Skip to main content
Top

Open Access 05-03-2025 | Positron Emission Tomography | Review

Imaging insights of FDG-PET from neonates to infants

Authors: Ryogo Minamimoto, Yumi Abe, Shinichiro Kamiya, Toshiki Nakane, Rintaro Ito, Katsuhiko Kato, Shinji Naganawa

Published in: Japanese Journal of Radiology

Login to get access

Abstract

In pediatric oncology, 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) is valuable as a tool for noninvasive imaging and monitoring. While many reports have reviewed the use of PET and PET/CT in pediatrics, considerable variations in age, body size, and metabolism are seen during different stages of childhood development. Neonates (from birth to one month old) and infants (from 1 month to 1 year) present unique challenges for FDG-PET/CT examination due to their small body size, the immaturity of organs, the need for specialized patient preparation, and support requirements during scanning. In addition, differences in metabolic activity can lead to distinct differences in patterns of physiological FDG uptake on PET/CT imaging between neonates and infants. These factors differ significantly from those encountered in older children, who may be treated similarly to adults during imaging procedures. This review, based on both the literature and clinical experience, explores the specific characteristics, challenges, and considerations for FDG-PET/CT imaging from neonates to infants, with a focus on optimizing imaging protocols and interpreting physiological variations in this growth period.
Literature
1.
go back to reference Güemes M, Rahman SA, Hussain K. What is a normal blood glucose? Arch Dis Child. 2016;101:569–74.PubMedCrossRef Güemes M, Rahman SA, Hussain K. What is a normal blood glucose? Arch Dis Child. 2016;101:569–74.PubMedCrossRef
2.
go back to reference Shammas A, Lim R, Charron M. Pediatric FDG PET/CT: physiologic uptake, normal variants, and benign conditions. Radiographics. 2009;2:1467–86.CrossRef Shammas A, Lim R, Charron M. Pediatric FDG PET/CT: physiologic uptake, normal variants, and benign conditions. Radiographics. 2009;2:1467–86.CrossRef
3.
go back to reference Stauss J, Franzius C, Pfluger T, Juergens KU, Biassoni L, Begent J, et al. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging. 2008;35:1581–8.PubMedCrossRef Stauss J, Franzius C, Pfluger T, Juergens KU, Biassoni L, Begent J, et al. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging. 2008;35:1581–8.PubMedCrossRef
4.
go back to reference Barrington SF, Begent J, Lynch T, Schleyer P, Biassoni L, Ramsden W, et al. Guidelines for the use of PET-CT in children. Nucl Med Commun. 2008;29:418–24.PubMedCrossRef Barrington SF, Begent J, Lynch T, Schleyer P, Biassoni L, Ramsden W, et al. Guidelines for the use of PET-CT in children. Nucl Med Commun. 2008;29:418–24.PubMedCrossRef
5.
go back to reference van der Walt JH, Foate JA, Murrell D, Jacob R, Bentley M. A study of preoperative fasting in infants aged less than three months. Anaesth Intensive Care. 1990;18:527–31.PubMedCrossRef van der Walt JH, Foate JA, Murrell D, Jacob R, Bentley M. A study of preoperative fasting in infants aged less than three months. Anaesth Intensive Care. 1990;18:527–31.PubMedCrossRef
6.
go back to reference Zhang E, Hauser N, Sommerfield A, Sommerfield D, von Ungern-Sternberg BS. A review of pediatric fasting guidelines and strategies to help children manage preoperative fasting. Paediatr Anaesth. 2023;33:1012–9.PubMedPubMedCentralCrossRef Zhang E, Hauser N, Sommerfield A, Sommerfield D, von Ungern-Sternberg BS. A review of pediatric fasting guidelines and strategies to help children manage preoperative fasting. Paediatr Anaesth. 2023;33:1012–9.PubMedPubMedCentralCrossRef
7.
go back to reference Vali R, Alessio A, Balza R, Borgwardt L, Bar-Sever Z, Czachowski M, et al. SNMMI Procedure Standard/EANM Practice Guideline on Pediatric 18F-FDG PET/CT for Oncology 1.0. J Nucl Med. 2021;6:99–110.CrossRef Vali R, Alessio A, Balza R, Borgwardt L, Bar-Sever Z, Czachowski M, et al. SNMMI Procedure Standard/EANM Practice Guideline on Pediatric 18F-FDG PET/CT for Oncology 1.0. J Nucl Med. 2021;6:99–110.CrossRef
8.
go back to reference Camoni L, Santos A, Luporsi M, Grilo A, Pietrzak A, Gear J, et al. EANM procedural recommendations for managing the paediatric patient in diagnostic nuclear medicine. Eur J Nucl Med Mol Imaging. 2023;50:3862–79.PubMedPubMedCentralCrossRef Camoni L, Santos A, Luporsi M, Grilo A, Pietrzak A, Gear J, et al. EANM procedural recommendations for managing the paediatric patient in diagnostic nuclear medicine. Eur J Nucl Med Mol Imaging. 2023;50:3862–79.PubMedPubMedCentralCrossRef
9.
go back to reference Juengling FD, Kassubek J, Martens-Le Bouar H, Reinhardt MJ, Krause T, Nitzsche EU, et al. Cerebral regional hypometabolism caused by propofol-induced sedation in children with severe myoclonic epilepsy: a study using fluorodeoxyglucose positron emission tomography and statistical parametric mapping. Neurosci Lett. 2002;335:79–82.PubMedCrossRef Juengling FD, Kassubek J, Martens-Le Bouar H, Reinhardt MJ, Krause T, Nitzsche EU, et al. Cerebral regional hypometabolism caused by propofol-induced sedation in children with severe myoclonic epilepsy: a study using fluorodeoxyglucose positron emission tomography and statistical parametric mapping. Neurosci Lett. 2002;335:79–82.PubMedCrossRef
11.
go back to reference Kai CM, Ingvardsen B, Lemvig P, Sehested LT, Søndergaard LR, Møller S, et al. Successful paediatric renography does not require sedation. Dan Med J. 2019;66:A5542.PubMed Kai CM, Ingvardsen B, Lemvig P, Sehested LT, Søndergaard LR, Møller S, et al. Successful paediatric renography does not require sedation. Dan Med J. 2019;66:A5542.PubMed
12.
go back to reference Lasnon C, Coudrais N, Houdu B, Nganoa C, Salomon T, Enilorac B, et al. How fast can we scan patients with modern (digital) PET/CT systems? Eur J Radiol. 2020;129:109144.PubMedCrossRef Lasnon C, Coudrais N, Houdu B, Nganoa C, Salomon T, Enilorac B, et al. How fast can we scan patients with modern (digital) PET/CT systems? Eur J Radiol. 2020;129:109144.PubMedCrossRef
13.
go back to reference Zhou X, Xue S, Li L, Seifert R, Dong S, Chen R, Huang G, et al. Sedation-free pediatric [18F]FDG imaging on totalbody PET/CT with the assistance of artificial intelligence. Eur J Nucl Med Mol Imaging. 2024;51:4062–72.PubMedCrossRef Zhou X, Xue S, Li L, Seifert R, Dong S, Chen R, Huang G, et al. Sedation-free pediatric [18F]FDG imaging on totalbody PET/CT with the assistance of artificial intelligence. Eur J Nucl Med Mol Imaging. 2024;51:4062–72.PubMedCrossRef
15.
go back to reference Gilsanz V, Hu HH, Kajimura S. Relevance of brown adipose tissue in infancy and adolescence. Pediatr Res. 2013;73:3–9.PubMedCrossRef Gilsanz V, Hu HH, Kajimura S. Relevance of brown adipose tissue in infancy and adolescence. Pediatr Res. 2013;73:3–9.PubMedCrossRef
16.
go back to reference Gelfand MJ, O’Hara SM, Curtwright LA, Maclean JR. Pre-medication to block [18F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiol. 2005;35:984–90.PubMedCrossRef Gelfand MJ, O’Hara SM, Curtwright LA, Maclean JR. Pre-medication to block [18F]FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiol. 2005;35:984–90.PubMedCrossRef
17.
go back to reference Drubach LA, Palmer EL 3rd, Connolly LP, Baker A, Zurakowski D, Cypess AM. Pediatric brown adipose tissue: detection, epidemiology, and differences from adults. J Pediatr. 2011;159:939–44.PubMedCrossRef Drubach LA, Palmer EL 3rd, Connolly LP, Baker A, Zurakowski D, Cypess AM. Pediatric brown adipose tissue: detection, epidemiology, and differences from adults. J Pediatr. 2011;159:939–44.PubMedCrossRef
18.
go back to reference Zukotynski KA, Fahey FH, Laffin S, Davis R, Treves ST, Grant FD, et al. Constant ambient temperature of 24 degrees C significantly reduces FDG uptake by brown adipose tissue in children scanned during the winter. Eur J Nucl Med Mol Imaging. 2009;36:602–6.PubMedCrossRef Zukotynski KA, Fahey FH, Laffin S, Davis R, Treves ST, Grant FD, et al. Constant ambient temperature of 24 degrees C significantly reduces FDG uptake by brown adipose tissue in children scanned during the winter. Eur J Nucl Med Mol Imaging. 2009;36:602–6.PubMedCrossRef
20.
go back to reference Stanescu L, Ishak GE, Khanna PC, Biyyam DR, Shaw DW, Parisi MT. FDG PET of the brain in pediatric patients: imaging spectrum with MR imaging correlation. Radiographics. 2013;33:1279–303.PubMedCrossRef Stanescu L, Ishak GE, Khanna PC, Biyyam DR, Shaw DW, Parisi MT. FDG PET of the brain in pediatric patients: imaging spectrum with MR imaging correlation. Radiographics. 2013;33:1279–303.PubMedCrossRef
21.
go back to reference Chugani HT, Phelps ME. Imaging human brain development with positron emission tomography. J Nucl Med. 1991;32:23–6.PubMed Chugani HT, Phelps ME. Imaging human brain development with positron emission tomography. J Nucl Med. 1991;32:23–6.PubMed
22.
go back to reference Kennedy C, Sokoloff L. An adaptation of the nitrous oxide method to the study of the cerebral circulation in children: normal values for cerebral blood flow and cerebral metabolic rate in childhood. J Clin Invest. 1957;36:1130–7.PubMedPubMedCentralCrossRef Kennedy C, Sokoloff L. An adaptation of the nitrous oxide method to the study of the cerebral circulation in children: normal values for cerebral blood flow and cerebral metabolic rate in childhood. J Clin Invest. 1957;36:1130–7.PubMedPubMedCentralCrossRef
23.
go back to reference Kinnala A, Suhonen-Polvi H, Aärimaa T, Kero P, Korvenranta H, Ruotsalainen U, et al. Cerebral metabolic rate for glucose during the first six months of life: an FDG positron emission tomography study. Arch Dis Child Fetal Neonatal Ed. 1996;74:F153-7.PubMedPubMedCentralCrossRef Kinnala A, Suhonen-Polvi H, Aärimaa T, Kero P, Korvenranta H, Ruotsalainen U, et al. Cerebral metabolic rate for glucose during the first six months of life: an FDG positron emission tomography study. Arch Dis Child Fetal Neonatal Ed. 1996;74:F153-7.PubMedPubMedCentralCrossRef
24.
go back to reference Chugani HT, Phelps ME, Mazziotta JC. Positron emission tomography study of human brain functional development. Ann Neurol. 1987;22:487–97.PubMedCrossRef Chugani HT, Phelps ME, Mazziotta JC. Positron emission tomography study of human brain functional development. Ann Neurol. 1987;22:487–97.PubMedCrossRef
25.
go back to reference Chugani HT. Metabolic imaging: a window on brain development and plasticity. Neuroscientist. 1999;5:29–40.CrossRef Chugani HT. Metabolic imaging: a window on brain development and plasticity. Neuroscientist. 1999;5:29–40.CrossRef
26.
go back to reference Shi Y, Jin RB, Zhao JN, Tang SF, Li HQ, Li TY. Brain positron emission tomography in preterm and term newborn infants. Early Hum Dev. 2009;85:429–32.PubMedCrossRef Shi Y, Jin RB, Zhao JN, Tang SF, Li HQ, Li TY. Brain positron emission tomography in preterm and term newborn infants. Early Hum Dev. 2009;85:429–32.PubMedCrossRef
27.
go back to reference Cacciatore M, Grasso EA, Tripodi R, Chiarelli F. Impact of glucose metabolism on the developing brain. Front Endocrinol. 2022;13:1047545.CrossRef Cacciatore M, Grasso EA, Tripodi R, Chiarelli F. Impact of glucose metabolism on the developing brain. Front Endocrinol. 2022;13:1047545.CrossRef
28.
go back to reference Park JH, Kim CS, Won KS, Oh JS, Kim JS, Kim HW. Asymmetry of cerebral glucose metabolism in very low-birth-weight infants without structural abnormalities. PLoS ONE. 2017;12:e0186976.PubMedPubMedCentralCrossRef Park JH, Kim CS, Won KS, Oh JS, Kim JS, Kim HW. Asymmetry of cerebral glucose metabolism in very low-birth-weight infants without structural abnormalities. PLoS ONE. 2017;12:e0186976.PubMedPubMedCentralCrossRef
29.
30.
go back to reference Taralli S, Leccisotti L, Mattoli MV, Castaldi P, de Waure C, Mancuso A, et al. Physiological Activity of Spinal Cord in Children: An 18F-FDG PET-CT Study. Spine. 2015;40:E647-52.PubMedCrossRef Taralli S, Leccisotti L, Mattoli MV, Castaldi P, de Waure C, Mancuso A, et al. Physiological Activity of Spinal Cord in Children: An 18F-FDG PET-CT Study. Spine. 2015;40:E647-52.PubMedCrossRef
31.
go back to reference Arens R, McDonough JM, Corbin AM, Hernandez ME, Maislin G, Schwab RJ, et al. Linear dimensions of the upper airway structure during development: assessment by magnetic resonance imaging. Am J Respir Crit Care Med. 2002;165:117–22.PubMedCrossRef Arens R, McDonough JM, Corbin AM, Hernandez ME, Maislin G, Schwab RJ, et al. Linear dimensions of the upper airway structure during development: assessment by magnetic resonance imaging. Am J Respir Crit Care Med. 2002;165:117–22.PubMedCrossRef
32.
go back to reference Capitanio MA, Kirkpatrick JA. Nasopharyngeal lymphoid tissue: roentgen observations in 257 children two years of age or less. Radiology. 1970;96:389–91.PubMedCrossRef Capitanio MA, Kirkpatrick JA. Nasopharyngeal lymphoid tissue: roentgen observations in 257 children two years of age or less. Radiology. 1970;96:389–91.PubMedCrossRef
33.
go back to reference Papaioannou G, Kambas I, Tsaoussoglou M, Panaghiotopoulou-Gartagani P, Chrousos G, Kaditis AG. Age-dependent changes in the size of adenotonsillar tissue in childhood: implications for sleep-disordered breathing. J Pediatr. 2013;162:269-74.e4.PubMedCrossRef Papaioannou G, Kambas I, Tsaoussoglou M, Panaghiotopoulou-Gartagani P, Chrousos G, Kaditis AG. Age-dependent changes in the size of adenotonsillar tissue in childhood: implications for sleep-disordered breathing. J Pediatr. 2013;162:269-74.e4.PubMedCrossRef
34.
35.
go back to reference Tong C, Zhuang H. Increased Genioglossus Muscle FDG Activity Due to Using Pacifier. Clin Nucl Med. 2022;47:655–7.PubMedCrossRef Tong C, Zhuang H. Increased Genioglossus Muscle FDG Activity Due to Using Pacifier. Clin Nucl Med. 2022;47:655–7.PubMedCrossRef
36.
go back to reference Dassios T, Vervenioti A, Dimitriou G. Respiratory muscle function in the newborn: a narrative review. Pediatr Res. 2022;91:795–803.PubMedCrossRef Dassios T, Vervenioti A, Dimitriou G. Respiratory muscle function in the newborn: a narrative review. Pediatr Res. 2022;91:795–803.PubMedCrossRef
37.
go back to reference Glass RB, Norton KI, Mitre SA, Kang E. Pediatric ribs: a spectrum of abnormalities. Radiographics. 2002;22:87–104.PubMedCrossRef Glass RB, Norton KI, Mitre SA, Kang E. Pediatric ribs: a spectrum of abnormalities. Radiographics. 2002;22:87–104.PubMedCrossRef
39.
go back to reference Praud JP, Egreteau L, Benlabed M, Curzi-Dascalova L, Nedelcoux H, Gaultier C. Abdominal muscle activity during CO2 rebreathing in sleeping neonates. J Appl Physiol. 1985;1991:1344–50. Praud JP, Egreteau L, Benlabed M, Curzi-Dascalova L, Nedelcoux H, Gaultier C. Abdominal muscle activity during CO2 rebreathing in sleeping neonates. J Appl Physiol. 1985;1991:1344–50.
42.
go back to reference Elhage R, Kelly M, Goudin N, Megret J, Legrand A, Nemazanyy I, et al. Mitochondrial dynamics and metabolic regulation control T cell fate in the thymus. Front Immunol. 2024;14:1270268.PubMedPubMedCentralCrossRef Elhage R, Kelly M, Goudin N, Megret J, Legrand A, Nemazanyy I, et al. Mitochondrial dynamics and metabolic regulation control T cell fate in the thymus. Front Immunol. 2024;14:1270268.PubMedPubMedCentralCrossRef
43.
go back to reference Aaby P, Marx C, Trautner S, Rudaa D, Hasselbalch H, Jensen H, et al. Thymus size at birth is associated with infant mortality: a community study from Guinea-Bissau. Acta Paediatr. 2002;91:698–703.PubMedCrossRef Aaby P, Marx C, Trautner S, Rudaa D, Hasselbalch H, Jensen H, et al. Thymus size at birth is associated with infant mortality: a community study from Guinea-Bissau. Acta Paediatr. 2002;91:698–703.PubMedCrossRef
44.
go back to reference Moore SE, Fulford AJ, Wagatsuma Y, Persson LÅ, Arifeen SE, Prentice AM. Thymus development and infant and child mortality in rural Bangladesh. Int J Epidemiol. 2014;43:216–23.PubMedCrossRef Moore SE, Fulford AJ, Wagatsuma Y, Persson LÅ, Arifeen SE, Prentice AM. Thymus development and infant and child mortality in rural Bangladesh. Int J Epidemiol. 2014;43:216–23.PubMedCrossRef
45.
go back to reference Ferdinand B, Gupta P, Kramer EL. Spectrum of thymic uptake at 18F-FDG PET. Radiographics. 2004;24:1611–6.PubMedCrossRef Ferdinand B, Gupta P, Kramer EL. Spectrum of thymic uptake at 18F-FDG PET. Radiographics. 2004;24:1611–6.PubMedCrossRef
46.
go back to reference Patel PM, Alibazoglu H, Ali A, Fordham E, LaMonica G. Normal thymic uptake of FDG on PET imaging. Clin Nucl Med. 1996;21:772–5.PubMedCrossRef Patel PM, Alibazoglu H, Ali A, Fordham E, LaMonica G. Normal thymic uptake of FDG on PET imaging. Clin Nucl Med. 1996;21:772–5.PubMedCrossRef
47.
go back to reference Jerushalmi J, Frenkel A, Bar-Shalom R, Khoury J, Israel O. Physiologic thymic uptake of 18F-FDG in children and young adults: a PET/CT evaluation of incidence, patterns, and relationship to treatment. J Nucl Med. 2009;50:849–53.PubMedCrossRef Jerushalmi J, Frenkel A, Bar-Shalom R, Khoury J, Israel O. Physiologic thymic uptake of 18F-FDG in children and young adults: a PET/CT evaluation of incidence, patterns, and relationship to treatment. J Nucl Med. 2009;50:849–53.PubMedCrossRef
48.
go back to reference Brink I, Reinhardt MJ, Hoegerle S, Altehoefer C, Moser E, Nitzsche EU. Increased metabolic activity in the thymus studied with FDG PET: age dependency and frequency after chemotherapy. J Nucl Med. 2001;42:591–5.PubMed Brink I, Reinhardt MJ, Hoegerle S, Altehoefer C, Moser E, Nitzsche EU. Increased metabolic activity in the thymus studied with FDG PET: age dependency and frequency after chemotherapy. J Nucl Med. 2001;42:591–5.PubMed
49.
go back to reference Lopaschuk GD, Collins-Nakai RL, Itoi T. Developmental changes in energy substrate use by the heart. Cardiovasc Res. 1992;26:1172–80.PubMedCrossRef Lopaschuk GD, Collins-Nakai RL, Itoi T. Developmental changes in energy substrate use by the heart. Cardiovasc Res. 1992;26:1172–80.PubMedCrossRef
50.
go back to reference Makinde AO, Kantor PF, Lopaschuk GD. Maturation of fatty acid and carbohydrate metabolism in the newborn heart. Mol Cell Biochem. 1998;188:49–56.PubMedCrossRef Makinde AO, Kantor PF, Lopaschuk GD. Maturation of fatty acid and carbohydrate metabolism in the newborn heart. Mol Cell Biochem. 1998;188:49–56.PubMedCrossRef
51.
go back to reference Postic C, Leturque A, Prinz RL, Maulard P, Loizeau M, Granner DK, et al. Development and regulation of glucose transporter and hexokinase expression in rat. Am J Physiol. 1994;266:E548-59.PubMed Postic C, Leturque A, Prinz RL, Maulard P, Loizeau M, Granner DK, et al. Development and regulation of glucose transporter and hexokinase expression in rat. Am J Physiol. 1994;266:E548-59.PubMed
52.
go back to reference Onay-Besikci A. Regulation of cardiac energy metabolism in newborn. Mol Cell Biochem. 2006;287:1–11.PubMedCrossRef Onay-Besikci A. Regulation of cardiac energy metabolism in newborn. Mol Cell Biochem. 2006;287:1–11.PubMedCrossRef
53.
go back to reference Lopaschuk GD, Spafford MA. Energy substrate utilization by isolated working hearts from newborn rabbits. AmJ Physiol. 1990;258:H1274-80. Lopaschuk GD, Spafford MA. Energy substrate utilization by isolated working hearts from newborn rabbits. AmJ Physiol. 1990;258:H1274-80.
54.
go back to reference Lopaschuk GD, Spafford MA, Marsh DR. Glycolysis is predominant source of myocardial ATP production immediately after birth. Am J Physiol. 1991;261:H1698–705.PubMed Lopaschuk GD, Spafford MA, Marsh DR. Glycolysis is predominant source of myocardial ATP production immediately after birth. Am J Physiol. 1991;261:H1698–705.PubMed
55.
go back to reference Amer A, Fischer H. Images in clinical medicine Neonatal breast enlargement. N Engl J Med. 2009;360:1445.PubMedCrossRef Amer A, Fischer H. Images in clinical medicine Neonatal breast enlargement. N Engl J Med. 2009;360:1445.PubMedCrossRef
56.
go back to reference D’Auria D, Ferrara D, Aragione N, De Chiara C, Argenziano G, Noschese I, et al. Role of ultrasound in diagnosis of neonatal breast enlargement: a newborn case report. Radiol Case Rep. 2021;16:2692–6.PubMedPubMedCentralCrossRef D’Auria D, Ferrara D, Aragione N, De Chiara C, Argenziano G, Noschese I, et al. Role of ultrasound in diagnosis of neonatal breast enlargement: a newborn case report. Radiol Case Rep. 2021;16:2692–6.PubMedPubMedCentralCrossRef
59.
go back to reference Cao Y, Zhou K, Diao W, Long X, Tian F, Su M, et al. Age-related changes of standardized uptake values in the blood pool and liver: a decade-long retrospective study of the outcomes of 2,526 subjects. Quant Imaging Med Surg. 2021;11:95–106.PubMedPubMedCentralCrossRef Cao Y, Zhou K, Diao W, Long X, Tian F, Su M, et al. Age-related changes of standardized uptake values in the blood pool and liver: a decade-long retrospective study of the outcomes of 2,526 subjects. Quant Imaging Med Surg. 2021;11:95–106.PubMedPubMedCentralCrossRef
60.
go back to reference Debnath P, Trout AT. Patient factors affecting 18F FDG uptake in children. Clin Imaging. 2024;107:110093.PubMedCrossRef Debnath P, Trout AT. Patient factors affecting 18F FDG uptake in children. Clin Imaging. 2024;107:110093.PubMedCrossRef
61.
go back to reference Hume R, Burchell A, Williams FL, Koh DK. Glucose homeostasis in the newborn. Early Hum Dev. 2005;81:95–101.PubMedCrossRef Hume R, Burchell A, Williams FL, Koh DK. Glucose homeostasis in the newborn. Early Hum Dev. 2005;81:95–101.PubMedCrossRef
62.
go back to reference Hoseth E, Joergensen A, Ebbesen F, Moeller M. Blood glucose levels in a population of healthy, breast fed, term infants of appropriate size for gestational age. Arch Dis Child Fetal Neonatal Ed. 2000;83:F117-9.PubMedPubMedCentralCrossRef Hoseth E, Joergensen A, Ebbesen F, Moeller M. Blood glucose levels in a population of healthy, breast fed, term infants of appropriate size for gestational age. Arch Dis Child Fetal Neonatal Ed. 2000;83:F117-9.PubMedPubMedCentralCrossRef
63.
64.
65.
go back to reference Lane RH, Crawford SE, Flozak AS, Simmons RA. Localization and quantification of glucose transporters in liver of growth-retarded fetal and neonatal rats. Am J Physiol. 1999;276:E135-42.PubMed Lane RH, Crawford SE, Flozak AS, Simmons RA. Localization and quantification of glucose transporters in liver of growth-retarded fetal and neonatal rats. Am J Physiol. 1999;276:E135-42.PubMed
66.
go back to reference Sadiq HF, deMello DE, Devaskar SU. The effect of intrauterine growth restriction upon fetal and postnatal hepatic glucose transporter and glucokinase proteins. Pediatr Res. 1998;43:91–100.PubMedCrossRef Sadiq HF, deMello DE, Devaskar SU. The effect of intrauterine growth restriction upon fetal and postnatal hepatic glucose transporter and glucokinase proteins. Pediatr Res. 1998;43:91–100.PubMedCrossRef
67.
go back to reference Indrio F, Neu J, Pettoello-Mantovani M, Marchese F, Martini S, Salatto A, et al. Development of the Gastrointestinal Tract in Neonates as a Challenge for an Appropriate Nutrition: A Narrative Review. Nutrients. 2022;28:1405.CrossRef Indrio F, Neu J, Pettoello-Mantovani M, Marchese F, Martini S, Salatto A, et al. Development of the Gastrointestinal Tract in Neonates as a Challenge for an Appropriate Nutrition: A Narrative Review. Nutrients. 2022;28:1405.CrossRef
70.
go back to reference Augusto ACL, Goes PCK, Flores DV, Costa MAF, Takahashi MS, Rodrigues ACO, et al. Imaging Review of Normal and Abnormal Skeletal Maturation. Radiographics. 2022;42:861–79.PubMedCrossRef Augusto ACL, Goes PCK, Flores DV, Costa MAF, Takahashi MS, Rodrigues ACO, et al. Imaging Review of Normal and Abnormal Skeletal Maturation. Radiographics. 2022;42:861–79.PubMedCrossRef
72.
go back to reference Galloway TL, Johnston MJ, Starsiak MD, Silverman ED. A Unique Case of Increased 18F-FDG Metabolic Activity in the Soft Tissues of the Bilateral Upper Thighs Due to Immunizations in a Pediatric Patient. World J Nucl Med. 2017;16:59–61.PubMedPubMedCentralCrossRef Galloway TL, Johnston MJ, Starsiak MD, Silverman ED. A Unique Case of Increased 18F-FDG Metabolic Activity in the Soft Tissues of the Bilateral Upper Thighs Due to Immunizations in a Pediatric Patient. World J Nucl Med. 2017;16:59–61.PubMedPubMedCentralCrossRef
Metadata
Title
Imaging insights of FDG-PET from neonates to infants
Authors
Ryogo Minamimoto
Yumi Abe
Shinichiro Kamiya
Toshiki Nakane
Rintaro Ito
Katsuhiko Kato
Shinji Naganawa
Publication date
05-03-2025
Publisher
Springer Nature Singapore
Published in
Japanese Journal of Radiology
Print ISSN: 1867-1071
Electronic ISSN: 1867-108X
DOI
https://doi.org/10.1007/s11604-025-01763-z