Skip to main content
Top
Published in:

Open Access 01-12-2024 | Parkinson Disease | Research

Mutated LRRK2 induces a reactive phenotype and alters migration in human iPSC-derived pericyte-like cells

Authors: Sanni Peltonen, Tuuli-Maria Sonninen, Jonna Niskanen, Jari Koistinaho, Marika Ruponen, Šárka Lehtonen

Published in: Fluids and Barriers of the CNS | Issue 1/2024

Login to get access

Abstract

Background

Pericytes play a crucial role in controlling inflammation and vascular functions in the central nervous system, which are disrupted in Parkinson’s disease (PD). Still, there is a lack of studies on the impact of pericytes on neurodegenerative diseases, and their involvement in the pathology of PD is unclear. Our objective was to investigate the molecular and functional differences between healthy pericytes and pericytes with the LRRK2 G2019S mutation, which is one of the most common mutations associated with PD.

Methods

Our study employed pericyte-like cells obtained from induced pluripotent stem cells produced from PD patients with the LRRK2 G2019S mutation as well as from healthy individuals. We examined the gene expression profiles of the cells and analyzed how the alterations reflect on their functionality.

Results

We have shown differences in the expression of genes related to inflammation and angiogenesis. Furthermore, we observe modified migration speed in PD pericyte-like cells as well as enhanced secretion of inflammatory mediators, such as soluble VCAM-1 and MCP-1, in these pericyte-like cells following exposure to proinflammatory stimuli.

Conclusions

In summary, our findings support the notion that pericytes play a role in the inflammatory and vascular changes observed in PD. Further investigation of pericytes could provide valuable insight into understanding the pathogenesis of PD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Aarsland D, Batzu L, Halliday GM, Geurtsen GJ, Ballard C, Ray Chaudhuri K, et al. Parkinson disease-associated cognitive impairment. Nat Rev Dis Primer. 2021;7(1):47.CrossRef Aarsland D, Batzu L, Halliday GM, Geurtsen GJ, Ballard C, Ray Chaudhuri K, et al. Parkinson disease-associated cognitive impairment. Nat Rev Dis Primer. 2021;7(1):47.CrossRef
2.
go back to reference Dorsey ER, Sherer T, Okun MS, Bloem BR. The Emerging Evidence of the Parkinson Pandemic. Brundin P, Langston JW, Bloem BR, editors. J Park Dis. 2018;8(s1):S3–8. Dorsey ER, Sherer T, Okun MS, Bloem BR. The Emerging Evidence of the Parkinson Pandemic. Brundin P, Langston JW, Bloem BR, editors. J Park Dis. 2018;8(s1):S3–8.
7.
go back to reference Faucheux BA, Agid Y, Hirsch EC, Bonnet AM. Blood vessels change in the mesencephalon of patients with Parkinson’s disease. Lancet. 1999;353(9157):981–2.CrossRefPubMed Faucheux BA, Agid Y, Hirsch EC, Bonnet AM. Blood vessels change in the mesencephalon of patients with Parkinson’s disease. Lancet. 1999;353(9157):981–2.CrossRefPubMed
8.
go back to reference Desai Bradaric B, Patel A, Schneider JA, Carvey PM, Hendey B. Evidence for angiogenesis in Parkinson’s disease, incidental Lewy body disease, and progressive supranuclear palsy. J Neural Transm. 2012;119(1):59–71.CrossRefPubMed Desai Bradaric B, Patel A, Schneider JA, Carvey PM, Hendey B. Evidence for angiogenesis in Parkinson’s disease, incidental Lewy body disease, and progressive supranuclear palsy. J Neural Transm. 2012;119(1):59–71.CrossRefPubMed
9.
go back to reference Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood–brain barrier. Nature. 2010;468(7323):557–61.CrossRefPubMed Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood–brain barrier. Nature. 2010;468(7323):557–61.CrossRefPubMed
10.
go back to reference Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562–6.CrossRefPubMedPubMedCentral Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562–6.CrossRefPubMedPubMedCentral
11.
go back to reference Kang TY, Bocci F, Jolly MK, Levine H, Onuchic JN, Levchenko A. Pericytes enable effective angiogenesis in the presence of proinflammatory signals. Proc Natl Acad Sci. 2019;116(47):23551–61.CrossRefPubMedPubMedCentral Kang TY, Bocci F, Jolly MK, Levine H, Onuchic JN, Levchenko A. Pericytes enable effective angiogenesis in the presence of proinflammatory signals. Proc Natl Acad Sci. 2019;116(47):23551–61.CrossRefPubMedPubMedCentral
12.
go back to reference Rustenhoven J, Jansson D, Smyth LC, Dragunow M. Brain Pericytes as mediators of Neuroinflammation. Trends Pharmacol Sci. 2017;38(3):291–304.CrossRefPubMed Rustenhoven J, Jansson D, Smyth LC, Dragunow M. Brain Pericytes as mediators of Neuroinflammation. Trends Pharmacol Sci. 2017;38(3):291–304.CrossRefPubMed
13.
go back to reference Stevenson TJ, Johnson RH, Savistchenko J, Rustenhoven J, Woolf Z, Smyth LCD, et al. Pericytes take up and degrade α-synuclein but succumb to apoptosis under cellular stress. Sci Rep. 2022;12(1):1–17.CrossRef Stevenson TJ, Johnson RH, Savistchenko J, Rustenhoven J, Woolf Z, Smyth LCD, et al. Pericytes take up and degrade α-synuclein but succumb to apoptosis under cellular stress. Sci Rep. 2022;12(1):1–17.CrossRef
14.
go back to reference Dohgu S, Takata F, Matsumoto J, Kimura I, Yamauchi A, Kataoka Y. Monomeric α-synuclein induces blood–brain barrier dysfunction through activated brain pericytes releasing inflammatory mediators in vitro. Microvasc Res. 2019;124:61–6.CrossRefPubMed Dohgu S, Takata F, Matsumoto J, Kimura I, Yamauchi A, Kataoka Y. Monomeric α-synuclein induces blood–brain barrier dysfunction through activated brain pericytes releasing inflammatory mediators in vitro. Microvasc Res. 2019;124:61–6.CrossRefPubMed
15.
go back to reference Elabi O, Gaceb A, Carlsson R, Padel T, Soylu-Kucharz R, Cortijo I, et al. Human α-synuclein overexpression in a mouse model of Parkinson’s disease leads to vascular pathology, blood brain barrier leakage and pericyte activation. Sci Rep. 2021;11(1):1120.CrossRefPubMedPubMedCentral Elabi O, Gaceb A, Carlsson R, Padel T, Soylu-Kucharz R, Cortijo I, et al. Human α-synuclein overexpression in a mouse model of Parkinson’s disease leads to vascular pathology, blood brain barrier leakage and pericyte activation. Sci Rep. 2021;11(1):1120.CrossRefPubMedPubMedCentral
16.
go back to reference Holmqvist S, Lehtonen Š, Chumarina M, Puttonen KA, Azevedo C, Lebedeva O, et al. Creation of a library of induced pluripotent stem cells from parkinsonian patients. Npj Park Dis. 2016;2(1):16009.CrossRef Holmqvist S, Lehtonen Š, Chumarina M, Puttonen KA, Azevedo C, Lebedeva O, et al. Creation of a library of induced pluripotent stem cells from parkinsonian patients. Npj Park Dis. 2016;2(1):16009.CrossRef
17.
go back to reference Faal T, Phan DTT, Davtyan H, Scarfone VM, Varady E, Blurton-Jones M, et al. Induction of mesoderm and neural crest-derived pericytes from human pluripotent stem cells to study blood-brain barrier interactions. Stem Cell Rep. 2019;12(3):451–60.CrossRef Faal T, Phan DTT, Davtyan H, Scarfone VM, Varady E, Blurton-Jones M, et al. Induction of mesoderm and neural crest-derived pericytes from human pluripotent stem cells to study blood-brain barrier interactions. Stem Cell Rep. 2019;12(3):451–60.CrossRef
18.
go back to reference Kumar A, D’Souza SS, Moskvin OV, Toh H, Wang B, Zhang J, et al. Specification and diversification of Pericytes and smooth muscle cells from Mesenchymoangioblasts. Cell Rep. 2017;19(9):1902–16.CrossRefPubMedPubMedCentral Kumar A, D’Souza SS, Moskvin OV, Toh H, Wang B, Zhang J, et al. Specification and diversification of Pericytes and smooth muscle cells from Mesenchymoangioblasts. Cell Rep. 2017;19(9):1902–16.CrossRefPubMedPubMedCentral
19.
go back to reference Harding A, Cortez-Toledo E, Magner NL, Beegle JR, Coleal-Bergum DP, Hao D, et al. Highly efficient differentiation of endothelial cells from pluripotent stem cells requires the MAPK and the PI3K pathways. Stem Cells. 2017;35(4):909–19.CrossRefPubMed Harding A, Cortez-Toledo E, Magner NL, Beegle JR, Coleal-Bergum DP, Hao D, et al. Highly efficient differentiation of endothelial cells from pluripotent stem cells requires the MAPK and the PI3K pathways. Stem Cells. 2017;35(4):909–19.CrossRefPubMed
20.
go back to reference Brown LS, Foster CG, Courtney JM, King NE, Howells DW, Sutherland BA. Pericytes and neurovascular function in the healthy and diseased brain. Front Cell Neurosci. 2019;13:282.CrossRefPubMedPubMedCentral Brown LS, Foster CG, Courtney JM, King NE, Howells DW, Sutherland BA. Pericytes and neurovascular function in the healthy and diseased brain. Front Cell Neurosci. 2019;13:282.CrossRefPubMedPubMedCentral
21.
go back to reference King NE, Courtney JM, Brown LS, Fortune AJ, Blackburn NB, Fletcher JL, et al. Induced pluripotent stem cell derived pericytes respond to mediators of proliferation and contractility. Stem Cell Res Ther. 2024;15(1):59.CrossRefPubMedPubMedCentral King NE, Courtney JM, Brown LS, Fortune AJ, Blackburn NB, Fletcher JL, et al. Induced pluripotent stem cell derived pericytes respond to mediators of proliferation and contractility. Stem Cell Res Ther. 2024;15(1):59.CrossRefPubMedPubMedCentral
22.
go back to reference Payne LB, Darden J, Suarez-Martinez AD, Zhao H, Hendricks A, Hartland C, et al. Pericyte migration and proliferation are tightly synchronized to endothelial cell sprouting dynamics. Integr Biol. 2021;13(2):31–43.CrossRef Payne LB, Darden J, Suarez-Martinez AD, Zhao H, Hendricks A, Hartland C, et al. Pericyte migration and proliferation are tightly synchronized to endothelial cell sprouting dynamics. Integr Biol. 2021;13(2):31–43.CrossRef
23.
go back to reference Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Shojaei S. A review on the role of MEG8 lncRNA in human disorders. Cancer Cell Int. 2022;22(1):285.CrossRefPubMedPubMedCentral Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Shojaei S. A review on the role of MEG8 lncRNA in human disorders. Cancer Cell Int. 2022;22(1):285.CrossRefPubMedPubMedCentral
24.
go back to reference Sui S, Sun L, Zhang W, Li J, Han J, Zheng J, et al. LncRNA MEG8 attenuates cerebral ischemia after ischemic stroke through targeting miR-130a-5p/VEGFA signaling. Cell Mol Neurobiol. 2021;41(6):1311–24.CrossRefPubMed Sui S, Sun L, Zhang W, Li J, Han J, Zheng J, et al. LncRNA MEG8 attenuates cerebral ischemia after ischemic stroke through targeting miR-130a-5p/VEGFA signaling. Cell Mol Neurobiol. 2021;41(6):1311–24.CrossRefPubMed
25.
go back to reference Kremer V, Bink DI, Stanicek L, Van Ingen E, Gimbel T, Hilderink S, et al. MEG8 regulates tissue factor pathway inhibitor 2 (TFPI2) expression in the endothelium. Sci Rep. 2022;12(1):843.CrossRefPubMedPubMedCentral Kremer V, Bink DI, Stanicek L, Van Ingen E, Gimbel T, Hilderink S, et al. MEG8 regulates tissue factor pathway inhibitor 2 (TFPI2) expression in the endothelium. Sci Rep. 2022;12(1):843.CrossRefPubMedPubMedCentral
26.
go back to reference Zhang B, Dong Y, Zhao Z. LncRNA MEG8 regulates vascular smooth muscle cell proliferation, migration and apoptosis by targeting PPARα. Biochem Biophys Res Commun. 2019;510(1):171–6.CrossRefPubMed Zhang B, Dong Y, Zhao Z. LncRNA MEG8 regulates vascular smooth muscle cell proliferation, migration and apoptosis by targeting PPARα. Biochem Biophys Res Commun. 2019;510(1):171–6.CrossRefPubMed
27.
go back to reference Xu D, Dai R, Chi H, Ge W, Rong J. Long non-coding RNA MEG8 suppresses Hypoxia-Induced Excessive Proliferation, Migration and inflammation of vascular smooth muscle cells by regulation of the miR-195-5p/RECK Axis. Front Mol Biosci. 2021;8:697273.CrossRefPubMedPubMedCentral Xu D, Dai R, Chi H, Ge W, Rong J. Long non-coding RNA MEG8 suppresses Hypoxia-Induced Excessive Proliferation, Migration and inflammation of vascular smooth muscle cells by regulation of the miR-195-5p/RECK Axis. Front Mol Biosci. 2021;8:697273.CrossRefPubMedPubMedCentral
28.
29.
go back to reference Huang H, Zheng S, Lu M. Downregulation of lncRNA MEG3 is involved in Parkinson’s disease. Metab Brain Dis. 2021;36(8):2323–8.CrossRefPubMed Huang H, Zheng S, Lu M. Downregulation of lncRNA MEG3 is involved in Parkinson’s disease. Metab Brain Dis. 2021;36(8):2323–8.CrossRefPubMed
30.
go back to reference Honarmand Tamizkar K, Gorji P, Gholipour M, Hussen BM, Mazdeh M, Eslami S, et al. Parkinson’s disease is Associated with Dysregulation of circulatory levels of lncRNAs. Front Immunol. 2021;12:763323.CrossRefPubMedPubMedCentral Honarmand Tamizkar K, Gorji P, Gholipour M, Hussen BM, Mazdeh M, Eslami S, et al. Parkinson’s disease is Associated with Dysregulation of circulatory levels of lncRNAs. Front Immunol. 2021;12:763323.CrossRefPubMedPubMedCentral
31.
go back to reference Qin XY, Zhang SP, Cao C, Loh YP, Cheng Y. Aberrations in peripheral inflammatory cytokine levels in Parkinson Disease: a systematic review and Meta-analysis. JAMA Neurol. 2016;73(11):1316.CrossRefPubMed Qin XY, Zhang SP, Cao C, Loh YP, Cheng Y. Aberrations in peripheral inflammatory cytokine levels in Parkinson Disease: a systematic review and Meta-analysis. JAMA Neurol. 2016;73(11):1316.CrossRefPubMed
32.
go back to reference Chen X, Hu Y, Cao Z, Liu Q, Cheng Y. Cerebrospinal fluid inflammatory cytokine aberrations in Alzheimer’s Disease, Parkinson’s disease and amyotrophic lateral sclerosis: a systematic review and Meta-analysis. Front Immunol. 2018;9:2122.CrossRefPubMedPubMedCentral Chen X, Hu Y, Cao Z, Liu Q, Cheng Y. Cerebrospinal fluid inflammatory cytokine aberrations in Alzheimer’s Disease, Parkinson’s disease and amyotrophic lateral sclerosis: a systematic review and Meta-analysis. Front Immunol. 2018;9:2122.CrossRefPubMedPubMedCentral
33.
go back to reference Rustenhoven J, Aalderink M, Scotter EL, Oldfield RL, Bergin PS, Mee EW, et al. TGF-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function. J Neuroinflammation. 2016;13(1):37.CrossRefPubMedPubMedCentral Rustenhoven J, Aalderink M, Scotter EL, Oldfield RL, Bergin PS, Mee EW, et al. TGF-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function. J Neuroinflammation. 2016;13(1):37.CrossRefPubMedPubMedCentral
34.
go back to reference Perner C, Perner F, Gaur N, Zimmermann S, Witte OW, Heidel FH, et al. Plasma VCAM1 levels correlate with disease severity in Parkinson’s disease. J Neuroinflammation. 2019;16(1):94.CrossRefPubMedPubMedCentral Perner C, Perner F, Gaur N, Zimmermann S, Witte OW, Heidel FH, et al. Plasma VCAM1 levels correlate with disease severity in Parkinson’s disease. J Neuroinflammation. 2019;16(1):94.CrossRefPubMedPubMedCentral
35.
go back to reference Schröder JB, Pawlowski M, Meyer Zu Hörste G, Gross CC, Wiendl H, Meuth SG, et al. Immune Cell activation in the cerebrospinal fluid of patients with Parkinson’s Disease. Front Neurol. 2018;9:1081.CrossRefPubMedPubMedCentral Schröder JB, Pawlowski M, Meyer Zu Hörste G, Gross CC, Wiendl H, Meuth SG, et al. Immune Cell activation in the cerebrospinal fluid of patients with Parkinson’s Disease. Front Neurol. 2018;9:1081.CrossRefPubMedPubMedCentral
36.
go back to reference Santaella A, Kuiperij HB, Van Rumund A, Esselink RAJ, Van Gool AJ, Bloem BR, et al. Cerebrospinal fluid monocyte chemoattractant protein 1 correlates with progression of Parkinson’s disease. Npj Park Dis. 2020;6(1):21.CrossRef Santaella A, Kuiperij HB, Van Rumund A, Esselink RAJ, Van Gool AJ, Bloem BR, et al. Cerebrospinal fluid monocyte chemoattractant protein 1 correlates with progression of Parkinson’s disease. Npj Park Dis. 2020;6(1):21.CrossRef
37.
go back to reference Sonninen TM, Hämäläinen RH, Koskuvi M, Oksanen M, Shakirzyanova A, Wojciechowski S, et al. Metabolic alterations in Parkinson’s disease astrocytes. Sci Rep. 2020;10(1):14474.CrossRefPubMedPubMedCentral Sonninen TM, Hämäläinen RH, Koskuvi M, Oksanen M, Shakirzyanova A, Wojciechowski S, et al. Metabolic alterations in Parkinson’s disease astrocytes. Sci Rep. 2020;10(1):14474.CrossRefPubMedPubMedCentral
38.
go back to reference Ohtonen S, Giudice L, Jäntti H, Fazaludeen MF, Shakirzyanova A, Gómez-Budia M, et al. Human iPSC-derived microglia carrying the LRRK2-G2019S mutation show a Parkinson’s disease related transcriptional profile and function. Sci Rep. 2023;13(1):22118.CrossRefPubMedPubMedCentral Ohtonen S, Giudice L, Jäntti H, Fazaludeen MF, Shakirzyanova A, Gómez-Budia M, et al. Human iPSC-derived microglia carrying the LRRK2-G2019S mutation show a Parkinson’s disease related transcriptional profile and function. Sci Rep. 2023;13(1):22118.CrossRefPubMedPubMedCentral
39.
go back to reference He KJ, Zhang JB, Liu JY, Zhao FL, Yao XY, Tang YT, et al. LRRK2 G2019S promotes astrocytic inflammation induced by oligomeric α-synuclein through NF-κB pathway. iScience. 2023;26(11):108130.CrossRefPubMedPubMedCentral He KJ, Zhang JB, Liu JY, Zhao FL, Yao XY, Tang YT, et al. LRRK2 G2019S promotes astrocytic inflammation induced by oligomeric α-synuclein through NF-κB pathway. iScience. 2023;26(11):108130.CrossRefPubMedPubMedCentral
Metadata
Title
Mutated LRRK2 induces a reactive phenotype and alters migration in human iPSC-derived pericyte-like cells
Authors
Sanni Peltonen
Tuuli-Maria Sonninen
Jonna Niskanen
Jari Koistinaho
Marika Ruponen
Šárka Lehtonen
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2024
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-024-00592-y

Keynote webinar | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the broader systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now

Advances in Alzheimer's

Alzheimer's research and care is changing rapidly. Keep up with the latest developments from key international conferences, together with expert insights on how to integrate these advances into practice.

This content is intended for healthcare professionals outside of the UK.

Supported by:
  • Lilly
Developed by: Springer Healthcare IME
Learn more