Skip to main content
Top

Open Access 06-09-2024 | Pharmacokinetics | Current Opinion

Dose Individualisation of Antimicrobials from a Pharmacometric Standpoint: The Current Landscape

Authors: Tim Preijers, Anouk E. Muller, Alan Abdulla, Brenda C. M. de Winter, Birgit C. P. Koch, Sebastiaan D. T. Sassen

Published in: Drugs

Login to get access

Abstract

Successful antimicrobial therapy depends on achieving optimal drug concentrations within individual patients. Inter-patient variability in pharmacokinetics (PK) and differences in pathogen susceptibility (reflected in the minimum inhibitory concentration, [MIC]) necessitate personalised approaches. Dose individualisation strategies aim to address this challenge, improving treatment outcomes and minimising the risk of toxicity and antimicrobial resistance. Therapeutic drug monitoring (TDM), with the application of population pharmacokinetic (popPK) models, enables model-informed precision dosing (MIPD). PopPK models mathematically describe drug behaviour across populations and can be combined with patient-specific TDM data to optimise dosing regimens. The integration of machine learning (ML) techniques promises to further enhance dose individualisation by identifying complex patterns within extensive datasets. Implementing these approaches involves challenges, including rigorous model selection and validation to ensure suitability for target populations. Understanding the relationship between drug exposure and clinical outcomes is crucial, as is striking a balance between model complexity and clinical usability. Additionally, regulatory compliance, outcome measurement, and practical considerations for software implementation will be addressed. Emerging technologies, such as real-time biosensors, hold the potential for revolutionising TDM by enabling continuous monitoring, immediate and frequent dose adjustments, and near patient testing. The ongoing integration of TDM, advanced modelling techniques, and ML within the evolving digital health care landscape offers a potential for enhancing antimicrobial therapy. Careful attention to model development, validation, and ethical considerations of the applied techniques is paramount for successfully optimising antimicrobial treatment for the individual patient.
Literature
1.
go back to reference Gould K. Antibiotics: from prehistory to the present day. J Antimicrob Chemother. 2016;71(3):572–5.PubMedCrossRef Gould K. Antibiotics: from prehistory to the present day. J Antimicrob Chemother. 2016;71(3):572–5.PubMedCrossRef
2.
go back to reference Radlinski L, Conlon BP. Antibiotic efficacy in the complex infection environment. Curr Opin Microbiol. 2018;42:19–24.PubMedCrossRef Radlinski L, Conlon BP. Antibiotic efficacy in the complex infection environment. Curr Opin Microbiol. 2018;42:19–24.PubMedCrossRef
3.
go back to reference Wicha SG, Martson AG, Nielsen EI, Koch BCP, Friberg LE, Alffenaar JW, et al. From therapeutic drug monitoring to model-informed precision dosing for antibiotics. Clin Pharmacol Ther. 2021;109(4):928–41.PubMedCrossRef Wicha SG, Martson AG, Nielsen EI, Koch BCP, Friberg LE, Alffenaar JW, et al. From therapeutic drug monitoring to model-informed precision dosing for antibiotics. Clin Pharmacol Ther. 2021;109(4):928–41.PubMedCrossRef
4.
go back to reference Adembri C, Novelli A. Pharmacokinetic and pharmacodynamic parameters of antimicrobials: potential for providing dosing regimens that are less vulnerable to resistance. Clin Pharmacokinet. 2009;48(8):517–28.PubMedCrossRef Adembri C, Novelli A. Pharmacokinetic and pharmacodynamic parameters of antimicrobials: potential for providing dosing regimens that are less vulnerable to resistance. Clin Pharmacokinet. 2009;48(8):517–28.PubMedCrossRef
5.
go back to reference Zhang L, Xie H, Wang Y, Wang H, Hu J, Zhang G. Pharmacodynamic parameters of pharmacokinetic/pharmacodynamic (PK/PD) integration models. Front Vet Sci. 2022;9: 860472.PubMedPubMedCentralCrossRef Zhang L, Xie H, Wang Y, Wang H, Hu J, Zhang G. Pharmacodynamic parameters of pharmacokinetic/pharmacodynamic (PK/PD) integration models. Front Vet Sci. 2022;9: 860472.PubMedPubMedCentralCrossRef
6.
go back to reference Darwich AS, Polasek TM, Aronson JK, Ogungbenro K, Wright DFB, Achour B, et al. Model-informed precision dosing: background, requirements, validation, implementation, and forward trajectory of individualizing drug therapy. Annu Rev Pharmacol Toxicol. 2021;61:225–45.PubMedCrossRef Darwich AS, Polasek TM, Aronson JK, Ogungbenro K, Wright DFB, Achour B, et al. Model-informed precision dosing: background, requirements, validation, implementation, and forward trajectory of individualizing drug therapy. Annu Rev Pharmacol Toxicol. 2021;61:225–45.PubMedCrossRef
8.
9.
go back to reference Nielsen EI, Cars O, Friberg LE. Pharmacokinetic/pharmacodynamic (PK/PD) indices of antibiotics predicted by a semimechanistic PKPD model: a step toward model-based dose optimization. Antimicrob Agents Chemother. 2011;55(10):4619–30.PubMedPubMedCentralCrossRef Nielsen EI, Cars O, Friberg LE. Pharmacokinetic/pharmacodynamic (PK/PD) indices of antibiotics predicted by a semimechanistic PKPD model: a step toward model-based dose optimization. Antimicrob Agents Chemother. 2011;55(10):4619–30.PubMedPubMedCentralCrossRef
10.
go back to reference Koch BCP, Muller AE, Hunfeld NGM, de Winter BCM, Ewoldt TMJ, Abdulla A, Endeman H. Therapeutic drug monitoring of antibiotics in critically ill patients: current practice and future perspectives with a focus on clinical outcome. Ther Drug Monit. 2022;44(1):11–8.PubMedCrossRef Koch BCP, Muller AE, Hunfeld NGM, de Winter BCM, Ewoldt TMJ, Abdulla A, Endeman H. Therapeutic drug monitoring of antibiotics in critically ill patients: current practice and future perspectives with a focus on clinical outcome. Ther Drug Monit. 2022;44(1):11–8.PubMedCrossRef
11.
go back to reference Al-Shaer MH, Rubido E, Cherabuddi K, Venugopalan V, Klinker K, Peloquin C. Early therapeutic monitoring of beta-lactams and associated therapy outcomes in critically ill patients. J Antimicrob Chemother. 2020;75(12):3644–51.PubMedCrossRef Al-Shaer MH, Rubido E, Cherabuddi K, Venugopalan V, Klinker K, Peloquin C. Early therapeutic monitoring of beta-lactams and associated therapy outcomes in critically ill patients. J Antimicrob Chemother. 2020;75(12):3644–51.PubMedCrossRef
12.
go back to reference Sanz-Codina M, Bozkir H, Jorda A, Zeitlinger M. Individualized antimicrobial dose optimization: a systematic review and meta-analysis of randomized controlled trials. Clin Microbiol Infect. 2023;29(7):845–57.PubMedCrossRef Sanz-Codina M, Bozkir H, Jorda A, Zeitlinger M. Individualized antimicrobial dose optimization: a systematic review and meta-analysis of randomized controlled trials. Clin Microbiol Infect. 2023;29(7):845–57.PubMedCrossRef
13.
go back to reference Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacometrics Syst Pharmacol. 2013;2(4): e38.PubMedPubMedCentralCrossRef Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacometrics Syst Pharmacol. 2013;2(4): e38.PubMedPubMedCentralCrossRef
14.
go back to reference Duffull SB, Wright DF, Winter HR. Interpreting population pharmacokinetic-pharmacodynamic analyses—a clinical viewpoint. Br J Clin Pharmacol. 2011;71(6):807–14.PubMedPubMedCentralCrossRef Duffull SB, Wright DF, Winter HR. Interpreting population pharmacokinetic-pharmacodynamic analyses—a clinical viewpoint. Br J Clin Pharmacol. 2011;71(6):807–14.PubMedPubMedCentralCrossRef
15.
16.
go back to reference Suri A, Chapel S, Lu C, Venkatakrishnan K. Physiologically based and population PK modeling in optimizing drug development: a predict-learn-confirm analysis. Clin Pharmacol Ther. 2015;98(3):336–44.PubMedPubMedCentralCrossRef Suri A, Chapel S, Lu C, Venkatakrishnan K. Physiologically based and population PK modeling in optimizing drug development: a predict-learn-confirm analysis. Clin Pharmacol Ther. 2015;98(3):336–44.PubMedPubMedCentralCrossRef
17.
go back to reference Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the “bottom up” and “top down” approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol. 2015;79(1):48–55.PubMedCrossRef Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the “bottom up” and “top down” approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol. 2015;79(1):48–55.PubMedCrossRef
18.
go back to reference Ferreira A, Lapa R, Vale N. PBPK modeling and simulation and therapeutic drug monitoring: possible ways for antibiotic dose adjustment. Processes. 2021;9(11):2087.CrossRef Ferreira A, Lapa R, Vale N. PBPK modeling and simulation and therapeutic drug monitoring: possible ways for antibiotic dose adjustment. Processes. 2021;9(11):2087.CrossRef
19.
go back to reference Heus A, Uster DW, Grootaert V, Vermeulen N, Somers A, In’t Veld DH, et al. Model-informed precision dosing of vancomycin via continuous infusion: a clinical fit-for-purpose evaluation of published PK models. Int J Antimicrob Agents. 2022;59(5): 106579.PubMedCrossRef Heus A, Uster DW, Grootaert V, Vermeulen N, Somers A, In’t Veld DH, et al. Model-informed precision dosing of vancomycin via continuous infusion: a clinical fit-for-purpose evaluation of published PK models. Int J Antimicrob Agents. 2022;59(5): 106579.PubMedCrossRef
20.
go back to reference Duong A, Simard C, Williamson D, Marsot A. Tobramycin a priori dosing regimens based on PopPK model simulations in critically ill patients: are they transferable? Ther Drug Monit. 2023;45(5):616–22.PubMedCrossRef Duong A, Simard C, Williamson D, Marsot A. Tobramycin a priori dosing regimens based on PopPK model simulations in critically ill patients: are they transferable? Ther Drug Monit. 2023;45(5):616–22.PubMedCrossRef
21.
go back to reference Yang N, Wang J, Xie Y, Ding J, Wu C, Liu J, Pei Q. External evaluation of population pharmacokinetic models to inform precision dosing of meropenem in critically ill patients. Front Pharmacol. 2022;13: 838205.PubMedPubMedCentralCrossRef Yang N, Wang J, Xie Y, Ding J, Wu C, Liu J, Pei Q. External evaluation of population pharmacokinetic models to inform precision dosing of meropenem in critically ill patients. Front Pharmacol. 2022;13: 838205.PubMedPubMedCentralCrossRef
22.
go back to reference Guo T, van Hest RM, Zwep LB, Roggeveen LF, Fleuren LM, Bosman RJ, et al. Optimizing predictive performance of bayesian forecasting for vancomycin concentration in intensive care patients. Pharm Res. 2020;37(9):171.PubMedPubMedCentralCrossRef Guo T, van Hest RM, Zwep LB, Roggeveen LF, Fleuren LM, Bosman RJ, et al. Optimizing predictive performance of bayesian forecasting for vancomycin concentration in intensive care patients. Pharm Res. 2020;37(9):171.PubMedPubMedCentralCrossRef
23.
go back to reference Javaid M, Haleem A, Pratap Singh R, Suman R, Rab S. Significance of machine learning in healthcare: features, pillars and applications. Int J Intell Netw. 2022;3:58–73. Javaid M, Haleem A, Pratap Singh R, Suman R, Rab S. Significance of machine learning in healthcare: features, pillars and applications. Int J Intell Netw. 2022;3:58–73.
24.
go back to reference Stankevičiūtė K, Woillard J-B, Peck RW, Marquet P, van der Schaar M. Bridging the worlds of pharmacometrics and machine learning. Clin Pharmacokinet. 2023;62(11):1551–65.PubMedCrossRef Stankevičiūtė K, Woillard J-B, Peck RW, Marquet P, van der Schaar M. Bridging the worlds of pharmacometrics and machine learning. Clin Pharmacokinet. 2023;62(11):1551–65.PubMedCrossRef
25.
go back to reference Huang Z, Denti P, Mistry H, Kloprogge F. Machine learning and artificial intelligence in PK-PD modeling: fad, friend, or foe? Clin Pharmacol Ther. 2024;115(4):652–4.PubMedPubMedCentralCrossRef Huang Z, Denti P, Mistry H, Kloprogge F. Machine learning and artificial intelligence in PK-PD modeling: fad, friend, or foe? Clin Pharmacol Ther. 2024;115(4):652–4.PubMedPubMedCentralCrossRef
26.
go back to reference Tang BH, Zhang JY, Allegaert K, Hao GX, Yao BF, Leroux S, et al. Use of machine learning for dosage individualization of vancomycin in neonates. Clin Pharmacokinet. 2023;62(8):1105–16.PubMedCrossRef Tang BH, Zhang JY, Allegaert K, Hao GX, Yao BF, Leroux S, et al. Use of machine learning for dosage individualization of vancomycin in neonates. Clin Pharmacokinet. 2023;62(8):1105–16.PubMedCrossRef
27.
go back to reference Destere A, Marquet P, Labriffe M, Drici MD, Woillard JB. A hybrid algorithm combining population pharmacokinetic and machine learning for isavuconazole exposure prediction. Pharm Res. 2023;40(4):951–9.PubMedCrossRef Destere A, Marquet P, Labriffe M, Drici MD, Woillard JB. A hybrid algorithm combining population pharmacokinetic and machine learning for isavuconazole exposure prediction. Pharm Res. 2023;40(4):951–9.PubMedCrossRef
28.
go back to reference Li G, Sun Y, Zhu L. Application of machine learning combined with population pharmacokinetics to improve individual prediction of vancomycin clearance in simulated adult patients. Front Pharmacol. 2024;15:1352113.PubMedPubMedCentralCrossRef Li G, Sun Y, Zhu L. Application of machine learning combined with population pharmacokinetics to improve individual prediction of vancomycin clearance in simulated adult patients. Front Pharmacol. 2024;15:1352113.PubMedPubMedCentralCrossRef
29.
go back to reference Sherwin C, Kiang T, Spigarelli M, Ensom M. Fundamentals of population pharmacokinetic modelling: validation methods. Clin Pharmacokinet. 2012;51:573–90.PubMedCrossRef Sherwin C, Kiang T, Spigarelli M, Ensom M. Fundamentals of population pharmacokinetic modelling: validation methods. Clin Pharmacokinet. 2012;51:573–90.PubMedCrossRef
30.
go back to reference Guo T, van Hest RM, Roggeveen LF, Fleuren LM, Thoral PJ, Bosman RJ, et al. External evaluation of population pharmacokinetic models of vancomycin in large cohorts of intensive care unit patients. Antimicrob Agents Chemother. 2019;63(5):e02543-e2618.PubMedPubMedCentralCrossRef Guo T, van Hest RM, Roggeveen LF, Fleuren LM, Thoral PJ, Bosman RJ, et al. External evaluation of population pharmacokinetic models of vancomycin in large cohorts of intensive care unit patients. Antimicrob Agents Chemother. 2019;63(5):e02543-e2618.PubMedPubMedCentralCrossRef
31.
go back to reference Baklouti S, Marolleau S, Chavanet P, Bonnet E, Concordet D, Gandia P. Why is it desirable to do the external evaluation of a population pharmacokinetic model? Antimicrob Agents Chemother. 2022;66(1): e0149321.PubMedCrossRef Baklouti S, Marolleau S, Chavanet P, Bonnet E, Concordet D, Gandia P. Why is it desirable to do the external evaluation of a population pharmacokinetic model? Antimicrob Agents Chemother. 2022;66(1): e0149321.PubMedCrossRef
32.
go back to reference Taylor ZL, Poweleit EA, Paice K, Somers KM, Pavia K, Vinks AA, et al. Tutorial on model selection and validation of model input into precision dosing software for model-informed precision dosing. CPT Pharmacometrics Syst Pharmacol. 2023;12(12):1827–45.PubMedPubMedCentralCrossRef Taylor ZL, Poweleit EA, Paice K, Somers KM, Pavia K, Vinks AA, et al. Tutorial on model selection and validation of model input into precision dosing software for model-informed precision dosing. CPT Pharmacometrics Syst Pharmacol. 2023;12(12):1827–45.PubMedPubMedCentralCrossRef
33.
go back to reference Chan A, Peck R, Gibbs M, van der Schaar M. Synthetic model combination: a new machine-learning method for pharmacometric model ensembling. CPT Pharmacometrics Syst Pharmacol. 2023;12(7):953–62.PubMedPubMedCentralCrossRef Chan A, Peck R, Gibbs M, van der Schaar M. Synthetic model combination: a new machine-learning method for pharmacometric model ensembling. CPT Pharmacometrics Syst Pharmacol. 2023;12(7):953–62.PubMedPubMedCentralCrossRef
34.
go back to reference Uster DW, Stocker SL, Carland JE, Brett J, Marriott DJE, Day RO, Wicha SG. A model averaging/selection approach improves the predictive performance of model-informed precision dosing: vancomycin as a case study. Clin Pharmacol Ther. 2021;109(1):175–83.PubMedCrossRef Uster DW, Stocker SL, Carland JE, Brett J, Marriott DJE, Day RO, Wicha SG. A model averaging/selection approach improves the predictive performance of model-informed precision dosing: vancomycin as a case study. Clin Pharmacol Ther. 2021;109(1):175–83.PubMedCrossRef
35.
go back to reference Sibieude E, Khandelwal A, Girard P, Hesthaven JS, Terranova N. Population pharmacokinetic model selection assisted by machine learning. J Pharmacokinet Pharmacodyn. 2022;49(2):257–70.PubMedCrossRef Sibieude E, Khandelwal A, Girard P, Hesthaven JS, Terranova N. Population pharmacokinetic model selection assisted by machine learning. J Pharmacokinet Pharmacodyn. 2022;49(2):257–70.PubMedCrossRef
36.
go back to reference Adembri C, Novelli A, Nobili S. Some suggestions from PK/PD principles to contain resistance in the clinical setting-focus on ICU patients and gram-negative strains. Antibiotics (Basel). 2020;9(10):676.PubMedPubMedCentralCrossRef Adembri C, Novelli A, Nobili S. Some suggestions from PK/PD principles to contain resistance in the clinical setting-focus on ICU patients and gram-negative strains. Antibiotics (Basel). 2020;9(10):676.PubMedPubMedCentralCrossRef
37.
go back to reference Guideline on the use of pharmacokinetics and pharmacodynamics in the development of antimicrobial medicinal products. EMA/CHMP/594085/2015. 2017. Guideline on the use of pharmacokinetics and pharmacodynamics in the development of antimicrobial medicinal products. EMA/CHMP/594085/2015. 2017.
39.
go back to reference Farrington N, McEntee L, Johnson A, Unsworth J, Darlow C, Jimenez-Valverde A, et al. Pharmacodynamics of meropenem and tobramycin for neonatal meningoencephalitis: novel approaches to facilitate the development of new agents to address the challenge of antimicrobial resistance. Antimicrob Agents Chemother. 2022;66(4): e0218121.PubMedCrossRef Farrington N, McEntee L, Johnson A, Unsworth J, Darlow C, Jimenez-Valverde A, et al. Pharmacodynamics of meropenem and tobramycin for neonatal meningoencephalitis: novel approaches to facilitate the development of new agents to address the challenge of antimicrobial resistance. Antimicrob Agents Chemother. 2022;66(4): e0218121.PubMedCrossRef
40.
go back to reference Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58(8):1072–83.PubMedCrossRef Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58(8):1072–83.PubMedCrossRef
41.
go back to reference Abdul-Aziz MH, Alffenaar JC, Bassetti M, Bracht H, Dimopoulos G, Marriott D, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a position paper. Intensive Care Med. 2020;46(6):1127–53.PubMedPubMedCentralCrossRef Abdul-Aziz MH, Alffenaar JC, Bassetti M, Bracht H, Dimopoulos G, Marriott D, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a position paper. Intensive Care Med. 2020;46(6):1127–53.PubMedPubMedCentralCrossRef
42.
go back to reference Wieringa A, Ewoldt TMJ, Gangapersad RN, Gijsen M, Parolya N, Kats C, et al. Predicting beta-lactam target non-attainment in ICU patients at treatment initiation: development and external validation of three novel (machine learning) models. Antibiotics (Basel). 2023;12(12):1674.PubMedPubMedCentralCrossRef Wieringa A, Ewoldt TMJ, Gangapersad RN, Gijsen M, Parolya N, Kats C, et al. Predicting beta-lactam target non-attainment in ICU patients at treatment initiation: development and external validation of three novel (machine learning) models. Antibiotics (Basel). 2023;12(12):1674.PubMedPubMedCentralCrossRef
43.
go back to reference Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26(1):1–10 (quiz 1-2).PubMedCrossRef Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26(1):1–10 (quiz 1-2).PubMedCrossRef
44.
go back to reference Wald-Dickler N, Holtom P, Spellberg B. Busting the myth of “static vs cidal”: a systemic literature review. Clin Infect Dis. 2018;66(9):1470–4.PubMedCrossRef Wald-Dickler N, Holtom P, Spellberg B. Busting the myth of “static vs cidal”: a systemic literature review. Clin Infect Dis. 2018;66(9):1470–4.PubMedCrossRef
45.
go back to reference Mouton JW, Muller AE, Canton R, Giske CG, Kahlmeter G, Turnidge J. MIC-based dose adjustment: facts and fables. J Antimicrob Chemother. 2018;73(3):564–8.PubMedCrossRef Mouton JW, Muller AE, Canton R, Giske CG, Kahlmeter G, Turnidge J. MIC-based dose adjustment: facts and fables. J Antimicrob Chemother. 2018;73(3):564–8.PubMedCrossRef
46.
go back to reference Bulman ZP, Wicha SG, Nielsen EI, Lenhard JR, Nation RL, Theuretzbacher U, et al. Research priorities towards precision antibiotic therapy to improve patient care. Lancet Microbe. 2022;3(10):e795–802.PubMedCrossRef Bulman ZP, Wicha SG, Nielsen EI, Lenhard JR, Nation RL, Theuretzbacher U, et al. Research priorities towards precision antibiotic therapy to improve patient care. Lancet Microbe. 2022;3(10):e795–802.PubMedCrossRef
47.
go back to reference Sumi CD, Heffernan AJ, Lipman J, Roberts JA, Sime FB. What antibiotic exposures are required to suppress the emergence of resistance for gram-negative bacteria? A Systematic Review Clin Pharmacokinet. 2019;58(11):1407–43.PubMedCrossRef Sumi CD, Heffernan AJ, Lipman J, Roberts JA, Sime FB. What antibiotic exposures are required to suppress the emergence of resistance for gram-negative bacteria? A Systematic Review Clin Pharmacokinet. 2019;58(11):1407–43.PubMedCrossRef
48.
go back to reference Malmberg C, Torpner J, Fernberg J, Öhrn H, Johansson C, Tängdén T, Kreuger J. Evaluation of the speed, accuracy and precision of the QuickMIC rapid antibiotic susceptibility testing assay in a clinical setting. bioRxiv. 2021:2021.08.11.455925. Malmberg C, Torpner J, Fernberg J, Öhrn H, Johansson C, Tängdén T, Kreuger J. Evaluation of the speed, accuracy and precision of the QuickMIC rapid antibiotic susceptibility testing assay in a clinical setting. bioRxiv. 2021:2021.08.11.455925.
49.
go back to reference Kantasiripitak W, Van Daele R, Gijsen M, Ferrante M, Spriet I, Dreesen E. Software tools for model-informed precision dosing: how well do they satisfy the needs? Front Pharmacol. 2020;11:620.PubMedPubMedCentralCrossRef Kantasiripitak W, Van Daele R, Gijsen M, Ferrante M, Spriet I, Dreesen E. Software tools for model-informed precision dosing: how well do they satisfy the needs? Front Pharmacol. 2020;11:620.PubMedPubMedCentralCrossRef
50.
go back to reference Fuchs A, Csajka C, Thoma Y, Buclin T, Widmer N. Benchmarking therapeutic drug monitoring software: a review of available computer tools. Clin Pharmacokinet. 2013;52(1):9–22.PubMedCrossRef Fuchs A, Csajka C, Thoma Y, Buclin T, Widmer N. Benchmarking therapeutic drug monitoring software: a review of available computer tools. Clin Pharmacokinet. 2013;52(1):9–22.PubMedCrossRef
51.
go back to reference Evans SR, Rubin D, Follmann D, Pennello G, Huskins WC, Powers JH, et al. Desirability of outcome ranking (DOOR) and response adjusted for duration of antibiotic risk (RADAR). Clin Infect Dis. 2015;61(5):800–6.PubMedPubMedCentralCrossRef Evans SR, Rubin D, Follmann D, Pennello G, Huskins WC, Powers JH, et al. Desirability of outcome ranking (DOOR) and response adjusted for duration of antibiotic risk (RADAR). Clin Infect Dis. 2015;61(5):800–6.PubMedPubMedCentralCrossRef
52.
go back to reference Yeh DD, Hatton GE, Pedroza C, Pust G, Mantero A, Namias N, Kao LS. Complex and simple appendicitis: REstrictive or Liberal postoperative Antibiotic eXposure (CASA RELAX) using desirability of outcome ranking (DOOR) and response adjusted for duration of antibiotic risk (RADAR): study protocol for a randomized controlled trial. Trauma Surg Acute Care Open. 2022;7(1): e000931.PubMedPubMedCentralCrossRef Yeh DD, Hatton GE, Pedroza C, Pust G, Mantero A, Namias N, Kao LS. Complex and simple appendicitis: REstrictive or Liberal postoperative Antibiotic eXposure (CASA RELAX) using desirability of outcome ranking (DOOR) and response adjusted for duration of antibiotic risk (RADAR): study protocol for a randomized controlled trial. Trauma Surg Acute Care Open. 2022;7(1): e000931.PubMedPubMedCentralCrossRef
53.
go back to reference Zbyrak V, Reveron SL, Smoke S, Mehta A, Marano MA, Lee R. Antibiotic usage after procalcitonin-guided therapy algorithm implementation in a burn intensive care unit. Ann Burns Fire Disasters. 2020;33(4):317–21.PubMedPubMedCentral Zbyrak V, Reveron SL, Smoke S, Mehta A, Marano MA, Lee R. Antibiotic usage after procalcitonin-guided therapy algorithm implementation in a burn intensive care unit. Ann Burns Fire Disasters. 2020;33(4):317–21.PubMedPubMedCentral
54.
go back to reference Sherwood K, Ikuta K. 2241. Methenamine for the prevention of recurrent UTIs: a desirability of outcome ranking (DOOR) analysis for the alternative to prophylactic antibiotics for the treatment of recurrent urinary tract infections in women (ALTAR) Trial. Open Forum Infect Dis. 2022;9:Supplement_2.CrossRef Sherwood K, Ikuta K. 2241. Methenamine for the prevention of recurrent UTIs: a desirability of outcome ranking (DOOR) analysis for the alternative to prophylactic antibiotics for the treatment of recurrent urinary tract infections in women (ALTAR) Trial. Open Forum Infect Dis. 2022;9:Supplement_2.CrossRef
55.
go back to reference Celestin AR, Odom SR, Angelidou K, Evans SR, Coimbra R, Guidry CA, et al. Novel method suggests global superiority of short-duration antibiotics for intra-abdominal infections. Clin Infect Dis. 2017;65(9):1577–9.PubMedPubMedCentralCrossRef Celestin AR, Odom SR, Angelidou K, Evans SR, Coimbra R, Guidry CA, et al. Novel method suggests global superiority of short-duration antibiotics for intra-abdominal infections. Clin Infect Dis. 2017;65(9):1577–9.PubMedPubMedCentralCrossRef
56.
go back to reference Williams DJ, Creech CB, Walter EB, Martin JM, Gerber JS, Newland JG, et al. Short- vs standard-course outpatient antibiotic therapy for community-acquired pneumonia in children: the SCOUT-CAP randomized clinical trial. JAMA Pediatr. 2022;176(3):253–61.PubMedCrossRef Williams DJ, Creech CB, Walter EB, Martin JM, Gerber JS, Newland JG, et al. Short- vs standard-course outpatient antibiotic therapy for community-acquired pneumonia in children: the SCOUT-CAP randomized clinical trial. JAMA Pediatr. 2022;176(3):253–61.PubMedCrossRef
57.
go back to reference Brenner T, Skarabis A, Stevens P, Axnick J, Haug P, Grumaz S, et al. Optimization of sepsis therapy based on patient-specific digital precision diagnostics using next generation sequencing (DigiSep-Trial)-study protocol for a randomized, controlled, interventional, open-label, multicenter trial. Trials. 2021;22(1):714.PubMedPubMedCentralCrossRef Brenner T, Skarabis A, Stevens P, Axnick J, Haug P, Grumaz S, et al. Optimization of sepsis therapy based on patient-specific digital precision diagnostics using next generation sequencing (DigiSep-Trial)-study protocol for a randomized, controlled, interventional, open-label, multicenter trial. Trials. 2021;22(1):714.PubMedPubMedCentralCrossRef
58.
go back to reference Darwich AS, Ogungbenro K, Vinks AA, Powell JR, Reny JL, Marsousi N, et al. Why has model-informed precision dosing not yet become common clinical reality? Lessons from the past and a roadmap for the future. Clin Pharmacol Ther. 2017;101(5):646–56.PubMedCrossRef Darwich AS, Ogungbenro K, Vinks AA, Powell JR, Reny JL, Marsousi N, et al. Why has model-informed precision dosing not yet become common clinical reality? Lessons from the past and a roadmap for the future. Clin Pharmacol Ther. 2017;101(5):646–56.PubMedCrossRef
59.
go back to reference Oliver MB, Boeser KD, Carlson MK, Hansen LA. Considerations for implementation of vancomycin Bayesian software monitoring in a level IV NICU population within a multisite health system. Am J Health Syst Pharm. 2023;80(11):670–7.PubMedCrossRef Oliver MB, Boeser KD, Carlson MK, Hansen LA. Considerations for implementation of vancomycin Bayesian software monitoring in a level IV NICU population within a multisite health system. Am J Health Syst Pharm. 2023;80(11):670–7.PubMedCrossRef
60.
go back to reference Oyaert M, Peersman N, Kieffer D, Deiteren K, Smits A, Allegaert K, et al. Novel LC-MS/MS method for plasma vancomycin: comparison with immunoassays and clinical impact. Clin Chim Acta. 2015;441:63–70.PubMedCrossRef Oyaert M, Peersman N, Kieffer D, Deiteren K, Smits A, Allegaert K, et al. Novel LC-MS/MS method for plasma vancomycin: comparison with immunoassays and clinical impact. Clin Chim Acta. 2015;441:63–70.PubMedCrossRef
61.
go back to reference Alihodzic D, Broeker A, Baehr M, Kluge S, Langebrake C, Wicha SG. Impact of inaccurate documentation of sampling and infusion time in model-informed precision dosing. Front Pharmacol. 2020;11:172.PubMedPubMedCentralCrossRef Alihodzic D, Broeker A, Baehr M, Kluge S, Langebrake C, Wicha SG. Impact of inaccurate documentation of sampling and infusion time in model-informed precision dosing. Front Pharmacol. 2020;11:172.PubMedPubMedCentralCrossRef
62.
go back to reference Bilal H, Bergen PJ, Tait JR, Wallis SC, Peleg AY, Roberts JA, et al. Clinically relevant epithelial lining fluid concentrations of meropenem with ciprofloxacin provide synergistic killing and resistance suppression of hypermutable pseudomonas aeruginosa in a dynamic biofilm model. Antimicrob Agents Chemother. 2020;64(7):e00469-e520.PubMedPubMedCentralCrossRef Bilal H, Bergen PJ, Tait JR, Wallis SC, Peleg AY, Roberts JA, et al. Clinically relevant epithelial lining fluid concentrations of meropenem with ciprofloxacin provide synergistic killing and resistance suppression of hypermutable pseudomonas aeruginosa in a dynamic biofilm model. Antimicrob Agents Chemother. 2020;64(7):e00469-e520.PubMedPubMedCentralCrossRef
63.
go back to reference Koch BCP, Zhao Q, Oosterhoff M, van Oldenrijk J, Abdulla A, de Winter BCM, et al. The mysteries of target site concentrations of antibiotics in bone and joint infections: what is known? A narrative review. Expert Opin Drug Metab Toxicol. 2022;18(9):587–600.PubMedCrossRef Koch BCP, Zhao Q, Oosterhoff M, van Oldenrijk J, Abdulla A, de Winter BCM, et al. The mysteries of target site concentrations of antibiotics in bone and joint infections: what is known? A narrative review. Expert Opin Drug Metab Toxicol. 2022;18(9):587–600.PubMedCrossRef
64.
go back to reference Kluwe F, Michelet R, Mueller-Schoell A, Maier C, Klopp-Schulze L, van Dyk M, et al. Perspectives on model-informed precision dosing in the digital health era: challenges, opportunities, and recommendations. Clin Pharmacol Ther. 2021;109(1):29–36.PubMedCrossRef Kluwe F, Michelet R, Mueller-Schoell A, Maier C, Klopp-Schulze L, van Dyk M, et al. Perspectives on model-informed precision dosing in the digital health era: challenges, opportunities, and recommendations. Clin Pharmacol Ther. 2021;109(1):29–36.PubMedCrossRef
65.
66.
go back to reference Wang H, Tang J, Wu M, Wang X, Zhang T. Application of machine learning missing data imputation techniques in clinical decision making: taking the discharge assessment of patients with spontaneous supratentorial intracerebral hemorrhage as an example. BMC Med Inform Decis Mak. 2022;22(1):13.PubMedPubMedCentralCrossRef Wang H, Tang J, Wu M, Wang X, Zhang T. Application of machine learning missing data imputation techniques in clinical decision making: taking the discharge assessment of patients with spontaneous supratentorial intracerebral hemorrhage as an example. BMC Med Inform Decis Mak. 2022;22(1):13.PubMedPubMedCentralCrossRef
67.
go back to reference Irby DJ, Ibrahim ME, Dauki AM, Badawi MA, Illamola SM, Chen M, et al. Approaches to handling missing or “problematic” pharmacology data: pharmacokinetics. CPT Pharmacometr Syst Pharmacol. 2021;10(4):291–308.CrossRef Irby DJ, Ibrahim ME, Dauki AM, Badawi MA, Illamola SM, Chen M, et al. Approaches to handling missing or “problematic” pharmacology data: pharmacokinetics. CPT Pharmacometr Syst Pharmacol. 2021;10(4):291–308.CrossRef
68.
go back to reference Collin CB, Gebhardt T, Golebiewski M, Karaderi T, Hillemanns M, Khan FM, et al. Computational models for clinical applications in personalized medicine-guidelines and recommendations for data integration and model validation. J Pers Med. 2022;12(2):166.PubMedPubMedCentralCrossRef Collin CB, Gebhardt T, Golebiewski M, Karaderi T, Hillemanns M, Khan FM, et al. Computational models for clinical applications in personalized medicine-guidelines and recommendations for data integration and model validation. J Pers Med. 2022;12(2):166.PubMedPubMedCentralCrossRef
69.
go back to reference Kang D, Schwartz JB, Verotta D. Sample size computations for PK/PD population models. J Pharmacokinet Pharmacodyn. 2005;32(5):685–701.PubMedCrossRef Kang D, Schwartz JB, Verotta D. Sample size computations for PK/PD population models. J Pharmacokinet Pharmacodyn. 2005;32(5):685–701.PubMedCrossRef
70.
go back to reference Bulitta JB, Hope WW, Eakin AE, Guina T, Tam VH, Louie A, et al. Generating robust and informative nonclinical in vitro and in vivo bacterial infection model efficacy data to support translation to humans. Antimicrob Agents Chemother. 2019;63(5):e02307-e2318.PubMedPubMedCentralCrossRef Bulitta JB, Hope WW, Eakin AE, Guina T, Tam VH, Louie A, et al. Generating robust and informative nonclinical in vitro and in vivo bacterial infection model efficacy data to support translation to humans. Antimicrob Agents Chemother. 2019;63(5):e02307-e2318.PubMedPubMedCentralCrossRef
71.
go back to reference Lee DG, Murakami Y, Andes DR, Craig WA. Inoculum effects of ceftobiprole, daptomycin, linezolid, and vancomycin with Staphylococcus aureus and Streptococcus pneumoniae at inocula of 10(5) and 10(7) CFU injected into opposite thighs of neutropenic mice. Antimicrob Agents Chemother. 2013;57(3):1434–41.PubMedPubMedCentralCrossRef Lee DG, Murakami Y, Andes DR, Craig WA. Inoculum effects of ceftobiprole, daptomycin, linezolid, and vancomycin with Staphylococcus aureus and Streptococcus pneumoniae at inocula of 10(5) and 10(7) CFU injected into opposite thighs of neutropenic mice. Antimicrob Agents Chemother. 2013;57(3):1434–41.PubMedPubMedCentralCrossRef
72.
go back to reference Kaminwar SR, Goschenhofer J, Thomas J, Thon I, Bischl B. Structured verification of machine learning models in industrial settings. Big Data. 2023;11(3):181–98.PubMedPubMedCentralCrossRef Kaminwar SR, Goschenhofer J, Thomas J, Thon I, Bischl B. Structured verification of machine learning models in industrial settings. Big Data. 2023;11(3):181–98.PubMedPubMedCentralCrossRef
73.
go back to reference Dykstra K, Mehrotra N, Tornøe CW, Kastrissios H, Patel B, Al-Huniti N, et al. Reporting guidelines for population pharmacokinetic analyses. J Pharmacokinet Pharmacodyn. 2015;42(3):301–14.PubMedPubMedCentralCrossRef Dykstra K, Mehrotra N, Tornøe CW, Kastrissios H, Patel B, Al-Huniti N, et al. Reporting guidelines for population pharmacokinetic analyses. J Pharmacokinet Pharmacodyn. 2015;42(3):301–14.PubMedPubMedCentralCrossRef
74.
go back to reference Sun H, Fadiran EO, Jones CD, Lesko L, Huang SM, Higgins K, et al. Population pharmacokinetics. A regulatory perspective. Clin Pharmacokinet. 1999;37(1):41–58.PubMedCrossRef Sun H, Fadiran EO, Jones CD, Lesko L, Huang SM, Higgins K, et al. Population pharmacokinetics. A regulatory perspective. Clin Pharmacokinet. 1999;37(1):41–58.PubMedCrossRef
75.
go back to reference Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45(3):486–552.PubMedCrossRef Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45(3):486–552.PubMedCrossRef
76.
go back to reference Ewoldt TMJ, Abdulla A, van den Broek P, Hunfeld N, Bahmany S, Muller AE, et al. Barriers and facilitators for therapeutic drug monitoring of beta-lactams and ciprofloxacin in the ICU: a nationwide cross-sectional study. BMC Infect Dis. 2022;22(1):611.PubMedPubMedCentralCrossRef Ewoldt TMJ, Abdulla A, van den Broek P, Hunfeld N, Bahmany S, Muller AE, et al. Barriers and facilitators for therapeutic drug monitoring of beta-lactams and ciprofloxacin in the ICU: a nationwide cross-sectional study. BMC Infect Dis. 2022;22(1):611.PubMedPubMedCentralCrossRef
77.
go back to reference Mishi RD, Stokes MA, Campbell CA, Plaxco KW, Stocker SL. Real-time monitoring of antibiotics in the critically ill using biosensors. Antibiotics (Basel). 2023;12(10):1478.PubMedPubMedCentralCrossRef Mishi RD, Stokes MA, Campbell CA, Plaxco KW, Stocker SL. Real-time monitoring of antibiotics in the critically ill using biosensors. Antibiotics (Basel). 2023;12(10):1478.PubMedPubMedCentralCrossRef
78.
go back to reference Ates HC, Roberts JA, Lipman J, Cass AEG, Urban GA, Dincer C. On-site therapeutic drug monitoring. Trends Biotechnol. 2020;38(11):1262–77.PubMedCrossRef Ates HC, Roberts JA, Lipman J, Cass AEG, Urban GA, Dincer C. On-site therapeutic drug monitoring. Trends Biotechnol. 2020;38(11):1262–77.PubMedCrossRef
79.
go back to reference Barrett JF, Hoch JA. Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob Agents Chemother. 1998;42(7):1529–36.PubMedPubMedCentralCrossRef Barrett JF, Hoch JA. Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob Agents Chemother. 1998;42(7):1529–36.PubMedPubMedCentralCrossRef
80.
go back to reference Kiang TKL, Ranamukhaarachchi SA, Ensom MHH. Revolutionizing therapeutic drug monitoring with the use of interstitial fluid and microneedles technology. Pharmaceutics. 2017;9(4):43.PubMedPubMedCentralCrossRef Kiang TKL, Ranamukhaarachchi SA, Ensom MHH. Revolutionizing therapeutic drug monitoring with the use of interstitial fluid and microneedles technology. Pharmaceutics. 2017;9(4):43.PubMedPubMedCentralCrossRef
81.
go back to reference Rawson TM, O’Hare D, Herrero P, Sharma S, Moore LSP, de Barra E, et al. Delivering precision antimicrobial therapy through closed-loop control systems. J Antimicrob Chemother. 2018;73(4):835–43.PubMedCrossRef Rawson TM, O’Hare D, Herrero P, Sharma S, Moore LSP, de Barra E, et al. Delivering precision antimicrobial therapy through closed-loop control systems. J Antimicrob Chemother. 2018;73(4):835–43.PubMedCrossRef
82.
go back to reference Zambry NS, Ahmad Najib M, Awang MS, Selvam K, Khalid MF, Bustami Y, et al. Aptamer-based electrochemical biosensors for the detection of salmonella: a scoping review. Diagnostics (Basel). 2022;12(12):3186.PubMedPubMedCentralCrossRef Zambry NS, Ahmad Najib M, Awang MS, Selvam K, Khalid MF, Bustami Y, et al. Aptamer-based electrochemical biosensors for the detection of salmonella: a scoping review. Diagnostics (Basel). 2022;12(12):3186.PubMedPubMedCentralCrossRef
83.
go back to reference Visser EWA, Yan J, van Ijzendoorn LJ, Prins MWJ. Continuous biomarker monitoring by particle mobility sensing with single molecule resolution. Nat Commun. 2018;9(1):2541.PubMedPubMedCentralCrossRef Visser EWA, Yan J, van Ijzendoorn LJ, Prins MWJ. Continuous biomarker monitoring by particle mobility sensing with single molecule resolution. Nat Commun. 2018;9(1):2541.PubMedPubMedCentralCrossRef
84.
go back to reference Gastine S, Hope W, Hempel G, Petraitiene R, Petraitis V, Mickiene D, et al. Pharmacodynamics of posaconazole in experimental invasive pulmonary aspergillosis: utility of serum galactomannan as a dynamic endpoint of antifungal efficacy. Antimicrob Agents Chemother. 2021;65(2):e01574-e1620.PubMedPubMedCentralCrossRef Gastine S, Hope W, Hempel G, Petraitiene R, Petraitis V, Mickiene D, et al. Pharmacodynamics of posaconazole in experimental invasive pulmonary aspergillosis: utility of serum galactomannan as a dynamic endpoint of antifungal efficacy. Antimicrob Agents Chemother. 2021;65(2):e01574-e1620.PubMedPubMedCentralCrossRef
85.
go back to reference Heil EL, Nicolau DP, Farkas A, Roberts JA, Thom KA. Pharmacodynamic target attainment for cefepime, meropenem, and piperacillin-tazobactam using a pharmacokinetic/pharmacodynamic-based dosing calculator in critically ill patients. Antimicrob Agents Chemother. 2018;62(9):e01008-e1018.PubMedPubMedCentralCrossRef Heil EL, Nicolau DP, Farkas A, Roberts JA, Thom KA. Pharmacodynamic target attainment for cefepime, meropenem, and piperacillin-tazobactam using a pharmacokinetic/pharmacodynamic-based dosing calculator in critically ill patients. Antimicrob Agents Chemother. 2018;62(9):e01008-e1018.PubMedPubMedCentralCrossRef
Metadata
Title
Dose Individualisation of Antimicrobials from a Pharmacometric Standpoint: The Current Landscape
Authors
Tim Preijers
Anouk E. Muller
Alan Abdulla
Brenda C. M. de Winter
Birgit C. P. Koch
Sebastiaan D. T. Sassen
Publication date
06-09-2024
Publisher
Springer International Publishing
Published in
Drugs
Print ISSN: 0012-6667
Electronic ISSN: 1179-1950
DOI
https://doi.org/10.1007/s40265-024-02084-7