Skip to main content
Top

05-03-2025 | Pigmentary Retinopathy | Clinical Investigation

Study protocol for a prospective natural history registry investigating the relationships between inflammatory markers and disease progression in retinitis pigmentosa: the RP-PRIMARY study

Authors: Yusuke Murakami, Takahiro Hisai, Sakurako Shimokawa, Masatoshi Fukushima, Kohta Fujiwara, Akie Hirata, Atsushi Takada, Fuyuka Miyahara, Naoki Nakashima, Yuko Kobayakawa, Mitsuru Arima, Go Mawatari, Masataka Ishizu, Tomoko Kaida, Kazunori Miyata, Yasuhiro Ikeda, Koh-Hei Sonoda

Published in: Japanese Journal of Ophthalmology

Login to get access

Abstract

Purpose

The Retinitis Pigmentosa Progression and Inflammatory Marker Registry (RP-PRIMARY) is intended as a prospective observational study aimed at establishing sensitive outcome measures to detect the efficacy of anti-inflammatory agents in future clinical trials. The following is the RP-PRIMARY study protocol.

Study Design

Prospective, multicenter study.

Methods

We will recruit 100 patients with typical RP (any genetic mutation) and the following characteristics: age 20–70 years; mean retinal sensitivity ≥ 10 dB at 12 central points on Humphrey 10-2 visual field tests; central foveal thickness ≤ 250 μm on optical coherence tomography (OCT); and no ocular complications unrelated to RP or serious systemic complications. Early Treatment Diabetic Retinopathy Study (ETDRS). visual acuity, Humphrey 10-2 visual field tests, OCT, and fundus autofluorescence imaging will be performed every 3 months for 2 years. Inflammatory indices such as aqueous flare values, high-sensitivity C-reactive protein (CRP), serum IL-8, and CD14/16 inflammatory monocyte proportion will be measured every year. The primary endpoint will be the progression rate of retinal sensitivity loss on the Humphrey 10-2 visual field tests. The secondary endpoints will be the rate of decline of each parameter and its association with inflammatory indices. Standard-operation-procedure documents were prepared for all study procedures, and consultations with the regulatory agency were conducted to ensure the data reliability for future use in clinical trials.

Conclusions

Detailed registry data on the natural history and inflammatory profile of RP will be useful in designing study protocols for anti-inflammatory therapy for RP and as natural history data for drug applications.
Literature
2.
go back to reference Morizane Y, Morimoto N, Fujiwara A, Kawasaki R, Yamashita H, Ogura Y, et al. Incidence and causes of visual impairment in Japan: the first nation-wide complete enumeration survey of newly certified visually impaired individuals. Jpn J Ophthalmol. 2019;63:26–33.PubMedCrossRef Morizane Y, Morimoto N, Fujiwara A, Kawasaki R, Yamashita H, Ogura Y, et al. Incidence and causes of visual impairment in Japan: the first nation-wide complete enumeration survey of newly certified visually impaired individuals. Jpn J Ophthalmol. 2019;63:26–33.PubMedCrossRef
3.
go back to reference Matoba R, Morimoto N, Kawasaki R, Fujiwara M, Kanenaga K, Yamashita H, et al. A nationwide survey of newly certified visually impaired individuals in Japan for the fiscal year 2019: impact of the revision of criteria for visual impairment certification. Jpn J Ophthalmol. 2023;67:346–52.PubMedCrossRef Matoba R, Morimoto N, Kawasaki R, Fujiwara M, Kanenaga K, Yamashita H, et al. A nationwide survey of newly certified visually impaired individuals in Japan for the fiscal year 2019: impact of the revision of criteria for visual impairment certification. Jpn J Ophthalmol. 2023;67:346–52.PubMedCrossRef
4.
go back to reference Komeima K, Rogers BS, Lu L, Campochiaro PA. Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci U S A. 2006;103:11300–5.PubMedPubMedCentralCrossRef Komeima K, Rogers BS, Lu L, Campochiaro PA. Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci U S A. 2006;103:11300–5.PubMedPubMedCentralCrossRef
5.
go back to reference Campochiaro PA, Mir TA. The mechanism of cone cell death in retinitis pigmentosa. Prog Retin Eye Res. 2018;62:24–37.PubMedCrossRef Campochiaro PA, Mir TA. The mechanism of cone cell death in retinitis pigmentosa. Prog Retin Eye Res. 2018;62:24–37.PubMedCrossRef
6.
go back to reference Punzo C, Kornacker K, Cepko CL. Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci. 2009;12:44–52.PubMedCrossRef Punzo C, Kornacker K, Cepko CL. Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci. 2009;12:44–52.PubMedCrossRef
7.
go back to reference Ait-Ali N, Fridlich R, Millet-Puel G, Clerin E, Delalande F, Jaillard C, et al. Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell. 2015;161:817–32.PubMedCrossRef Ait-Ali N, Fridlich R, Millet-Puel G, Clerin E, Delalande F, Jaillard C, et al. Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell. 2015;161:817–32.PubMedCrossRef
8.
go back to reference Yoshida N, Ikeda Y, Notomi S, Ishikawa K, Murakami Y, Hisatomi T, et al. Clinical evidence of sustained chronic inflammatory reaction in retinitis pigmentosa. Ophthalmology. 2013;120:100–5.PubMedCrossRef Yoshida N, Ikeda Y, Notomi S, Ishikawa K, Murakami Y, Hisatomi T, et al. Clinical evidence of sustained chronic inflammatory reaction in retinitis pigmentosa. Ophthalmology. 2013;120:100–5.PubMedCrossRef
9.
go back to reference Wang SK, Xue Y, Rana P, Hong CM, Cepko CL. Soluble CX3CL1 gene therapy improves cone survival and function in mouse models of retinitis pigmentosa. Proc Natl Acad Sci U S A. 2019;116:10140–9.PubMedPubMedCentralCrossRef Wang SK, Xue Y, Rana P, Hong CM, Cepko CL. Soluble CX3CL1 gene therapy improves cone survival and function in mouse models of retinitis pigmentosa. Proc Natl Acad Sci U S A. 2019;116:10140–9.PubMedPubMedCentralCrossRef
10.
go back to reference Murakami Y, Ishikawa K, Nakao S, Sonoda KH. Innate immune response in retinal homeostasis and inflammatory disorders. Prog Retin Eye Res. 2020;74:100778.PubMedCrossRef Murakami Y, Ishikawa K, Nakao S, Sonoda KH. Innate immune response in retinal homeostasis and inflammatory disorders. Prog Retin Eye Res. 2020;74:100778.PubMedCrossRef
11.
go back to reference Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390:849–60.PubMedPubMedCentralCrossRef Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390:849–60.PubMedPubMedCentralCrossRef
12.
go back to reference Lam BL, Pennesi ME, Kay CN, Panda S, Gow JA, Zhao G, et al. Assessment of visual function with cotoretigene toliparvovec in X-linked retinitis pigmentosa in the randomized XIRIUS phase 2/3 study. Ophthalmology. 2024;131:1083–93.PubMedCrossRef Lam BL, Pennesi ME, Kay CN, Panda S, Gow JA, Zhao G, et al. Assessment of visual function with cotoretigene toliparvovec in X-linked retinitis pigmentosa in the randomized XIRIUS phase 2/3 study. Ophthalmology. 2024;131:1083–93.PubMedCrossRef
13.
go back to reference Sahel JA, Boulanger-Scemama E, Pagot C, Arleo A, Galluppi F, Martel JN, et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat Med. 2021;27:1223–9.PubMedCrossRef Sahel JA, Boulanger-Scemama E, Pagot C, Arleo A, Galluppi F, Martel JN, et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat Med. 2021;27:1223–9.PubMedCrossRef
14.
go back to reference Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385:509–16.PubMedCrossRef Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385:509–16.PubMedCrossRef
15.
go back to reference Liu Y, Chen SJ, Li SY, Qu LH, Meng XH, Wang Y, et al. Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients. Stem Cell Res Ther. 2017;8:209.PubMedPubMedCentralCrossRef Liu Y, Chen SJ, Li SY, Qu LH, Meng XH, Wang Y, et al. Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients. Stem Cell Res Ther. 2017;8:209.PubMedPubMedCentralCrossRef
16.
go back to reference Hirami Y, Mandai M, Sugita S, Maeda A, Maeda T, Yamamoto M, et al. Safety and stable survival of stem-cell-derived retinal organoid for 2 years in patients with retinitis pigmentosa. Cell Stem Cell. 2023;30:1585–96. e6.PubMedCrossRef Hirami Y, Mandai M, Sugita S, Maeda A, Maeda T, Yamamoto M, et al. Safety and stable survival of stem-cell-derived retinal organoid for 2 years in patients with retinitis pigmentosa. Cell Stem Cell. 2023;30:1585–96. e6.PubMedCrossRef
17.
go back to reference Dave AD, Chen KG, Chiang TT, Singaravelu J, Alvarez JA, Wong WT, et al. Oral minocycline for the treatment of retinitis pigmentosa-associated cystoid macular edema: results of a phase I/II clinical trial. Graefes Arch Clin Exp Ophthalmol. 2023;261:2209–20.PubMedCrossRef Dave AD, Chen KG, Chiang TT, Singaravelu J, Alvarez JA, Wong WT, et al. Oral minocycline for the treatment of retinitis pigmentosa-associated cystoid macular edema: results of a phase I/II clinical trial. Graefes Arch Clin Exp Ophthalmol. 2023;261:2209–20.PubMedCrossRef
18.
go back to reference Maguire AM, Russell S, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy, safety, and durability of voretigene neparvovec-rzyl in RPE65 mutation-associated inherited retinal dystrophy: results of phase 1 and 3 trials. Ophthalmology. 2019;126:1273–85.PubMedCrossRef Maguire AM, Russell S, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy, safety, and durability of voretigene neparvovec-rzyl in RPE65 mutation-associated inherited retinal dystrophy: results of phase 1 and 3 trials. Ophthalmology. 2019;126:1273–85.PubMedCrossRef
19.
go back to reference Pierce EA, Aleman TS, Jayasundera KT, Ashimatey BS, Kim K, Rashid A, et al. Gene editing for CEP290-associated retinal degeneration. N Engl J Med. 2024;390:1972–84.PubMedPubMedCentralCrossRef Pierce EA, Aleman TS, Jayasundera KT, Ashimatey BS, Kim K, Rashid A, et al. Gene editing for CEP290-associated retinal degeneration. N Engl J Med. 2024;390:1972–84.PubMedPubMedCentralCrossRef
20.
go back to reference Scholl HP, Strauss RW, Singh MS, Dalkara D, Roska B, Picaud S, et al. Emerging therapies for inherited retinal degeneration. Sci Transl Med. 2016;8:368rv6.PubMedCrossRef Scholl HP, Strauss RW, Singh MS, Dalkara D, Roska B, Picaud S, et al. Emerging therapies for inherited retinal degeneration. Sci Transl Med. 2016;8:368rv6.PubMedCrossRef
21.
go back to reference Dulla K, Slijkerman R, van Diepen HC, Albert S, Dona M, Beumer W, et al. Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations. Mol Ther. 2021;29:2441–55.PubMedPubMedCentralCrossRef Dulla K, Slijkerman R, van Diepen HC, Albert S, Dona M, Beumer W, et al. Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations. Mol Ther. 2021;29:2441–55.PubMedPubMedCentralCrossRef
22.
go back to reference Funatsu J, Murakami Y, Shimokawa S, Nakatake S, Fujiwara K, Okita A, et al. Circulating inflammatory monocytes oppose microglia and contribute to cone cell death in retinitis pigmentosa. PNAS Nexus. 2022;1:pgac003.PubMedPubMedCentralCrossRef Funatsu J, Murakami Y, Shimokawa S, Nakatake S, Fujiwara K, Okita A, et al. Circulating inflammatory monocytes oppose microglia and contribute to cone cell death in retinitis pigmentosa. PNAS Nexus. 2022;1:pgac003.PubMedPubMedCentralCrossRef
23.
go back to reference Funatsu J, Murakami Y, Nakatake S, Akiyama M, Fujiwara K, Shimokawa S, et al. Direct comparison of retinal structure and function in retinitis pigmentosa by co-registering microperimetry and optical coherence tomography. PLoS ONE. 2019;14:e0226097.PubMedPubMedCentralCrossRef Funatsu J, Murakami Y, Nakatake S, Akiyama M, Fujiwara K, Shimokawa S, et al. Direct comparison of retinal structure and function in retinitis pigmentosa by co-registering microperimetry and optical coherence tomography. PLoS ONE. 2019;14:e0226097.PubMedPubMedCentralCrossRef
24.
go back to reference Fujiwara K, Ikeda Y, Murakami Y, Tachibana T, Funatsu J, Koyanagi Y, et al. Assessment of central visual function in patients with retinitis pigmentosa. Sci Rep. 2018;8:8070.PubMedPubMedCentralCrossRef Fujiwara K, Ikeda Y, Murakami Y, Tachibana T, Funatsu J, Koyanagi Y, et al. Assessment of central visual function in patients with retinitis pigmentosa. Sci Rep. 2018;8:8070.PubMedPubMedCentralCrossRef
25.
go back to reference Taylor LJ, Josan AS, Jolly JK, MacLaren RE. Microperimetry as an outcome measure in RPGR-associated retinitis pigmentosa clinical trials. Transl Vis Sci Technol. 2023;12:4.PubMedPubMedCentralCrossRef Taylor LJ, Josan AS, Jolly JK, MacLaren RE. Microperimetry as an outcome measure in RPGR-associated retinitis pigmentosa clinical trials. Transl Vis Sci Technol. 2023;12:4.PubMedPubMedCentralCrossRef
26.
go back to reference von Krusenstiern L, Liu J, Liao E, Gow JA, Chen G, Ong T, et al. Changes in retinal sensitivity associated with cotoretigene toliparvovec in X-linked retinitis pigmentosa with RPGR gene variations. JAMA Ophthalmol. 2023;141:275–83.CrossRef von Krusenstiern L, Liu J, Liao E, Gow JA, Chen G, Ong T, et al. Changes in retinal sensitivity associated with cotoretigene toliparvovec in X-linked retinitis pigmentosa with RPGR gene variations. JAMA Ophthalmol. 2023;141:275–83.CrossRef
27.
go back to reference Koyanagi Y, Akiyama M, Nishiguchi KM, Momozawa Y, Kamatani Y, Takata S, et al. Genetic characteristics of retinitis pigmentosa in 1204 Japanese patients. J Med Genet. 2019;56:662–70.PubMedCrossRef Koyanagi Y, Akiyama M, Nishiguchi KM, Momozawa Y, Kamatani Y, Takata S, et al. Genetic characteristics of retinitis pigmentosa in 1204 Japanese patients. J Med Genet. 2019;56:662–70.PubMedCrossRef
28.
go back to reference Goto K, Koyanagi Y, Akiyama M, Murakami Y, Fukushima M, Fujiwara K, et al. Disease-specific variant interpretation highlighted the genetic findings in 2325 Japanese patients with retinitis pigmentosa and allied diseases. J Med Genet. 2024;61:613–20.PubMedCrossRef Goto K, Koyanagi Y, Akiyama M, Murakami Y, Fukushima M, Fujiwara K, et al. Disease-specific variant interpretation highlighted the genetic findings in 2325 Japanese patients with retinitis pigmentosa and allied diseases. J Med Genet. 2024;61:613–20.PubMedCrossRef
29.
go back to reference Ikeda Y, Yoshida N, Notomi S, Murakami Y, Hisatomi T, Enaida H, et al. Therapeutic effect of prolonged treatment with topical dorzolamide for cystoid macular oedema in patients with retinitis pigmentosa. Br J Ophthalmol. 2013;97:1187–91.PubMedCrossRef Ikeda Y, Yoshida N, Notomi S, Murakami Y, Hisatomi T, Enaida H, et al. Therapeutic effect of prolonged treatment with topical dorzolamide for cystoid macular oedema in patients with retinitis pigmentosa. Br J Ophthalmol. 2013;97:1187–91.PubMedCrossRef
30.
go back to reference Strauss RW, Ho A, Munoz B, Cideciyan AV, Sahel JA, Sunness JS, et al. The natural history of the progression of atrophy secondary to Stargardt disease (ProgStar) studies: design and baseline characteristics: ProgStar Report 1. Ophthalmology. 2016;123:817–28.PubMedCrossRef Strauss RW, Ho A, Munoz B, Cideciyan AV, Sahel JA, Sunness JS, et al. The natural history of the progression of atrophy secondary to Stargardt disease (ProgStar) studies: design and baseline characteristics: ProgStar Report 1. Ophthalmology. 2016;123:817–28.PubMedCrossRef
31.
go back to reference Fujinami K, Strauss RW, Chiang JP, Audo IS, Bernstein PS, Birch DG, et al. Detailed genetic characteristics of an international large cohort of patients with Stargardt disease: ProgStar study report 8. Br J Ophthalmol. 2019;103:390–7.PubMedCrossRef Fujinami K, Strauss RW, Chiang JP, Audo IS, Bernstein PS, Birch DG, et al. Detailed genetic characteristics of an international large cohort of patients with Stargardt disease: ProgStar study report 8. Br J Ophthalmol. 2019;103:390–7.PubMedCrossRef
32.
go back to reference Schonbach EM, Strauss RW, Ibrahim MA, Janes JL, Birch DG, Cideciyan AV, et al. Faster sensitivity loss around dense scotomas than for overall macular sensitivity in Stargardt disease: ProgStar Report 14. Am J Ophthalmol. 2020;216:219–25.PubMedCrossRef Schonbach EM, Strauss RW, Ibrahim MA, Janes JL, Birch DG, Cideciyan AV, et al. Faster sensitivity loss around dense scotomas than for overall macular sensitivity in Stargardt disease: ProgStar Report 14. Am J Ophthalmol. 2020;216:219–25.PubMedCrossRef
33.
go back to reference Schonbach EM, Strauss RW, Cattaneo M, Fujinami K, Birch DG, Cideciyan AV, et al. Longitudinal changes of fixation stability and location within 24 months in Stargardt disease: ProgStar Report 16. Am J Ophthalmol. 2022;233:78–89.PubMedCrossRef Schonbach EM, Strauss RW, Cattaneo M, Fujinami K, Birch DG, Cideciyan AV, et al. Longitudinal changes of fixation stability and location within 24 months in Stargardt disease: ProgStar Report 16. Am J Ophthalmol. 2022;233:78–89.PubMedCrossRef
34.
go back to reference Lad EM, Duncan JL, Liang W, Maguire MG, Ayala AR, Audo I, et al. Baseline microperimetry and OCT in the RUSH2A study: structure-function association and correlation with disease severity. Am J Ophthalmol. 2022;244:98–116.PubMedPubMedCentralCrossRef Lad EM, Duncan JL, Liang W, Maguire MG, Ayala AR, Audo I, et al. Baseline microperimetry and OCT in the RUSH2A study: structure-function association and correlation with disease severity. Am J Ophthalmol. 2022;244:98–116.PubMedPubMedCentralCrossRef
35.
go back to reference Hufnagel RB, Liang W, Duncan JL, Brewer CC, Audo I, Ayala AR, et al. Tissue-specific genotype-phenotype correlations among USH2A-related disorders in the RUSH2A study. Hum Mutat. 2022;43:613–24.PubMedPubMedCentralCrossRef Hufnagel RB, Liang W, Duncan JL, Brewer CC, Audo I, Ayala AR, et al. Tissue-specific genotype-phenotype correlations among USH2A-related disorders in the RUSH2A study. Hum Mutat. 2022;43:613–24.PubMedPubMedCentralCrossRef
36.
go back to reference Duncan JL, Cheng P, Maguire MG, Ayala AA, Birch DG, Cheetham JK, et al. Static perimetry in the rate of progression in USH2A-related retinal degeneration (RUSH2A) study: assessment through 2 years. Am J Ophthalmol. 2023;250:103–10.PubMedPubMedCentralCrossRef Duncan JL, Cheng P, Maguire MG, Ayala AA, Birch DG, Cheetham JK, et al. Static perimetry in the rate of progression in USH2A-related retinal degeneration (RUSH2A) study: assessment through 2 years. Am J Ophthalmol. 2023;250:103–10.PubMedPubMedCentralCrossRef
37.
go back to reference Lee SY, Usui S, Zafar AB, Oveson BC, Jo YJ, Lu L, et al. N-acetylcysteine promotes long-term survival of cones in a model of retinitis pigmentosa. J Cell Physiol. 2011;226:1843–9.PubMedCrossRef Lee SY, Usui S, Zafar AB, Oveson BC, Jo YJ, Lu L, et al. N-acetylcysteine promotes long-term survival of cones in a model of retinitis pigmentosa. J Cell Physiol. 2011;226:1843–9.PubMedCrossRef
38.
go back to reference Campochiaro PA, Iftikhar M, Hafiz G, Akhlaq A, Tsai G, Wehling D, et al. Oral N-acetylcysteine improves cone function in retinitis pigmentosa patients in phase I trial. J Clin Invest. 2020;130:1527–41.PubMedPubMedCentralCrossRef Campochiaro PA, Iftikhar M, Hafiz G, Akhlaq A, Tsai G, Wehling D, et al. Oral N-acetylcysteine improves cone function in retinitis pigmentosa patients in phase I trial. J Clin Invest. 2020;130:1527–41.PubMedPubMedCentralCrossRef
39.
go back to reference Garway-Heath DF, Crabb DP, Bunce C, Lascaratos G, Amalfitano F, Anand N, et al. Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet. 2015;385:1295–304.PubMedCrossRef Garway-Heath DF, Crabb DP, Bunce C, Lascaratos G, Amalfitano F, Anand N, et al. Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet. 2015;385:1295–304.PubMedCrossRef
40.
go back to reference Gupta N, Brown KE, Milam AH. Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res. 2003;76:463–71.PubMedCrossRef Gupta N, Brown KE, Milam AH. Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res. 2003;76:463–71.PubMedCrossRef
41.
go back to reference Miura G, Sugawara T, Kawasaki Y, Tatsumi T, Nizawa T, Baba T, et al. Clinical trial to evaluate safety and efficacy of transdermal electrical stimulation on visual functions of patients with retinitis pigmentosa. Sci Rep. 2019;9:11668.PubMedPubMedCentralCrossRef Miura G, Sugawara T, Kawasaki Y, Tatsumi T, Nizawa T, Baba T, et al. Clinical trial to evaluate safety and efficacy of transdermal electrical stimulation on visual functions of patients with retinitis pigmentosa. Sci Rep. 2019;9:11668.PubMedPubMedCentralCrossRef
43.
go back to reference Zabel MK, Zhao L, Zhang Y, Gonzalez SR, Ma W, Wang X, et al. Microglial phagocytosis and activation underlying photoreceptor degeneration is regulated by CX3CL1-CX3CR1 signaling in a mouse model of retinitis pigmentosa. Glia. 2016;64:1479–91.PubMedPubMedCentralCrossRef Zabel MK, Zhao L, Zhang Y, Gonzalez SR, Ma W, Wang X, et al. Microglial phagocytosis and activation underlying photoreceptor degeneration is regulated by CX3CL1-CX3CR1 signaling in a mouse model of retinitis pigmentosa. Glia. 2016;64:1479–91.PubMedPubMedCentralCrossRef
44.
go back to reference Ma W, Silverman SM, Zhao L, Villasmil R, Campos MM, Amaral J, et al. Absence of TGFbeta signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. Elife. 2019;8:e42049.PubMedPubMedCentralCrossRef Ma W, Silverman SM, Zhao L, Villasmil R, Campos MM, Amaral J, et al. Absence of TGFbeta signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. Elife. 2019;8:e42049.PubMedPubMedCentralCrossRef
45.
go back to reference Wang SK, Xue Y, Cepko CL. Microglia modulation by TGF-beta1 protects cones in mouse models of retinal degeneration. J Clin Invest. 2020;130:4360–9.PubMedPubMedCentral Wang SK, Xue Y, Cepko CL. Microglia modulation by TGF-beta1 protects cones in mouse models of retinal degeneration. J Clin Invest. 2020;130:4360–9.PubMedPubMedCentral
46.
go back to reference Paschalis EI, Lei F, Zhou C, Kapoulea V, Dana R, Chodosh J, et al. Permanent neuroglial remodeling of the retina following infiltration of CSF1R inhibition-resistant peripheral monocytes. Proc Natl Acad Sci U S A. 2018;115:E11359–68.PubMedPubMedCentralCrossRef Paschalis EI, Lei F, Zhou C, Kapoulea V, Dana R, Chodosh J, et al. Permanent neuroglial remodeling of the retina following infiltration of CSF1R inhibition-resistant peripheral monocytes. Proc Natl Acad Sci U S A. 2018;115:E11359–68.PubMedPubMedCentralCrossRef
47.
go back to reference Murakami Y, Ikeda Y, Nakatake S, Fujiwara K, Tachibana T, Yoshida N, et al. C-Reactive protein and progression of vision loss in retinitis pigmentosa. Acta Ophthalmol. 2018;96:e174–9.PubMedCrossRef Murakami Y, Ikeda Y, Nakatake S, Fujiwara K, Tachibana T, Yoshida N, et al. C-Reactive protein and progression of vision loss in retinitis pigmentosa. Acta Ophthalmol. 2018;96:e174–9.PubMedCrossRef
48.
go back to reference Okita A, Murakami Y, Shimokawa S, Funatsu J, Fujiwara K, Nakatake S, et al. Changes of serum inflammatory molecules and their relationships with visual function in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2020;61:30.PubMedPubMedCentralCrossRef Okita A, Murakami Y, Shimokawa S, Funatsu J, Fujiwara K, Nakatake S, et al. Changes of serum inflammatory molecules and their relationships with visual function in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2020;61:30.PubMedPubMedCentralCrossRef
49.
go back to reference Miyake M, Akiyama M, Kashiwagi K, Sakamoto T, Oshika T. Japan ocular imaging registry: a national ophthalmology real-world database. Jpn J Ophthalmol. 2022;66:499–503.PubMedCrossRef Miyake M, Akiyama M, Kashiwagi K, Sakamoto T, Oshika T. Japan ocular imaging registry: a national ophthalmology real-world database. Jpn J Ophthalmol. 2022;66:499–503.PubMedCrossRef
50.
Metadata
Title
Study protocol for a prospective natural history registry investigating the relationships between inflammatory markers and disease progression in retinitis pigmentosa: the RP-PRIMARY study
Authors
Yusuke Murakami
Takahiro Hisai
Sakurako Shimokawa
Masatoshi Fukushima
Kohta Fujiwara
Akie Hirata
Atsushi Takada
Fuyuka Miyahara
Naoki Nakashima
Yuko Kobayakawa
Mitsuru Arima
Go Mawatari
Masataka Ishizu
Tomoko Kaida
Kazunori Miyata
Yasuhiro Ikeda
Koh-Hei Sonoda
Publication date
05-03-2025
Publisher
Springer Japan
Published in
Japanese Journal of Ophthalmology
Print ISSN: 0021-5155
Electronic ISSN: 1613-2246
DOI
https://doi.org/10.1007/s10384-025-01179-2