Skip to main content
Top
Published in:

16-05-2024 | Pharmacokinetics | Review Article

Personalized Dosing of Medicines for Children: A Primer on Pediatric Pharmacometrics for Clinicians

Authors: Kevin Meesters, Violeta Balbas-Martinez, Karel Allegaert, Kevin J. Downes, Robin Michelet

Published in: Pediatric Drugs | Issue 4/2024

Login to get access

Abstract

The widespread use of drugs for unapproved purposes remains common in children, primarily attributable to practical, ethical, and financial constraints associated with pediatric drug research. Pharmacometrics, the scientific discipline that involves the application of mathematical models to understand and quantify drug effects, holds promise in advancing pediatric pharmacotherapy by expediting drug development, extending applications, and personalizing dosing. In this review, we delineate the principles of pharmacometrics, and explore its clinical applications and prospects. The fundamental aspect of any pharmacometric analysis lies in the selection of appropriate methods for quantifying pharmacokinetics and pharmacodynamics. Population pharmacokinetic modeling is a data-driven method (‘top-down’ approach) to approximate population-level pharmacokinetic parameters, while identifying factors contributing to inter-individual variability. Model-informed precision dosing is increasingly used to leverage population pharmacokinetic models and patient data, to formulate individualized dosing recommendations. Physiologically based pharmacokinetic models integrate physicochemical drug properties with biological parameters (‘bottom-up approach’), and is particularly valuable in situations with limited clinical data, such as early drug development, assessing drug–drug interactions, or adapting dosing for patients with specific comorbidities. The effective implementation of these complex models hinges on strong collaboration between clinicians and pharmacometricians, given the pivotal role of data availability. Promising advancements aimed at improving data availability encompass innovative techniques such as opportunistic sampling, minimally invasive sampling approaches, microdialysis, and in vitro investigations. Additionally, ongoing research efforts to enhance measurement instruments for evaluating pharmacodynamics responses, including biomarkers and clinical scoring systems, are expected to significantly bolster our capacity to understand drug effects in children.
Literature
1.
go back to reference Subramanian D, Cruz CV, Garcia-Bournissen F. Systematic review of early phase pediatric clinical pharmacology trials. J Pediatr Pharmacol Ther. 2022;27:609–17.PubMedPubMedCentral Subramanian D, Cruz CV, Garcia-Bournissen F. Systematic review of early phase pediatric clinical pharmacology trials. J Pediatr Pharmacol Ther. 2022;27:609–17.PubMedPubMedCentral
3.
go back to reference Schupmann W, Li X, Wendler D. Acceptable risks in pediatric research: views of the US public. Pediatrics. 2021;149:1–10. Schupmann W, Li X, Wendler D. Acceptable risks in pediatric research: views of the US public. Pediatrics. 2021;149:1–10.
4.
go back to reference Burckart GJ, Kim C. The revolution in pediatric drug development and drug use: therapeutic orphans no more. J Pediatr Pharmacol Ther. 2020;25:565–73.PubMedPubMedCentral Burckart GJ, Kim C. The revolution in pediatric drug development and drug use: therapeutic orphans no more. J Pediatr Pharmacol Ther. 2020;25:565–73.PubMedPubMedCentral
5.
go back to reference Bourgeois FT, Kesselheim AS. Promoting pediatric drug research and labeling: outcomes of legislation. N Engl J Med. 2022;381(9):875–81.CrossRef Bourgeois FT, Kesselheim AS. Promoting pediatric drug research and labeling: outcomes of legislation. N Engl J Med. 2022;381(9):875–81.CrossRef
6.
go back to reference Baum VC, Bax R, Heon D, Yang Z, Sakiyama M. Pediatric drug regulation: international perspectives. Paediatr Anaesth. 2019;29:572–82.PubMedCrossRef Baum VC, Bax R, Heon D, Yang Z, Sakiyama M. Pediatric drug regulation: international perspectives. Paediatr Anaesth. 2019;29:572–82.PubMedCrossRef
7.
go back to reference Moore-Hepburn C, Rieder M. Paediatric pharmacotherapy and drug regulation: moving past the therapeutic orphan. Br J Clin Pharmacol. 2022;88:4250–7.PubMedCrossRef Moore-Hepburn C, Rieder M. Paediatric pharmacotherapy and drug regulation: moving past the therapeutic orphan. Br J Clin Pharmacol. 2022;88:4250–7.PubMedCrossRef
8.
go back to reference Sharif R, Aamir M, Shakeel F, Faisal S, Khan JA. Pharmacoepidemiological assessment of off-label drug use in pediatric ambulatory departments at four tertiary care hospitals in Pakistan. Trop J Pharm Res. 2020;19:2219–25.CrossRef Sharif R, Aamir M, Shakeel F, Faisal S, Khan JA. Pharmacoepidemiological assessment of off-label drug use in pediatric ambulatory departments at four tertiary care hospitals in Pakistan. Trop J Pharm Res. 2020;19:2219–25.CrossRef
9.
go back to reference Allen HC, Garbe MC, Lees J, Aziz N, Miller JL, Johnson P, et al. Off-label medication use in children, more common than we think: a systematic review of the literature. J Okla State Med Assoc. 2019;111:776–83. Allen HC, Garbe MC, Lees J, Aziz N, Miller JL, Johnson P, et al. Off-label medication use in children, more common than we think: a systematic review of the literature. J Okla State Med Assoc. 2019;111:776–83.
10.
go back to reference Hoon D, Taylor MT, Kapadia P, Gerhard T, Strom BL, Horton DB. Trends in off-label drug use in ambulatory settings: 2006–2015. Pediatrics. 2019;144:1–19.CrossRef Hoon D, Taylor MT, Kapadia P, Gerhard T, Strom BL, Horton DB. Trends in off-label drug use in ambulatory settings: 2006–2015. Pediatrics. 2019;144:1–19.CrossRef
11.
go back to reference Tukayo BLA, Sunderland B, Parsons R, Czarniak P. High prevalence of off-label and unlicensed paediatric prescribing in a hospital in Indonesia during the period Aug–Oct 2014. PLoS ONE. 2020;15:1–13.CrossRef Tukayo BLA, Sunderland B, Parsons R, Czarniak P. High prevalence of off-label and unlicensed paediatric prescribing in a hospital in Indonesia during the period Aug–Oct 2014. PLoS ONE. 2020;15:1–13.CrossRef
12.
go back to reference Yackey K, Stukus K, Cohen D, Kline D, Zhao S, Stanley R. Off-label medication prescribing patterns in pediatrics: an update. Hosp Pediatr. 2019;9:186–93.PubMedCrossRef Yackey K, Stukus K, Cohen D, Kline D, Zhao S, Stanley R. Off-label medication prescribing patterns in pediatrics: an update. Hosp Pediatr. 2019;9:186–93.PubMedCrossRef
13.
go back to reference Hwang TJ, Orenstein L, Kesselheim AS, Bourgeois FT. Completion rate and reporting of mandatory pediatric postmarketing studies under the US Pediatric Research Equity Act. JAMA Pediatr. 2019;173:68–74.PubMedCrossRef Hwang TJ, Orenstein L, Kesselheim AS, Bourgeois FT. Completion rate and reporting of mandatory pediatric postmarketing studies under the US Pediatric Research Equity Act. JAMA Pediatr. 2019;173:68–74.PubMedCrossRef
14.
go back to reference Srivastava A, Bourgeois FT. Evaluation of publication of pediatric drug trials. JAMA Netw Open. 2021;4:14–7.CrossRef Srivastava A, Bourgeois FT. Evaluation of publication of pediatric drug trials. JAMA Netw Open. 2021;4:14–7.CrossRef
15.
go back to reference van den Anker J, Reed MD, Allegaert K, Kearns GL. Developmental changes in pharmacokinetics and pharmacodynamics. J Clin Pharmacol. 2018;58:S10-25.PubMed van den Anker J, Reed MD, Allegaert K, Kearns GL. Developmental changes in pharmacokinetics and pharmacodynamics. J Clin Pharmacol. 2018;58:S10-25.PubMed
16.
go back to reference Smits A, Annaert P, Cavallaro G, De Cock PAJG, de Wildt SN, Kindblom JM, et al. Current knowledge, challenges and innovations in developmental pharmacology: a combined conect4children Expert Group and European Society for Developmental, Perinatal and Paediatric Pharmacology White Paper. Br J Clin Pharmacol. 2022;88:4965–84.PubMedCrossRef Smits A, Annaert P, Cavallaro G, De Cock PAJG, de Wildt SN, Kindblom JM, et al. Current knowledge, challenges and innovations in developmental pharmacology: a combined conect4children Expert Group and European Society for Developmental, Perinatal and Paediatric Pharmacology White Paper. Br J Clin Pharmacol. 2022;88:4965–84.PubMedCrossRef
17.
go back to reference Van Groen BD, Nicolaï J, Kuik AC, Van Cruchten S, Van Peer E, Smits A, et al. Ontogeny of hepatic transporters and drug-metabolizing enzymes in humans and in nonclinical species. Pharmacol Rev. 2021;73:597–678.PubMedCrossRef Van Groen BD, Nicolaï J, Kuik AC, Van Cruchten S, Van Peer E, Smits A, et al. Ontogeny of hepatic transporters and drug-metabolizing enzymes in humans and in nonclinical species. Pharmacol Rev. 2021;73:597–678.PubMedCrossRef
18.
go back to reference Lu H, Rosenbaum S. Developmental pharmacokinetics in pediatric populations. J Pediatr Pharmacol Ther. 2014;19:262–76.PubMedPubMedCentral Lu H, Rosenbaum S. Developmental pharmacokinetics in pediatric populations. J Pediatr Pharmacol Ther. 2014;19:262–76.PubMedPubMedCentral
19.
go back to reference Nicolas JM, Bouzom F, Hugues C, Ungell AL. Oral drug absorption in pediatrics: the intestinal wall, its developmental changes and current tools for predictions. Biopharm Drug Dispos. 2017;38:209–30.PubMedPubMedCentralCrossRef Nicolas JM, Bouzom F, Hugues C, Ungell AL. Oral drug absorption in pediatrics: the intestinal wall, its developmental changes and current tools for predictions. Biopharm Drug Dispos. 2017;38:209–30.PubMedPubMedCentralCrossRef
20.
go back to reference Wanat K. Biological barriers, and the influence of protein binding on the passage of drugs across them. Mol Biol Rep. 2020;47:3221–31.PubMedCrossRef Wanat K. Biological barriers, and the influence of protein binding on the passage of drugs across them. Mol Biol Rep. 2020;47:3221–31.PubMedCrossRef
22.
go back to reference Debotton N, Dahan A. A mechanistic approach to understanding oral drug absorption in pediatrics: an overview of fundamentals. Drug Discov Today. 2014;19:1322–36.PubMedCrossRef Debotton N, Dahan A. A mechanistic approach to understanding oral drug absorption in pediatrics: an overview of fundamentals. Drug Discov Today. 2014;19:1322–36.PubMedCrossRef
24.
go back to reference Bansal N, Momin S, Bansal R, Gurram Venkata SKR, Ruser L, Yusuf K. Pharmacokinetics of drugs: newborn perspective. Pediatr Med. 2024;7:19. Bansal N, Momin S, Bansal R, Gurram Venkata SKR, Ruser L, Yusuf K. Pharmacokinetics of drugs: newborn perspective. Pediatr Med. 2024;7:19.
25.
go back to reference Kiss M, Mbasu R, Nicolaï J, Barnouin K, Kotian A, Mooij MG, et al. Ontogeny of small intestinal drug transporters and metabolizing enzymes based on targeted quantitative proteomics. Drug Metab Dispos. 2021;49:1038–46.PubMedCrossRef Kiss M, Mbasu R, Nicolaï J, Barnouin K, Kotian A, Mooij MG, et al. Ontogeny of small intestinal drug transporters and metabolizing enzymes based on targeted quantitative proteomics. Drug Metab Dispos. 2021;49:1038–46.PubMedCrossRef
27.
28.
go back to reference Gattineni J, Baum M. Developmental changes in renal tubular transport: an overview. Pediatr Nephrol. 2015;30:2085–98.PubMedCrossRef Gattineni J, Baum M. Developmental changes in renal tubular transport: an overview. Pediatr Nephrol. 2015;30:2085–98.PubMedCrossRef
29.
go back to reference Mulla H. Understanding developmental pharmacodynamics: importance for drug development and clinical practice. Pediatr Drugs. 2010;12:223–33.CrossRef Mulla H. Understanding developmental pharmacodynamics: importance for drug development and clinical practice. Pediatr Drugs. 2010;12:223–33.CrossRef
30.
go back to reference Ross RK, Kinlaw AC, Herzog MM, Funk MJ, Gerber JS. Fluoroquinolone antibiotics and tendon injury in adolescents. Pediatrics. 2021;147: e2020033316.PubMedCrossRef Ross RK, Kinlaw AC, Herzog MM, Funk MJ, Gerber JS. Fluoroquinolone antibiotics and tendon injury in adolescents. Pediatrics. 2021;147: e2020033316.PubMedCrossRef
31.
go back to reference Pacifici GM. Clinical Pharmacology of Digoxin in Infants and Children. Clin Med. 2021;3(2):1036. Pacifici GM. Clinical Pharmacology of Digoxin in Infants and Children. Clin Med. 2021;3(2):1036.
33.
go back to reference Liu XI, Schuette P, Burckart GJ, Green DJ, La J, Burnham JM, et al. A comparison of pediatric and adult safety studies for antipsychotic and antidepressant drugs submitted to the United States Food and Drug Administration. J Pediatr. 2019;208:236-242.e3.PubMedPubMedCentralCrossRef Liu XI, Schuette P, Burckart GJ, Green DJ, La J, Burnham JM, et al. A comparison of pediatric and adult safety studies for antipsychotic and antidepressant drugs submitted to the United States Food and Drug Administration. J Pediatr. 2019;208:236-242.e3.PubMedPubMedCentralCrossRef
34.
go back to reference Plebani M. Errors in clinical laboratories or errors in laboratory medicine? Clin Chem Lab Med. 2006;44:750–9.PubMedCrossRef Plebani M. Errors in clinical laboratories or errors in laboratory medicine? Clin Chem Lab Med. 2006;44:750–9.PubMedCrossRef
35.
go back to reference Himebauch AS, Sankar WN, Flynn JM, Sisko MT, Moorthy GS, Gerber JS, et al. Skeletal muscle and plasma concentrations of cefazolin during complex paediatric spinal surgery. Br J Anaesth. 2016;117:87–94.PubMedPubMedCentralCrossRef Himebauch AS, Sankar WN, Flynn JM, Sisko MT, Moorthy GS, Gerber JS, et al. Skeletal muscle and plasma concentrations of cefazolin during complex paediatric spinal surgery. Br J Anaesth. 2016;117:87–94.PubMedPubMedCentralCrossRef
36.
go back to reference Dalmage MR, Nwankwo A, Sur H, Nduom E, Jackson S. A scoping review of pediatric microdialysis: a missed opportunity for microdialysis in the pediatric neuro-oncology setting. Neurooncol Adv. 2022;4:1–8. Dalmage MR, Nwankwo A, Sur H, Nduom E, Jackson S. A scoping review of pediatric microdialysis: a missed opportunity for microdialysis in the pediatric neuro-oncology setting. Neurooncol Adv. 2022;4:1–8.
37.
go back to reference Ketharanathan N, Yamamoto Y, Rohlwink UK, Wildschut ED, Mathôt RAA, De Lange ECM, et al. Combining brain microdialysis and translational pharmacokinetic modeling to predict drug concentrations in pediatric severe traumatic brain injury: the next step toward evidence-based pharmacotherapy? J Neurotrauma. 2019;36:111–7.PubMedCrossRef Ketharanathan N, Yamamoto Y, Rohlwink UK, Wildschut ED, Mathôt RAA, De Lange ECM, et al. Combining brain microdialysis and translational pharmacokinetic modeling to predict drug concentrations in pediatric severe traumatic brain injury: the next step toward evidence-based pharmacotherapy? J Neurotrauma. 2019;36:111–7.PubMedCrossRef
38.
go back to reference Dilo A, Daali Y, Desmeules J, Chalandon Y, Uppugunduri CRS, Ansari M. Comparing dried blood spots and plasma concentrations for busulfan therapeutic drug monitoring in children. Ther Drug Monit. 2020;42:111–7.PubMedCrossRef Dilo A, Daali Y, Desmeules J, Chalandon Y, Uppugunduri CRS, Ansari M. Comparing dried blood spots and plasma concentrations for busulfan therapeutic drug monitoring in children. Ther Drug Monit. 2020;42:111–7.PubMedCrossRef
39.
go back to reference Klak A, Pauwels S, Vermeersch P. Preanalytical considerations in therapeutic drug monitoring of immunosuppressants with dried blood spots. Diagnosis. 2019;6:57–68.PubMedCrossRef Klak A, Pauwels S, Vermeersch P. Preanalytical considerations in therapeutic drug monitoring of immunosuppressants with dried blood spots. Diagnosis. 2019;6:57–68.PubMedCrossRef
40.
go back to reference Doriety LJ, Farrington EA. Urine drug screening: what pediatric clinicians need to know to optimize patient care. J Pediatr Health Care. 2021;35:449–55.PubMedCrossRef Doriety LJ, Farrington EA. Urine drug screening: what pediatric clinicians need to know to optimize patient care. J Pediatr Health Care. 2021;35:449–55.PubMedCrossRef
41.
go back to reference Hutchinson L, Sinclair M, Reid B, Burnett K, Callan B. A descriptive systematic review of salivary therapeutic drug monitoring in neonates and infants. Br J Clin Pharmacol. 2018;84:1089–108.PubMedPubMedCentralCrossRef Hutchinson L, Sinclair M, Reid B, Burnett K, Callan B. A descriptive systematic review of salivary therapeutic drug monitoring in neonates and infants. Br J Clin Pharmacol. 2018;84:1089–108.PubMedPubMedCentralCrossRef
42.
go back to reference Kuwayama K, Miyaguchi H, Iwata YT, Kanamori T, Tsujikawa K, Yamamuro T, et al. Time-course measurements of drug concentrations in hair and toenails after single administrations of pharmaceutical products. Drug Test Anal. 2017;9:571–7.PubMedCrossRef Kuwayama K, Miyaguchi H, Iwata YT, Kanamori T, Tsujikawa K, Yamamuro T, et al. Time-course measurements of drug concentrations in hair and toenails after single administrations of pharmaceutical products. Drug Test Anal. 2017;9:571–7.PubMedCrossRef
43.
go back to reference Sabir AM, Moloy M, Bhasin PS. Hplc method development and validation: a review. Int Res J Pharm. 2016;4:39–46.CrossRef Sabir AM, Moloy M, Bhasin PS. Hplc method development and validation: a review. Int Res J Pharm. 2016;4:39–46.CrossRef
44.
go back to reference Decosterd LA, Widmer N, André P, Aouri M, Buclin T. The emerging role of multiplex tandem mass spectrometry analysis for therapeutic drug monitoring and personalized medicine. TrAC. 2016;84:5–13. Decosterd LA, Widmer N, André P, Aouri M, Buclin T. The emerging role of multiplex tandem mass spectrometry analysis for therapeutic drug monitoring and personalized medicine. TrAC. 2016;84:5–13.
45.
go back to reference Dasgupta A. Limitations of immunoassays used for therapeutic drug monitoring of immunosuppressants. In: Personalized immunosuppression in transplantation role of biomarker monitoring and therapeutic drug monitoring. Editors: Oellerich M, Dasgupta A. Amsterdam: Elsevier Inc.;2016. Dasgupta A. Limitations of immunoassays used for therapeutic drug monitoring of immunosuppressants. In: Personalized immunosuppression in transplantation role of biomarker monitoring and therapeutic drug monitoring. Editors: Oellerich M, Dasgupta A. Amsterdam: Elsevier Inc.;2016.
46.
go back to reference Aucella F, Lauriola V, Vecchione G, Tiscia GL, Grandone E. Liquid chromatography-tandem mass spectrometry method as the golden standard for therapeutic drug monitoring in renal transplant. J Pharm Biomed Anal. 2013;86:123–6.PubMedCrossRef Aucella F, Lauriola V, Vecchione G, Tiscia GL, Grandone E. Liquid chromatography-tandem mass spectrometry method as the golden standard for therapeutic drug monitoring in renal transplant. J Pharm Biomed Anal. 2013;86:123–6.PubMedCrossRef
47.
go back to reference Cooney L, Loke YK, Golder S, Kirkham J, Jorgensen A, Sinha I, et al. Overview of systematic reviews of therapeutic ranges: methodologies and recommendations for practice. BMC Med Res Methodol. 2017;17:1–9.CrossRef Cooney L, Loke YK, Golder S, Kirkham J, Jorgensen A, Sinha I, et al. Overview of systematic reviews of therapeutic ranges: methodologies and recommendations for practice. BMC Med Res Methodol. 2017;17:1–9.CrossRef
48.
go back to reference Kelly LE, Sinha Y, Barker CIS, Standing JF, Offringa M. Useful pharmacodynamic endpoints in children: selection, measurement, and next steps. Pediatr Res. 2018;83:1095–103.PubMedPubMedCentralCrossRef Kelly LE, Sinha Y, Barker CIS, Standing JF, Offringa M. Useful pharmacodynamic endpoints in children: selection, measurement, and next steps. Pediatr Res. 2018;83:1095–103.PubMedPubMedCentralCrossRef
49.
go back to reference Timsit JF, de Kraker MEA, Sommer H, Weiss E, Bettiol E, Wolkewitz M, et al. Appropriate endpoints for evaluation of new antibiotic therapies for severe infections: a perspective from COMBACTE’s STAT-Net. Intensive Care Med. 2017;43:1002–12.PubMedPubMedCentralCrossRef Timsit JF, de Kraker MEA, Sommer H, Weiss E, Bettiol E, Wolkewitz M, et al. Appropriate endpoints for evaluation of new antibiotic therapies for severe infections: a perspective from COMBACTE’s STAT-Net. Intensive Care Med. 2017;43:1002–12.PubMedPubMedCentralCrossRef
50.
go back to reference Shaikh N, Hoberman A, Paradise JL, Rockette HE, Kurs-Lasky M, Colborn DK, et al. Responsiveness and construct validity of a symptom scale for acute otitis media. Pediatr Infect Dis J. 2009;28:9–12.PubMedCrossRef Shaikh N, Hoberman A, Paradise JL, Rockette HE, Kurs-Lasky M, Colborn DK, et al. Responsiveness and construct validity of a symptom scale for acute otitis media. Pediatr Infect Dis J. 2009;28:9–12.PubMedCrossRef
51.
go back to reference Blussé Van Oud-Alblas HJ, Brill MJE, Peeters MYM, Tibboel D, Danhof M, Knibbe CAJ. Population pharmacokinetic-pharmacodynamic model of propofol in adolescents undergoing scoliosis surgery with intraoperative wake-up test: a study using Bispectral index and composite auditory evoked potentials as pharmacodynamic endpoints. BMC Anesthesiol. 2019;19:1–12.CrossRef Blussé Van Oud-Alblas HJ, Brill MJE, Peeters MYM, Tibboel D, Danhof M, Knibbe CAJ. Population pharmacokinetic-pharmacodynamic model of propofol in adolescents undergoing scoliosis surgery with intraoperative wake-up test: a study using Bispectral index and composite auditory evoked potentials as pharmacodynamic endpoints. BMC Anesthesiol. 2019;19:1–12.CrossRef
52.
go back to reference Sierra CM, Tran Y, Oana L, Bahjri K. Renal impairment associated with trimethoprim-sulfamethoxazole use in the pediatric population. J Pediatr Pharmacol Ther. 2022;27:663–8.PubMedPubMedCentral Sierra CM, Tran Y, Oana L, Bahjri K. Renal impairment associated with trimethoprim-sulfamethoxazole use in the pediatric population. J Pediatr Pharmacol Ther. 2022;27:663–8.PubMedPubMedCentral
53.
go back to reference Walsh S, Pan S, Sheng Y, Kloprogge F, Standing JF, Anderson BJ, et al. Optimising intravenous salbutamol in children: a phase 2 study. Arch Dis Child. 2023;108:316–22.PubMedCrossRef Walsh S, Pan S, Sheng Y, Kloprogge F, Standing JF, Anderson BJ, et al. Optimising intravenous salbutamol in children: a phase 2 study. Arch Dis Child. 2023;108:316–22.PubMedCrossRef
54.
go back to reference De Cock RFW, Piana C, Krekels EHJ, Danhof M, Allegaert K, Knibbe CAJ. The role of population PK-PD modelling in paediatric clinical research. Eur J Clin Pharmacol. 2011;67(Suppl. 1):5–16.PubMedCrossRef De Cock RFW, Piana C, Krekels EHJ, Danhof M, Allegaert K, Knibbe CAJ. The role of population PK-PD modelling in paediatric clinical research. Eur J Clin Pharmacol. 2011;67(Suppl. 1):5–16.PubMedCrossRef
55.
go back to reference Barker CIS, Standing JF, Kelly LE, Hanly Faught L, Needham AC, Rieder MJ, et al. Pharmacokinetic studies in children: recommendations for practice and research. Arch Dis Child. 2018;103:695–702.PubMed Barker CIS, Standing JF, Kelly LE, Hanly Faught L, Needham AC, Rieder MJ, et al. Pharmacokinetic studies in children: recommendations for practice and research. Arch Dis Child. 2018;103:695–702.PubMed
56.
go back to reference Chen B, Abuassba AOM. Compartmental models with application to pharmacokinetics. Proc Comput Sci. 2021;187:60–70.CrossRef Chen B, Abuassba AOM. Compartmental models with application to pharmacokinetics. Proc Comput Sci. 2021;187:60–70.CrossRef
57.
go back to reference Sandra L, Smits A, Allegaert K, Nicolaï J, Annaert P, Bouillon T. Population pharmacokinetics of propofol in neonates and infants: gestational and postnatal age to determine clearance maturation. Br J Clin Pharmacol. 2021;87:2089–97.PubMedCrossRef Sandra L, Smits A, Allegaert K, Nicolaï J, Annaert P, Bouillon T. Population pharmacokinetics of propofol in neonates and infants: gestational and postnatal age to determine clearance maturation. Br J Clin Pharmacol. 2021;87:2089–97.PubMedCrossRef
58.
go back to reference Del Frari L, Léauté-Labrèze C, Guibaud L, Barbarot S, Lacour JP, Chaumont C, et al. Propranolol pharmacokinetics in infants treated for infantile hemangiomas requiring systemic therapy: modeling and dosing regimen recommendations. Pharmacol Res Perspect. 2018;6: e00399.PubMedPubMedCentralCrossRef Del Frari L, Léauté-Labrèze C, Guibaud L, Barbarot S, Lacour JP, Chaumont C, et al. Propranolol pharmacokinetics in infants treated for infantile hemangiomas requiring systemic therapy: modeling and dosing regimen recommendations. Pharmacol Res Perspect. 2018;6: e00399.PubMedPubMedCentralCrossRef
59.
go back to reference Thibault C, Massey SL, Abend NS, Naim MY, Zoraian A, Zuppa AF. Population pharmacokinetics of phenobarbital in neonates and infants on extracorporeal membrane oxygenation and the influence of concomitant renal replacement therapy. J Clin Pharmacol. 2021;61:378–87.PubMedCrossRef Thibault C, Massey SL, Abend NS, Naim MY, Zoraian A, Zuppa AF. Population pharmacokinetics of phenobarbital in neonates and infants on extracorporeal membrane oxygenation and the influence of concomitant renal replacement therapy. J Clin Pharmacol. 2021;61:378–87.PubMedCrossRef
60.
go back to reference Rhoney DH, Metzger SA, Nelson NR. Scoping review of augmented renal clearance in critically ill pediatric patients. Pharmacotherapy. 2021;41:851–63.PubMedCrossRef Rhoney DH, Metzger SA, Nelson NR. Scoping review of augmented renal clearance in critically ill pediatric patients. Pharmacotherapy. 2021;41:851–63.PubMedCrossRef
61.
go back to reference Zylbersztajn B, Parker S, Navea D, Izquierdo G, Ortiz P, Torres JP, et al. Population pharmacokinetics of vancomycin and meropenem in pediatric extracorporeal membrane oxygenation support. Front Pharmacol. 2021;12: 709332.PubMedPubMedCentralCrossRef Zylbersztajn B, Parker S, Navea D, Izquierdo G, Ortiz P, Torres JP, et al. Population pharmacokinetics of vancomycin and meropenem in pediatric extracorporeal membrane oxygenation support. Front Pharmacol. 2021;12: 709332.PubMedPubMedCentralCrossRef
62.
go back to reference Rapp M, Urien S, Foissac F, Béranger A, Bouazza N, Benaboud S, et al. Population pharmacokinetics of meropenem in critically ill children with different renal functions. Eur J Clin Pharmacol. 2020;76:61–71.PubMedCrossRef Rapp M, Urien S, Foissac F, Béranger A, Bouazza N, Benaboud S, et al. Population pharmacokinetics of meropenem in critically ill children with different renal functions. Eur J Clin Pharmacol. 2020;76:61–71.PubMedCrossRef
63.
go back to reference Li S, Shu C, Wu S, Xu H, Wang Y. Population pharmacokinetics and dose optimization of ganciclovir in critically ill children. Front Pharmacol. 2020;11: 614164.PubMedCrossRef Li S, Shu C, Wu S, Xu H, Wang Y. Population pharmacokinetics and dose optimization of ganciclovir in critically ill children. Front Pharmacol. 2020;11: 614164.PubMedCrossRef
64.
go back to reference Maharaj AR, Wu H, Zimmerman KO, Speicher DG, Sullivan JE, Watt K, et al. Dosing of continuous fentanyl infusions in obese children: a population pharmacokinetic analysis. J Clin Pharmacol. 2020;60:636–47.PubMedCrossRef Maharaj AR, Wu H, Zimmerman KO, Speicher DG, Sullivan JE, Watt K, et al. Dosing of continuous fentanyl infusions in obese children: a population pharmacokinetic analysis. J Clin Pharmacol. 2020;60:636–47.PubMedCrossRef
65.
go back to reference Jones HM, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacometr Syst Pharmacol. 2013;2:1–12.CrossRef Jones HM, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacometr Syst Pharmacol. 2013;2:1–12.CrossRef
66.
go back to reference Dahl SG, Aarons L, Gundert-Remy U, Karlsson MO, Schneider Y-J, Steimer J-L, et al. Incorporating physiological and biochemical mechanisms into pharmacokinetic–pharmacodynamic models: a conceptual framework. Basic Clin Pharmacol Toxicol. 2010;106:2–12.PubMedCrossRef Dahl SG, Aarons L, Gundert-Remy U, Karlsson MO, Schneider Y-J, Steimer J-L, et al. Incorporating physiological and biochemical mechanisms into pharmacokinetic–pharmacodynamic models: a conceptual framework. Basic Clin Pharmacol Toxicol. 2010;106:2–12.PubMedCrossRef
67.
go back to reference Kuepfer L, Niederalt C, Wendl T, Schlender J, Willmann S, Lippert J, et al. Applied concepts in PBPK modeling: how to build a PBPK/PD model. CPT Pharmacometr Syst Pharmacol. 2016;5:516–31.CrossRef Kuepfer L, Niederalt C, Wendl T, Schlender J, Willmann S, Lippert J, et al. Applied concepts in PBPK modeling: how to build a PBPK/PD model. CPT Pharmacometr Syst Pharmacol. 2016;5:516–31.CrossRef
68.
go back to reference Liu X, Smith BJ, Chen C, Callegari E, Becker SL, Chen X, et al. Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood–brain barrier permeability, plasma protein binding, and brain tissue binding. J Pharmacol Exp Ther. 2005;313:1254–62.PubMedCrossRef Liu X, Smith BJ, Chen C, Callegari E, Becker SL, Chen X, et al. Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood–brain barrier permeability, plasma protein binding, and brain tissue binding. J Pharmacol Exp Ther. 2005;313:1254–62.PubMedCrossRef
69.
go back to reference Hoehme S, Brulport M, Bauer A, Bedawy E, Schormann W, Hermes M, et al. Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proc Natl Acad Sci. 2010;107:10371–6.PubMedPubMedCentralCrossRef Hoehme S, Brulport M, Bauer A, Bedawy E, Schormann W, Hermes M, et al. Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proc Natl Acad Sci. 2010;107:10371–6.PubMedPubMedCentralCrossRef
70.
go back to reference De Cock RFW, Allegaert K, Brussee JM, Sherwin CMT, Mulla H, de Hoog M, et al. Simultaneous pharmacokinetic modeling of gentamicin, tobramycin and vancomycin clearance from neonates to adults: towards a semi-physiological function for maturation in glomerular filtration. Pharm Res. 2014;31:2643–54.PubMedPubMedCentralCrossRef De Cock RFW, Allegaert K, Brussee JM, Sherwin CMT, Mulla H, de Hoog M, et al. Simultaneous pharmacokinetic modeling of gentamicin, tobramycin and vancomycin clearance from neonates to adults: towards a semi-physiological function for maturation in glomerular filtration. Pharm Res. 2014;31:2643–54.PubMedPubMedCentralCrossRef
71.
go back to reference O’Hanlon CJ, Holford N, Sumpter A, Al-Sallami HS. Consistent methods for fat-free mass, creatinine clearance, and glomerular filtration rate to describe renal function from neonates to adults. CPT Pharmacometr Syst Pharmacol. 2023;12:401–12.CrossRef O’Hanlon CJ, Holford N, Sumpter A, Al-Sallami HS. Consistent methods for fat-free mass, creatinine clearance, and glomerular filtration rate to describe renal function from neonates to adults. CPT Pharmacometr Syst Pharmacol. 2023;12:401–12.CrossRef
74.
go back to reference Balbas-Martinez V, Michelet R, Edginton AN, Meesters K, Trocóniz IF, Vermeulen A. Physiologically-based pharmacokinetic model for ciprofloxacin in children with complicated urinary tract infection. Eur J Pharm Sci. 2019;128:171–9.PubMedCrossRef Balbas-Martinez V, Michelet R, Edginton AN, Meesters K, Trocóniz IF, Vermeulen A. Physiologically-based pharmacokinetic model for ciprofloxacin in children with complicated urinary tract infection. Eur J Pharm Sci. 2019;128:171–9.PubMedCrossRef
75.
go back to reference Edginton AN, Willmann S. Physiology-based simulations of a pathological condition: prediction of pharmacokinetics in patients with liver cirrhosis. Clin Pharmacokinet. 2008;47:743–52.PubMedCrossRef Edginton AN, Willmann S. Physiology-based simulations of a pathological condition: prediction of pharmacokinetics in patients with liver cirrhosis. Clin Pharmacokinet. 2008;47:743–52.PubMedCrossRef
76.
go back to reference Watt KM, Cohen-Wolkowiez M, Barrett JS, Sevestre M, Zhao P, Brouwer KLR, et al. Physiologically-based pharmacokinetic approach to determine dosing on extracorporeal life support: fluconazole in children on ECMO. CPT Pharmacometr Syst Pharmacol. 2018;7:629–37.CrossRef Watt KM, Cohen-Wolkowiez M, Barrett JS, Sevestre M, Zhao P, Brouwer KLR, et al. Physiologically-based pharmacokinetic approach to determine dosing on extracorporeal life support: fluconazole in children on ECMO. CPT Pharmacometr Syst Pharmacol. 2018;7:629–37.CrossRef
77.
go back to reference Allegaert K, Abbasi MY, Michelet R, Olafuyi O. The impact of low cardiac output on propofol pharmacokinetics across age groups: an investigation using physiologically based pharmacokinetic modelling. Pharmaceutics. 2022;14:1957.PubMedPubMedCentralCrossRef Allegaert K, Abbasi MY, Michelet R, Olafuyi O. The impact of low cardiac output on propofol pharmacokinetics across age groups: an investigation using physiologically based pharmacokinetic modelling. Pharmaceutics. 2022;14:1957.PubMedPubMedCentralCrossRef
78.
go back to reference Gerhart JG, Carreño FO, Edginton AN, Sinha J, Perrin EM, Kumar KR, et al. Development and evaluation of a virtual population of children with obesity for physiologically based pharmacokinetic modeling. Clin Pharmacokinet. 2022;61:307–20.PubMedCrossRef Gerhart JG, Carreño FO, Edginton AN, Sinha J, Perrin EM, Kumar KR, et al. Development and evaluation of a virtual population of children with obesity for physiologically based pharmacokinetic modeling. Clin Pharmacokinet. 2022;61:307–20.PubMedCrossRef
79.
go back to reference Ford JL, Gerhart JG, Edginton AN, Yanovski JA, Hon YY, Gonzalez D. Physiologically based pharmacokinetic modeling of metformin in children and adolescents with obesity. J Clin Pharmacol. 2022;62:960–9.PubMedPubMedCentralCrossRef Ford JL, Gerhart JG, Edginton AN, Yanovski JA, Hon YY, Gonzalez D. Physiologically based pharmacokinetic modeling of metformin in children and adolescents with obesity. J Clin Pharmacol. 2022;62:960–9.PubMedPubMedCentralCrossRef
80.
go back to reference Johnson TN, Small BG, Rowland YK. Increasing application of pediatric physiologically based pharmacokinetic models across academic and industry organizations. CPT Pharmacometr Syst Pharmacol. 2022;11:373–83.CrossRef Johnson TN, Small BG, Rowland YK. Increasing application of pediatric physiologically based pharmacokinetic models across academic and industry organizations. CPT Pharmacometr Syst Pharmacol. 2022;11:373–83.CrossRef
81.
go back to reference Verscheijden LFM, Koenderink JB, de Wildt SN, Russel FGM. Development of a physiologically-based pharmacokinetic pediatric brain model for prediction of cerebrospinal fluid drug concentrations and the influence of meningitis. PLoS Comput Biol. 2019;15: e1007117.PubMedPubMedCentralCrossRef Verscheijden LFM, Koenderink JB, de Wildt SN, Russel FGM. Development of a physiologically-based pharmacokinetic pediatric brain model for prediction of cerebrospinal fluid drug concentrations and the influence of meningitis. PLoS Comput Biol. 2019;15: e1007117.PubMedPubMedCentralCrossRef
82.
go back to reference Zhu S, Zhang J, Lv Z, Zhu P, Oo C, Yu M, et al. Prediction of tissue exposures of meropenem, colistin, and sulbactam in pediatrics using physiologically based pharmacokinetic modeling. Clin Pharmacokinet. 2022;61:1427–41.PubMedCrossRef Zhu S, Zhang J, Lv Z, Zhu P, Oo C, Yu M, et al. Prediction of tissue exposures of meropenem, colistin, and sulbactam in pediatrics using physiologically based pharmacokinetic modeling. Clin Pharmacokinet. 2022;61:1427–41.PubMedCrossRef
83.
go back to reference Yeung CHT, Ito S, Autmizguine J, Edginton AN. Incorporating breastfeeding-related variability with physiologically based pharmacokinetic modeling to predict infant exposure to maternal medication through breast milk: a workflow applied to lamotrigine. AAPS J. 2021;23:70.PubMedCrossRef Yeung CHT, Ito S, Autmizguine J, Edginton AN. Incorporating breastfeeding-related variability with physiologically based pharmacokinetic modeling to predict infant exposure to maternal medication through breast milk: a workflow applied to lamotrigine. AAPS J. 2021;23:70.PubMedCrossRef
84.
go back to reference Salerno SN, Capparelli EV, McIlleron H, Gerhart JG, Dumond JB, Kashuba ADM, et al. Leveraging physiologically based pharmacokinetic modeling to optimize dosing for lopinavir/ritonavir with rifampin in pediatric patients. Pharmacotherapy. 2023;3(7):638–49.CrossRef Salerno SN, Capparelli EV, McIlleron H, Gerhart JG, Dumond JB, Kashuba ADM, et al. Leveraging physiologically based pharmacokinetic modeling to optimize dosing for lopinavir/ritonavir with rifampin in pediatric patients. Pharmacotherapy. 2023;3(7):638–49.CrossRef
85.
go back to reference Zhao X, Lu X, Zuo M, Wang N, Zhang Y, Chen J, et al. Drug-drug interaction comparison between tacrolimus and phenobarbital in different formulations for paediatrics and adults. Xenobiotica. 2021;51:877–84.PubMedCrossRef Zhao X, Lu X, Zuo M, Wang N, Zhang Y, Chen J, et al. Drug-drug interaction comparison between tacrolimus and phenobarbital in different formulations for paediatrics and adults. Xenobiotica. 2021;51:877–84.PubMedCrossRef
86.
go back to reference Verscheijden LFM, van der Zanden TM, van Bussel LPM, de Hoop-Sommen M, Russel FGM, Johnson TN, et al. Chloroquine dosing recommendations for pediatric COVID-19 supported by modeling and simulation. Clin Pharmacol Ther. 2020;108:248–52.PubMedCrossRef Verscheijden LFM, van der Zanden TM, van Bussel LPM, de Hoop-Sommen M, Russel FGM, Johnson TN, et al. Chloroquine dosing recommendations for pediatric COVID-19 supported by modeling and simulation. Clin Pharmacol Ther. 2020;108:248–52.PubMedCrossRef
88.
go back to reference Verscheijden LFM, Litjens CHC, Koenderink JB, Mathijssen RHJ, Verbeek MM, de Wildt SN, et al. Physiologically based pharmacokinetic/pharmacodynamic model for the prediction of morphine brain disposition and analgesia in adults and children. PLoS Comput Biol. 2021;17:1–21.CrossRef Verscheijden LFM, Litjens CHC, Koenderink JB, Mathijssen RHJ, Verbeek MM, de Wildt SN, et al. Physiologically based pharmacokinetic/pharmacodynamic model for the prediction of morphine brain disposition and analgesia in adults and children. PLoS Comput Biol. 2021;17:1–21.CrossRef
89.
go back to reference Abdulla A, Edwina EE, Flint RB, Allegaert K, Wildschut ED, Koch BCP, et al. Model-informed precision dosing of antibiotics in pediatric patients: a narrative review. Front Pediatr. 2021;9: 624639.PubMedPubMedCentralCrossRef Abdulla A, Edwina EE, Flint RB, Allegaert K, Wildschut ED, Koch BCP, et al. Model-informed precision dosing of antibiotics in pediatric patients: a narrative review. Front Pediatr. 2021;9: 624639.PubMedPubMedCentralCrossRef
90.
go back to reference Downes KJ, Goldman JL. Too much of a good thing: defining antimicrobial therapeutic targets to minimize toxicity. Clin Pharmacol Ther. 2021;109:905–17.PubMedCrossRef Downes KJ, Goldman JL. Too much of a good thing: defining antimicrobial therapeutic targets to minimize toxicity. Clin Pharmacol Ther. 2021;109:905–17.PubMedCrossRef
92.
93.
go back to reference Kantasiripitak W, Wicha SG, Thomas D, Hoffman I, Ferrante M, Vermeire S, et al. A model-based tool for guiding infliximab induction dosing to maximise long-term deep remission in children with inflammatory bowel diseases. J Crohns Colitis. 2023;17:896–908.PubMedCrossRef Kantasiripitak W, Wicha SG, Thomas D, Hoffman I, Ferrante M, Vermeire S, et al. A model-based tool for guiding infliximab induction dosing to maximise long-term deep remission in children with inflammatory bowel diseases. J Crohns Colitis. 2023;17:896–908.PubMedCrossRef
94.
go back to reference Darwich AS, Polasek TM, Aronson JK, Ogungbenro K, Wright DFB, Achour B, et al. Model-informed precision dosing: background, requirements, validation, implementation, and forward trajectory of individualizing drug therapy. Annu Rev Pharmacol Toxicol. 2021;61:225–45.PubMedCrossRef Darwich AS, Polasek TM, Aronson JK, Ogungbenro K, Wright DFB, Achour B, et al. Model-informed precision dosing: background, requirements, validation, implementation, and forward trajectory of individualizing drug therapy. Annu Rev Pharmacol Toxicol. 2021;61:225–45.PubMedCrossRef
95.
go back to reference Maier C, Hartung N, Kloft C, Huisinga W, de Wiljes J. Reinforcement learning and Bayesian data assimilation for model-informed precision dosing in oncology. CPT Pharmacometr Syst Pharmacol. 2021;10:241–54.CrossRef Maier C, Hartung N, Kloft C, Huisinga W, de Wiljes J. Reinforcement learning and Bayesian data assimilation for model-informed precision dosing in oncology. CPT Pharmacometr Syst Pharmacol. 2021;10:241–54.CrossRef
96.
go back to reference Frymoyer A, Stockmann C, Hersh AL, Goswami S, Keizer RJ. Individualized rmpiric vancomycin dosing in neonates using a model-based approach. J Pediatr Infect Dis Soc. 2019;8:97–104.CrossRef Frymoyer A, Stockmann C, Hersh AL, Goswami S, Keizer RJ. Individualized rmpiric vancomycin dosing in neonates using a model-based approach. J Pediatr Infect Dis Soc. 2019;8:97–104.CrossRef
97.
go back to reference Allegaert K, Flint R, Smits A. Pharmacokinetic modelling and Bayesian estimation-assisted decision tools to optimize vancomycin dosage in neonates: only one piece of the puzzle. Expert Opin Drug Metab Toxicol. 2019;15:735–49.PubMedCrossRef Allegaert K, Flint R, Smits A. Pharmacokinetic modelling and Bayesian estimation-assisted decision tools to optimize vancomycin dosage in neonates: only one piece of the puzzle. Expert Opin Drug Metab Toxicol. 2019;15:735–49.PubMedCrossRef
98.
go back to reference Barras MA, Serisier D, Hennig S, Jess K, Norris RLG. Bayesian estimation of tobramycin exposure in patients with cystic fibrosis. Antimicrob Agents Chemother. 2016;60:6698–702.PubMedPubMedCentralCrossRef Barras MA, Serisier D, Hennig S, Jess K, Norris RLG. Bayesian estimation of tobramycin exposure in patients with cystic fibrosis. Antimicrob Agents Chemother. 2016;60:6698–702.PubMedPubMedCentralCrossRef
99.
go back to reference Kumar AA, Burgard M, Stacey S, Sandaradura I, Lai T, Coorey C, et al. An evaluation of the user-friendliness of Bayesian forecasting programs in a clinical setting. Br J Clin Pharmacol. 2019;85:2436–41.PubMedPubMedCentralCrossRef Kumar AA, Burgard M, Stacey S, Sandaradura I, Lai T, Coorey C, et al. An evaluation of the user-friendliness of Bayesian forecasting programs in a clinical setting. Br J Clin Pharmacol. 2019;85:2436–41.PubMedPubMedCentralCrossRef
100.
go back to reference Kantasiripitak W, Van Daele R, Gijsen M, Ferrante M, Spriet I, Dreesen E. Software tools for model-informed precision dosing: how well do they satisfy the needs? Front Pharmacol. 2020;11:620.PubMedPubMedCentralCrossRef Kantasiripitak W, Van Daele R, Gijsen M, Ferrante M, Spriet I, Dreesen E. Software tools for model-informed precision dosing: how well do they satisfy the needs? Front Pharmacol. 2020;11:620.PubMedPubMedCentralCrossRef
101.
go back to reference Kantasiripitak W, Outtier A, Wicha SG, Kensert A, Wang Z, Sabino J, et al. Multi-model averaging improves the performance of model-guided infliximab dosing in patients with inflammatory bowel diseases. CPT Pharmacometr Syst Pharmacol. 2022;11:1045–59.CrossRef Kantasiripitak W, Outtier A, Wicha SG, Kensert A, Wang Z, Sabino J, et al. Multi-model averaging improves the performance of model-guided infliximab dosing in patients with inflammatory bowel diseases. CPT Pharmacometr Syst Pharmacol. 2022;11:1045–59.CrossRef
102.
go back to reference Uster DW, Stocker SL, Carland JE, Brett J, Marriott DJE, Day RO, et al. A model averaging/selection approach improves the predictive performance of model-informed precision dosing: vancomycin as a case study. Clin Pharmacol Ther. 2021;109:175–83.PubMedCrossRef Uster DW, Stocker SL, Carland JE, Brett J, Marriott DJE, Day RO, et al. A model averaging/selection approach improves the predictive performance of model-informed precision dosing: vancomycin as a case study. Clin Pharmacol Ther. 2021;109:175–83.PubMedCrossRef
104.
go back to reference Kluwe F, Michelet R, Mueller-Schoell A, Maier C, Klopp-Schulze L, van Dyk M, et al. Perspectives on model-informed precision dosing in the digital health era: challenges, opportunities, and recommendations. Clin Pharmacol Ther. 2021;109:29–36.PubMedCrossRef Kluwe F, Michelet R, Mueller-Schoell A, Maier C, Klopp-Schulze L, van Dyk M, et al. Perspectives on model-informed precision dosing in the digital health era: challenges, opportunities, and recommendations. Clin Pharmacol Ther. 2021;109:29–36.PubMedCrossRef
105.
go back to reference Yellepeddi V, Rower J, Liu X, Kumar S, Rashid J, Sherwin CMT. State-of-the-art review on physiologically based pharmacokinetic modeling in pediatric drug development. Clin Pharmacokinet. 2019;58:1–13.PubMedCrossRef Yellepeddi V, Rower J, Liu X, Kumar S, Rashid J, Sherwin CMT. State-of-the-art review on physiologically based pharmacokinetic modeling in pediatric drug development. Clin Pharmacokinet. 2019;58:1–13.PubMedCrossRef
106.
go back to reference Rostami-Hodjegan A, Tucker GT. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov. 2007;6:140–8.PubMedCrossRef Rostami-Hodjegan A, Tucker GT. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov. 2007;6:140–8.PubMedCrossRef
107.
go back to reference Johnson TN, Rostami-Hodjegan A. Resurgence in the use of physiologically based pharmacokinetic models in pediatric clinical pharmacology: parallel shift in incorporating the knowledge of biological elements and increased applicability to drug development and clinical practice. Paediatr Anaesth. 2011;21:291–301.PubMedCrossRef Johnson TN, Rostami-Hodjegan A. Resurgence in the use of physiologically based pharmacokinetic models in pediatric clinical pharmacology: parallel shift in incorporating the knowledge of biological elements and increased applicability to drug development and clinical practice. Paediatr Anaesth. 2011;21:291–301.PubMedCrossRef
108.
go back to reference Kovarik JM, Hartmann S, Bartlett M, Riviere G, Neddermann D. Oral-intravenous crossover study of fingolimod. Biopharm Drug Dispos. 2007;28:97–104.PubMedCrossRef Kovarik JM, Hartmann S, Bartlett M, Riviere G, Neddermann D. Oral-intravenous crossover study of fingolimod. Biopharm Drug Dispos. 2007;28:97–104.PubMedCrossRef
109.
go back to reference Schaller S, Willmann S, Lippert J, Schaupp L, Pieber TR, Schuppert A, et al. A generic integrated physiologically based whole-body model of the glucose insulin-glucagon regulatory system. CPT Pharmacometr Syst Pharmacol. 2013;2: e65.CrossRef Schaller S, Willmann S, Lippert J, Schaupp L, Pieber TR, Schuppert A, et al. A generic integrated physiologically based whole-body model of the glucose insulin-glucagon regulatory system. CPT Pharmacometr Syst Pharmacol. 2013;2: e65.CrossRef
110.
go back to reference Willmann S, Thelen K, Becker C, Dressman JB, Lippert J. Mechanism-based prediction of particle size-dependent dissolution and absorption: cilostazol pharmacokinetics in dogs. Eur J Pharm Biopharm. 2010;76:83–94.PubMedCrossRef Willmann S, Thelen K, Becker C, Dressman JB, Lippert J. Mechanism-based prediction of particle size-dependent dissolution and absorption: cilostazol pharmacokinetics in dogs. Eur J Pharm Biopharm. 2010;76:83–94.PubMedCrossRef
111.
go back to reference Hammarlund-Udenaes M. Microdialysis as an important technique in systems pharmacology: a historical and methodological review. AAPS J. 2017;19:1294–303.PubMedCrossRef Hammarlund-Udenaes M. Microdialysis as an important technique in systems pharmacology: a historical and methodological review. AAPS J. 2017;19:1294–303.PubMedCrossRef
112.
go back to reference Girdwood ST, Kaplan J, Vinks AA. Methodologic progress note: opportunistic sampling for pharmacology studies in hospitalized children. J Hosp Med. 2020;16:35–7.CrossRef Girdwood ST, Kaplan J, Vinks AA. Methodologic progress note: opportunistic sampling for pharmacology studies in hospitalized children. J Hosp Med. 2020;16:35–7.CrossRef
113.
go back to reference Laughon MM, Benjamin DK, Capparelli EV, Kearns GL, Berezny K, Paul IM, et al. Innovative clinical trial design for pediatric therapeutics. Expert Rev Clin Pharmacol. 2011;4:643–52.PubMedPubMedCentralCrossRef Laughon MM, Benjamin DK, Capparelli EV, Kearns GL, Berezny K, Paul IM, et al. Innovative clinical trial design for pediatric therapeutics. Expert Rev Clin Pharmacol. 2011;4:643–52.PubMedPubMedCentralCrossRef
114.
go back to reference Shores DR, Everett AD. Children as biomarker orphans: progress in the field of pediatric biomarkers. J Pediatr. 2018;193:14-20.e31.PubMedCrossRef Shores DR, Everett AD. Children as biomarker orphans: progress in the field of pediatric biomarkers. J Pediatr. 2018;193:14-20.e31.PubMedCrossRef
115.
go back to reference McComb M, Bies R, Ramanathan M. Machine learning in pharmacometrics: opportunities and challenges. Br J Clin Pharmacol. 2022;88:1482–99.PubMedCrossRef McComb M, Bies R, Ramanathan M. Machine learning in pharmacometrics: opportunities and challenges. Br J Clin Pharmacol. 2022;88:1482–99.PubMedCrossRef
116.
go back to reference Bradshaw EL, Spilker ME, Zang R, Bansal L, He H, Jones RDO, et al. Applications of quantitative systems pharmacology in model-informed drug discovery: perspective on impact and opportunities. CPT Pharmacometr Syst Pharmacol. 2019;8:777–91.CrossRef Bradshaw EL, Spilker ME, Zang R, Bansal L, He H, Jones RDO, et al. Applications of quantitative systems pharmacology in model-informed drug discovery: perspective on impact and opportunities. CPT Pharmacometr Syst Pharmacol. 2019;8:777–91.CrossRef
Metadata
Title
Personalized Dosing of Medicines for Children: A Primer on Pediatric Pharmacometrics for Clinicians
Authors
Kevin Meesters
Violeta Balbas-Martinez
Karel Allegaert
Kevin J. Downes
Robin Michelet
Publication date
16-05-2024
Publisher
Springer International Publishing
Published in
Pediatric Drugs / Issue 4/2024
Print ISSN: 1174-5878
Electronic ISSN: 1179-2019
DOI
https://doi.org/10.1007/s40272-024-00633-x

Other articles of this Issue 4/2024

Pediatric Drugs 4/2024 Go to the issue