/CT findings in patients with liver cirrhosis. Mol Imaging Radionucl Ther 32:146–149PubMedPubMedCentralCrossRef
41.
go back to reference Wang Y, Wu J, Liu L, Peng D, Chen Y (2022) 68Ga-FAPI-04 PET/ct imaging for fibrous dysplasia of the bone. Clin Nucl Med 47:e9–e10PubMedCrossRef Wang Y, Wu J, Liu L, Peng D, Chen Y (2022) 68Ga-FAPI-04 PET/ct imaging for fibrous dysplasia of the bone. Clin Nucl Med 47:e9–e10PubMedCrossRef
42.
go back to reference Zhang A, Zhang H, Zhou X, Li Z, Li N (2021) Solitary fibrous tumors of the pleura shown on 18F-FDG and 68Ga-DOTA-FAPI-04 PET/CT. Clin Nucl Med 46:e534–e537PubMedCrossRef Zhang A, Zhang H, Zhou X, Li Z, Li N (2021) Solitary fibrous tumors of the pleura shown on 18F-FDG and 68Ga-DOTA-FAPI-04 PET/CT. Clin Nucl Med 46:e534–e537PubMedCrossRef
44.
go back to reference Zhang Y, Cai J, Wu Z, Yao S, Miao W (2021) Intense [68Ga]Ga-FAPI-04 uptake in solitary fibrous tumor/hemangiopericytoma of the central nervous system. Eur J Nucl Med Mol Imaging 48:4103–4104PubMedCrossRef Zhang Y, Cai J, Wu Z, Yao S, Miao W (2021) Intense [68Ga]Ga-FAPI-04 uptake in solitary fibrous tumor/hemangiopericytoma of the central nervous system. Eur J Nucl Med Mol Imaging 48:4103–4104PubMedCrossRef
45.
go back to reference Watabe T, Naka S, Tatsumi M et al (2023) Initial evaluation of [18F]FAPI-74 PET for various histopathologically confirmed cancers and benign lesions. J Nucl Med 64:1225–1231PubMedPubMedCentralCrossRef Watabe T, Naka S, Tatsumi M et al (2023) Initial evaluation of [18F]FAPI-74 PET for various histopathologically confirmed cancers and benign lesions. J Nucl Med 64:1225–1231PubMedPubMedCentralCrossRef
46.
go back to reference Verena A, Zhang Z, Kuo HT et al (2023) Synthesis and Preclinical evaluation of three novel 68Ga-labeled bispecific PSMA/FAP-targeting tracers for prostate cancer imaging. Molecules 28:1088PubMedPubMedCentralCrossRef Verena A, Zhang Z, Kuo HT et al (2023) Synthesis and Preclinical evaluation of three novel 68Ga-labeled bispecific PSMA/FAP-targeting tracers for prostate cancer imaging. Molecules 28:1088PubMedPubMedCentralCrossRef
47.
go back to reference Chandekar KR, Prashanth A, Vinjamuri S, Kumar R (2023) FAPI PET/ct imaging-an updated review. Diagnostics (Basel) 13:2018PubMedCrossRef Chandekar KR, Prashanth A, Vinjamuri S, Kumar R (2023) FAPI PET/ct imaging-an updated review. Diagnostics (Basel) 13:2018PubMedCrossRef
48.
49.
go back to reference Huang J, Fu L, Zhang X et al (2023) Noninvasive imaging of FAP expression using positron emission tomography: a comparative evaluation of a [18F]-labeled glycopeptide-containing FAPI with [18F]FAPI-42. Eur J Nucl Med Mol Imaging 50:3363–3374 Huang J, Fu L, Zhang X et al (2023) Noninvasive imaging of FAP expression using positron emission tomography: a comparative evaluation of a [18F]-labeled glycopeptide-containing FAPI with [18F]FAPI-42. Eur J Nucl Med Mol Imaging 50:3363–3374
50.
go back to reference Jansen K, Heirbaut L, Cheng JD et al (2013) Selective Inhibitors of Fibroblast Activation Protein (FAP) with a (4-Quinolinoyl)-glycyl-2-cyanopyrrolidine Scaffold. ACS Med Chem Lett 4:491–496PubMedPubMedCentralCrossRef Jansen K, Heirbaut L, Cheng JD et al (2013) Selective Inhibitors of Fibroblast Activation Protein (FAP) with a (4-Quinolinoyl)-glycyl-2-cyanopyrrolidine Scaffold. ACS Med Chem Lett 4:491–496PubMedPubMedCentralCrossRef
51.
go back to reference Jansen K, Heirbaut L, Verkerk R et al (2014) Extended structure-activity relationship and pharmacokinetic investigation of (4-quinolinoyl)glycyl-2-cyanopyrrolidine inhibitors of fibroblast activation protein (FAP). J Med Chem 57:3053–3074PubMedCrossRef Jansen K, Heirbaut L, Verkerk R et al (2014) Extended structure-activity relationship and pharmacokinetic investigation of (4-quinolinoyl)glycyl-2-cyanopyrrolidine inhibitors of fibroblast activation protein (FAP). J Med Chem 57:3053–3074PubMedCrossRef
52.
go back to reference Millul J, Bassi G, Mock J et al (2021) An ultra-high-affinity small organic ligand of fibroblast activation protein for tumor-targeting applications. Proc Natl Acad Sci U S A 18:e2101852118CrossRef Millul J, Bassi G, Mock J et al (2021) An ultra-high-affinity small organic ligand of fibroblast activation protein for tumor-targeting applications. Proc Natl Acad Sci U S A 18:e2101852118CrossRef
53.
go back to reference Backhaus P, Gierse F, Burg MC et al (2022) Translational imaging of the fibroblast activation protein (FAP) using the new ligand [68Ga]Ga-OncoFAP-DOTAGA. Eur J Nucl Med Mol Imaging 49:1822–1832PubMedCrossRef Backhaus P, Gierse F, Burg MC et al (2022) Translational imaging of the fibroblast activation protein (FAP) using the new ligand [68Ga]Ga-OncoFAP-DOTAGA. Eur J Nucl Med Mol Imaging 49:1822–1832PubMedCrossRef
Metadata
Title
Molecular Imaging of Fibroblast Activation in Rabbit Atherosclerotic Plaques: a Preclinical PET/CT Study
Authors
Tianxiong Ji
Chunfang Zan
Lina Li
Jianbo Cao
Yao Su
Hongliang Wang
Zhifang Wu
Min-Fu Yang
Kefei Dou
Sijin Li
Publication date
25-04-2024
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-024-01919-9