Skip to main content
Top

Open Access 12-03-2025 | Pancreatic Cancer | Original Paper

A type of pancreatic cancer cells form cell clusters from a solitary condition in a primary ciliogenesis-dependent manner

Authors: Kenji Shirakawa, Ryota Nakazato, Tetsuhiro Hara, Kenichiro Uemura, Faryal Ijaz, Shinya Takahashi, Koji Ikegami

Published in: Medical Molecular Morphology

Login to get access

Abstract

Primary cilia are hair-like projections that protrude on most of mammalian cells and mediate reception of extracellular signals. Numerous studies have demonstrated that a variety of cancer cells including pancreatic ductal adenocarcinoma (PDAC) fail to form primary cilia. The loss of primary cilia is thought to cause carcinogenesis and progressive cell proliferation. However, the relationship of the primary cilia loss with carcinogenesis and/or cancer malignancy remains arguable. We herein examined whether ciliogenesis was increased in a model of more progressive PDAC and investigated effects of ciliogenesis on growth of PDAC using a pancreatic cancer cell line, PANC-1. The majority of PANC-1 cells in a cell cluster grown from a solitary cell possessed primary cilia. The rate of ciliogenesis was higher in cells grown from low density than in cells grown from high density. Almost all clones passing limiting dilution culture had abilities to grow primary cilia. Compared to the parental PANC-1 cells, clones that proliferated from a solitary cell showed increase in the ciliogenesis rate. Blocking ciliogenesis suppressed cell cluster formation. Our results suggest that pancreatic cancer cells that are more resistant to a solitary condition have abilities of ciliogenesis and form tumor-like cell clusters in a primary cilia-dependent manner.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74:2913–2929PubMedCrossRef Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74:2913–2929PubMedCrossRef
2.
go back to reference Murakami Y, Uemura K, Hashimoto Y, Kondo N, Nakagawa N, Takahashi S, Shintakuya R, Sueda T (2016) Survival effects of adjuvant gemcitabine plus S-1 chemotherapy on pancreatic carcinoma stratified by preoperative resectability status. J Surg Oncol 113:405–412PubMedCrossRef Murakami Y, Uemura K, Hashimoto Y, Kondo N, Nakagawa N, Takahashi S, Shintakuya R, Sueda T (2016) Survival effects of adjuvant gemcitabine plus S-1 chemotherapy on pancreatic carcinoma stratified by preoperative resectability status. J Surg Oncol 113:405–412PubMedCrossRef
3.
go back to reference Dam JL, Janssen QP, Besselink MGF, Homs MYV, Santvoort HC, Tienhoven G, Wilde RF, Wilmink JW, Eijck CHJ, Koerkamp BG (2022) Neoadjuvant therapy or upfront surgery for resectable and borderline resectable pancreatic cancer: a meta-analysis of randomised controlled trials. Eur J Can 160:140–149CrossRef Dam JL, Janssen QP, Besselink MGF, Homs MYV, Santvoort HC, Tienhoven G, Wilde RF, Wilmink JW, Eijck CHJ, Koerkamp BG (2022) Neoadjuvant therapy or upfront surgery for resectable and borderline resectable pancreatic cancer: a meta-analysis of randomised controlled trials. Eur J Can 160:140–149CrossRef
4.
go back to reference Connor AA, Gallinger S (2022) Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nat Rev Can 22:131–142CrossRef Connor AA, Gallinger S (2022) Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nat Rev Can 22:131–142CrossRef
5.
go back to reference Komo T, Murakami Y, Kondo N, Uemura K, Hashimoto Y, Nakagawa N, Urabe K, Takahashi S, Sueda T (2016) Prognostic impact of para-aortic lymph node micrometastasis in pancreatic ductal adenocarcinoma. Ann Surg Oncol 23:2019–2027PubMedCrossRef Komo T, Murakami Y, Kondo N, Uemura K, Hashimoto Y, Nakagawa N, Urabe K, Takahashi S, Sueda T (2016) Prognostic impact of para-aortic lymph node micrometastasis in pancreatic ductal adenocarcinoma. Ann Surg Oncol 23:2019–2027PubMedCrossRef
6.
7.
go back to reference Yeo D, Bastian A, Strauss H, Saxena P, Grimison P, Rasko JEJ (2022) Exploring the clinical utility of pancreatic cancer circulating tumor cells. Int J Mol Sci 23:1671PubMedPubMedCentralCrossRef Yeo D, Bastian A, Strauss H, Saxena P, Grimison P, Rasko JEJ (2022) Exploring the clinical utility of pancreatic cancer circulating tumor cells. Int J Mol Sci 23:1671PubMedPubMedCentralCrossRef
8.
go back to reference Singla V, Reiter JF (2006) The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313:629–633PubMedCrossRef Singla V, Reiter JF (2006) The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313:629–633PubMedCrossRef
10.
go back to reference Phua SC, Lin YC, Inoue T (2015) An intelligent nano-antenna: primary cilium harnesses TRP channels to decode polymodal stimuli. Cell Calcium 58:415–422PubMedPubMedCentralCrossRef Phua SC, Lin YC, Inoue T (2015) An intelligent nano-antenna: primary cilium harnesses TRP channels to decode polymodal stimuli. Cell Calcium 58:415–422PubMedPubMedCentralCrossRef
11.
go back to reference Jenks AD, Vyse S, Wong JP, Kostaras E, Keller D, Burgoyne T, Shoemark A, Tsalikis A, Roche M, Michaelis M, Cinat J Jr, Huang PH, Tanos BE (2018) Primary cilia mediate diverse kinase inhibitor resistance mechanisms in cancer. Cell Rep 23:3042–3055PubMedPubMedCentralCrossRef Jenks AD, Vyse S, Wong JP, Kostaras E, Keller D, Burgoyne T, Shoemark A, Tsalikis A, Roche M, Michaelis M, Cinat J Jr, Huang PH, Tanos BE (2018) Primary cilia mediate diverse kinase inhibitor resistance mechanisms in cancer. Cell Rep 23:3042–3055PubMedPubMedCentralCrossRef
12.
go back to reference Grisanti L, Revenkova E, Gordon RE, Iomini C (2016) Primary cilia maintain corneal epithelial homeostasis by regulation of the Notch signaling pathway. Development 143:2160–2171PubMedPubMedCentral Grisanti L, Revenkova E, Gordon RE, Iomini C (2016) Primary cilia maintain corneal epithelial homeostasis by regulation of the Notch signaling pathway. Development 143:2160–2171PubMedPubMedCentral
13.
go back to reference Rohatgi R, Milenkovic L, Scott MP (2007) Patched1 regulates hedgehog signaling at the primary cilium. Science 317:372–376PubMedCrossRef Rohatgi R, Milenkovic L, Scott MP (2007) Patched1 regulates hedgehog signaling at the primary cilium. Science 317:372–376PubMedCrossRef
14.
go back to reference May-Simera HL, Kelley MW (2007) Cilia, Wnt signaling, and the cytoskeleton. Cilia 1:7CrossRef May-Simera HL, Kelley MW (2007) Cilia, Wnt signaling, and the cytoskeleton. Cilia 1:7CrossRef
15.
go back to reference Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148PubMedCrossRef Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148PubMedCrossRef
16.
go back to reference Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ, Otto EA, Baye LM, Wen X, Scales SJ, Kwong M, Huntzicker EG, Sfakianos MK, Sandoval W, Bazan JF, Kulkarni P, Garcia-Gonzalo FR, Seol AD, O’Toole JF, Held S, Reutter HM, Lane WS, Rafiq MA, Noor A, Ansar M, Devi ARR, Sheffield VC, Slusarski DC, Vincent JB, Doherty DA, Hildebrandt F, Reiter JF, Jackson PK (2011) Mapping the NPHP–JBTS–MKS protein network reveals ciliopathy disease genes and pathways. Cell 145:513–528PubMedPubMedCentralCrossRef Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ, Otto EA, Baye LM, Wen X, Scales SJ, Kwong M, Huntzicker EG, Sfakianos MK, Sandoval W, Bazan JF, Kulkarni P, Garcia-Gonzalo FR, Seol AD, O’Toole JF, Held S, Reutter HM, Lane WS, Rafiq MA, Noor A, Ansar M, Devi ARR, Sheffield VC, Slusarski DC, Vincent JB, Doherty DA, Hildebrandt F, Reiter JF, Jackson PK (2011) Mapping the NPHP–JBTS–MKS protein network reveals ciliopathy disease genes and pathways. Cell 145:513–528PubMedPubMedCentralCrossRef
17.
19.
go back to reference Phua SC, Chiba S, Suzuki M, Su E, Roberson EC, Pusapati GV, Schurmans S, Setou M, Rohatgi R, Reiter JF, Ikegami K, Inoue T (2017) Dynamic remodeling of membrane composition drives cell cycle through primary cilia excision. Cell 168:264-279.e15PubMedPubMedCentralCrossRef Phua SC, Chiba S, Suzuki M, Su E, Roberson EC, Pusapati GV, Schurmans S, Setou M, Rohatgi R, Reiter JF, Ikegami K, Inoue T (2017) Dynamic remodeling of membrane composition drives cell cycle through primary cilia excision. Cell 168:264-279.e15PubMedPubMedCentralCrossRef
20.
go back to reference Chen J, Cheng NC, Boland JA, Liu K, Kench JG, Watkins DN, Ferreira-Gonzalez S, Forbes SJ, McCaughan GW (2022) Deletion of kif3a in CK19 positive cells leads to primary cilia loss, biliary cell proliferation and cystic liver lesions in TAA-treated mice. Biochim Biophys Acta Mol Basis Dis 1868:166335PubMedCrossRef Chen J, Cheng NC, Boland JA, Liu K, Kench JG, Watkins DN, Ferreira-Gonzalez S, Forbes SJ, McCaughan GW (2022) Deletion of kif3a in CK19 positive cells leads to primary cilia loss, biliary cell proliferation and cystic liver lesions in TAA-treated mice. Biochim Biophys Acta Mol Basis Dis 1868:166335PubMedCrossRef
21.
go back to reference Hassounah NB, Bunch TA, McDermott KM (2012) Molecular pathways: the role of primary cilia in cancer progression and therapeutics with a focus on Hedgehog signaling. Clin Cancer Res 18:2429–2435PubMedPubMedCentralCrossRef Hassounah NB, Bunch TA, McDermott KM (2012) Molecular pathways: the role of primary cilia in cancer progression and therapeutics with a focus on Hedgehog signaling. Clin Cancer Res 18:2429–2435PubMedPubMedCentralCrossRef
22.
23.
go back to reference Han YG, Kim HJ, Dlugosz AA, Ellison DW, Gilbertson RJ, Alvarez-Buylla A (2009) Dual and opposing roles of primary cilia in medulloblastoma development. Nat Med 15:1062–1065PubMedPubMedCentralCrossRef Han YG, Kim HJ, Dlugosz AA, Ellison DW, Gilbertson RJ, Alvarez-Buylla A (2009) Dual and opposing roles of primary cilia in medulloblastoma development. Nat Med 15:1062–1065PubMedPubMedCentralCrossRef
24.
go back to reference Wong SY, Seol AD, So PL, Ermilov AN, Bichakjian CK, Epstein EH Jr, Dlugosz AA, Reiter JF (2009) Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med 15:1055–1061PubMedPubMedCentralCrossRef Wong SY, Seol AD, So PL, Ermilov AN, Bichakjian CK, Epstein EH Jr, Dlugosz AA, Reiter JF (2009) Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med 15:1055–1061PubMedPubMedCentralCrossRef
25.
go back to reference Seeley ES, Carriere C, Goetze T, Longnecker DS, Korc M (2009) Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res 69:422–430PubMedPubMedCentralCrossRef Seeley ES, Carriere C, Goetze T, Longnecker DS, Korc M (2009) Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res 69:422–430PubMedPubMedCentralCrossRef
26.
go back to reference Bangs FK, Miller P, Neill EO (2020) Ciliogenesis and Hedgehog signalling are suppressed downstream of KRAS during acinar-ductal metaplasia in mouse. Dis Model Mech 13:dmm044289PubMedPubMedCentralCrossRef Bangs FK, Miller P, Neill EO (2020) Ciliogenesis and Hedgehog signalling are suppressed downstream of KRAS during acinar-ductal metaplasia in mouse. Dis Model Mech 13:dmm044289PubMedPubMedCentralCrossRef
27.
go back to reference Kobayashi T, Nakazono K, Tokuda M, Mashima Y, Dynlacht BD, Itoh H (2017) HDAC2 promotes loss of primary cilia in pancreatic ductal adenocarcinoma. EMBO Rep 18:334–343PubMedCrossRef Kobayashi T, Nakazono K, Tokuda M, Mashima Y, Dynlacht BD, Itoh H (2017) HDAC2 promotes loss of primary cilia in pancreatic ductal adenocarcinoma. EMBO Rep 18:334–343PubMedCrossRef
28.
go back to reference Kobayashi T, Tanaka K, Mashima Y, Shoda A, Tokuda M, Itoh H (2020) CEP164 deficiency causes hyperproliferation of pancreatic cancer cells. Front Cell Dev Biol 8:587691PubMedPubMedCentralCrossRef Kobayashi T, Tanaka K, Mashima Y, Shoda A, Tokuda M, Itoh H (2020) CEP164 deficiency causes hyperproliferation of pancreatic cancer cells. Front Cell Dev Biol 8:587691PubMedPubMedCentralCrossRef
29.
go back to reference Mashima Y, Nohira H, Sugihara H, Dynlacht BD, Kobayashi T, Itoh H (2022) KIF24 depletion induces clustering of supernumerary centrosomes in PDAC cells. Life Sci Alliance 5:e202201470PubMedPubMedCentralCrossRef Mashima Y, Nohira H, Sugihara H, Dynlacht BD, Kobayashi T, Itoh H (2022) KIF24 depletion induces clustering of supernumerary centrosomes in PDAC cells. Life Sci Alliance 5:e202201470PubMedPubMedCentralCrossRef
30.
go back to reference Emoto K, Masugi Y, Yamazaki K, Effendi K, Tsujikawa H, Tanabe M, Kitagawa Y, Sakamoto M (2014) Presence of primary cilia in cancer cells correlates with prognosis of pancreatic ductal adenocarcinoma. Hum Pathol 45:817–825PubMedCrossRef Emoto K, Masugi Y, Yamazaki K, Effendi K, Tsujikawa H, Tanabe M, Kitagawa Y, Sakamoto M (2014) Presence of primary cilia in cancer cells correlates with prognosis of pancreatic ductal adenocarcinoma. Hum Pathol 45:817–825PubMedCrossRef
31.
go back to reference Baba K, Uemura K, Nakazato R, Ijaz F, Takahashi S, Ikegami K (2024) Δ3-tubulin impairs mitotic spindle morphology and increases nuclear size in pancreatic cancer cells. Med Mol Morphol 57:59–67PubMedCrossRef Baba K, Uemura K, Nakazato R, Ijaz F, Takahashi S, Ikegami K (2024) Δ3-tubulin impairs mitotic spindle morphology and increases nuclear size in pancreatic cancer cells. Med Mol Morphol 57:59–67PubMedCrossRef
32.
go back to reference Schimmack S, Kneller S, Dadabaeva N, Bergmann F, Taylor A, Hackert T, Werner J, Strobel O (2016) Epithelial to stromal re-distribution of primary cilia during pancreatic carcinogenesis. PLoS ONE 11:e0164231PubMedPubMedCentralCrossRef Schimmack S, Kneller S, Dadabaeva N, Bergmann F, Taylor A, Hackert T, Werner J, Strobel O (2016) Epithelial to stromal re-distribution of primary cilia during pancreatic carcinogenesis. PLoS ONE 11:e0164231PubMedPubMedCentralCrossRef
33.
go back to reference Kiprilov EN, Awan A, Desprat R, Velho M, Clement CA, Byskov AG, Andersen CY, Satir P, Bouhassira EE, Christensen ST, Hirsch RE (2008) Human embryonic stem cells in culture possess primary cilia with hedgehog signaling machinery. J Cell Biol 180:897–904PubMedPubMedCentralCrossRef Kiprilov EN, Awan A, Desprat R, Velho M, Clement CA, Byskov AG, Andersen CY, Satir P, Bouhassira EE, Christensen ST, Hirsch RE (2008) Human embryonic stem cells in culture possess primary cilia with hedgehog signaling machinery. J Cell Biol 180:897–904PubMedPubMedCentralCrossRef
34.
go back to reference Nielsen SK, Møllgård K, Clement CA, Veland IR, Awa A, Yoder BK, Novak I, Christensen ST (2008) Characterization of primary cilia and Hedgehog signaling during development of the human pancreas and in human pancreatic duct cancer cell lines. Dev Dyn 237:2039–2052PubMedCrossRef Nielsen SK, Møllgård K, Clement CA, Veland IR, Awa A, Yoder BK, Novak I, Christensen ST (2008) Characterization of primary cilia and Hedgehog signaling during development of the human pancreas and in human pancreatic duct cancer cell lines. Dev Dyn 237:2039–2052PubMedCrossRef
35.
go back to reference Quiñonero F, Mesas C, Doello K, Cabeza L, Perazzoli G, Jimenez-Luna C, Rama AR, Melguizo C, Prados J (2019) The challenge of drug resistance in pancreatic ductal adenocarcinoma: a current overview. Cancer Biol Med 16:688–699PubMedPubMedCentralCrossRef Quiñonero F, Mesas C, Doello K, Cabeza L, Perazzoli G, Jimenez-Luna C, Rama AR, Melguizo C, Prados J (2019) The challenge of drug resistance in pancreatic ductal adenocarcinoma: a current overview. Cancer Biol Med 16:688–699PubMedPubMedCentralCrossRef
36.
go back to reference Chao YY, Huang BM, Peng IC, Lee PR, Lai YS, Chiu WT, Lin YS, Lin SC, Chang JH, Chen PS, Tsai SJ, Wang CY (2022) ATM- and ATR-induced primary ciliogenesis promotes cisplatin resistance in pancreatic ductal adenocarcinoma. J Cell Physiol 237:4487–4503PubMedCrossRef Chao YY, Huang BM, Peng IC, Lee PR, Lai YS, Chiu WT, Lin YS, Lin SC, Chang JH, Chen PS, Tsai SJ, Wang CY (2022) ATM- and ATR-induced primary ciliogenesis promotes cisplatin resistance in pancreatic ductal adenocarcinoma. J Cell Physiol 237:4487–4503PubMedCrossRef
37.
go back to reference Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRef Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRef
40.
go back to reference Gradiz R, Silva HC, Carvalho L, Botelho MF, Mota-Pinto A (2016) MIA PaCa-2 and PANC-1 - pancreas ductal adenocarcinoma cell lines with neuroendocrine differentiation and somatostatin receptors. Sci Rep 6:21648PubMedPubMedCentralCrossRef Gradiz R, Silva HC, Carvalho L, Botelho MF, Mota-Pinto A (2016) MIA PaCa-2 and PANC-1 - pancreas ductal adenocarcinoma cell lines with neuroendocrine differentiation and somatostatin receptors. Sci Rep 6:21648PubMedPubMedCentralCrossRef
41.
go back to reference Shen Y, Pu K, Zheng K, Ma X, Qin J, Jiang L, Li J (2019) Differentially expressed microRNAs in MIA PaCa-2 and PANC-1 pancreas ductal adenocarcinoma cell lines are involved in cancer stem cell regulation. Int J Mol Sci 20:4473PubMedPubMedCentralCrossRef Shen Y, Pu K, Zheng K, Ma X, Qin J, Jiang L, Li J (2019) Differentially expressed microRNAs in MIA PaCa-2 and PANC-1 pancreas ductal adenocarcinoma cell lines are involved in cancer stem cell regulation. Int J Mol Sci 20:4473PubMedPubMedCentralCrossRef
42.
go back to reference Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR (2008) Cadherin switching. J Cell Sci 121:727–735PubMedCrossRef Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR (2008) Cadherin switching. J Cell Sci 121:727–735PubMedCrossRef
43.
go back to reference Barrallo-Gimeno A, Nieto MA (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132:3151–3161PubMedCrossRef Barrallo-Gimeno A, Nieto MA (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132:3151–3161PubMedCrossRef
44.
go back to reference Recouvreux MV, Moldenhauer MR, Galenkamp KMO, Jung M, James B, Zhang Y, Lowy A, Bagchi A, Commisso C (2020) Glutamine depletion regulates Slug to promote EMT and metastasis in pancreatic cancer. J Exp Med 217:e20200388PubMedPubMedCentralCrossRef Recouvreux MV, Moldenhauer MR, Galenkamp KMO, Jung M, James B, Zhang Y, Lowy A, Bagchi A, Commisso C (2020) Glutamine depletion regulates Slug to promote EMT and metastasis in pancreatic cancer. J Exp Med 217:e20200388PubMedPubMedCentralCrossRef
45.
go back to reference Hotz B, Arndt M, Dullat S, Bhargava S, Buhr HJ, Hotz HG (2007) Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res 13:4769–4776PubMedCrossRef Hotz B, Arndt M, Dullat S, Bhargava S, Buhr HJ, Hotz HG (2007) Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res 13:4769–4776PubMedCrossRef
46.
go back to reference Sundararajan V, Tan M, Tan TZ, Ye J, Thiery JP, Huang RY (2019) SNAI1 recruits HDAC1 to suppress SNAI2 transcription during epithelial to mesenchymal transition. Sci Rep 9:8295PubMedPubMedCentralCrossRef Sundararajan V, Tan M, Tan TZ, Ye J, Thiery JP, Huang RY (2019) SNAI1 recruits HDAC1 to suppress SNAI2 transcription during epithelial to mesenchymal transition. Sci Rep 9:8295PubMedPubMedCentralCrossRef
48.
go back to reference Guen VJ, Chavarria TE, Kroger C, Ye X, Weinbeg RA, Lees JA (2017) EMT programs promote basal mammary stem cell and tumor-initiating cell stemness by inducing primary ciliogenesis and Hedgehog signaling. Proc Natl Acad Sci USA 114:E10532–E10539PubMedPubMedCentralCrossRef Guen VJ, Chavarria TE, Kroger C, Ye X, Weinbeg RA, Lees JA (2017) EMT programs promote basal mammary stem cell and tumor-initiating cell stemness by inducing primary ciliogenesis and Hedgehog signaling. Proc Natl Acad Sci USA 114:E10532–E10539PubMedPubMedCentralCrossRef
49.
go back to reference Wilson MM, Callens C, Gallo ML, Mironov S, Ding Q, Salamagnon A, Chavarria TE, Viel R, Peasah AD, Bhutkar A, Martin S, Godey F, Tas P, Kang HS, Juin PP, Jetten AM, Visvader JE, Weinberg RA, Attanasio M, Prigent C, Lees JA, Guen VJ (2021) An EMT-primary cilium-GLIS2 signaling axis regulates mammogenesis and claudin-low breast tumorigenesis. Sci Adv 7:eabf6063PubMedPubMedCentralCrossRef Wilson MM, Callens C, Gallo ML, Mironov S, Ding Q, Salamagnon A, Chavarria TE, Viel R, Peasah AD, Bhutkar A, Martin S, Godey F, Tas P, Kang HS, Juin PP, Jetten AM, Visvader JE, Weinberg RA, Attanasio M, Prigent C, Lees JA, Guen VJ (2021) An EMT-primary cilium-GLIS2 signaling axis regulates mammogenesis and claudin-low breast tumorigenesis. Sci Adv 7:eabf6063PubMedPubMedCentralCrossRef
50.
go back to reference Fabbri L, Dufies M, Lacas-Gervais S, Gardie B, Gad-Lapiteau S, Parola J, Nottet N, de Meyenberg Cunha PM, Contenti J, Borchiellini D, Ferrero JM, Leclercq NR, Ambrosetti D, Mograbi B, Richard S, Viotti J, Chamorey E, Sadaghianloo N, Rouleau M, Craigen WJ, Mari B, Clavel S, Pages G, Pouyssegur J, Bost F, Mazure NM (2020) Identification of a new aggressive axis driven by ciliogenesis and absence of VDAC1-DeltaC in clear cell renal cell carcinoma patients. Theranostics 10:2696–2713PubMedPubMedCentralCrossRef Fabbri L, Dufies M, Lacas-Gervais S, Gardie B, Gad-Lapiteau S, Parola J, Nottet N, de Meyenberg Cunha PM, Contenti J, Borchiellini D, Ferrero JM, Leclercq NR, Ambrosetti D, Mograbi B, Richard S, Viotti J, Chamorey E, Sadaghianloo N, Rouleau M, Craigen WJ, Mari B, Clavel S, Pages G, Pouyssegur J, Bost F, Mazure NM (2020) Identification of a new aggressive axis driven by ciliogenesis and absence of VDAC1-DeltaC in clear cell renal cell carcinoma patients. Theranostics 10:2696–2713PubMedPubMedCentralCrossRef
51.
go back to reference Gradilone SA, Radtke BN, Bogert PS, Huang BQ, Gajdos GB, LaRusso NF (2013) HDAC6 inhibition restores ciliary expression and decreases tumor growth. Cancer Res 73:2259–2270PubMedPubMedCentralCrossRef Gradilone SA, Radtke BN, Bogert PS, Huang BQ, Gajdos GB, LaRusso NF (2013) HDAC6 inhibition restores ciliary expression and decreases tumor growth. Cancer Res 73:2259–2270PubMedPubMedCentralCrossRef
52.
go back to reference Ho L, Ali SA, Al-Jazrawe M, Kandel R, Wunder JS, Alman BA (2013) Primary cilia attenuate hedgehog signalling in neoplastic chondrocytes. Oncogene 32:5388–5396PubMedCrossRef Ho L, Ali SA, Al-Jazrawe M, Kandel R, Wunder JS, Alman BA (2013) Primary cilia attenuate hedgehog signalling in neoplastic chondrocytes. Oncogene 32:5388–5396PubMedCrossRef
53.
go back to reference Hassounah NB, Nunez M, Fordyce C, Roe D, Nagle R, Bunch T, McDermott KM (2017) Inhibition of ciliogenesis promotes hedgehog signaling, tumorigenesis, and metastasis in breast cancer. Mol Cancer Res 15:1421–1430PubMedPubMedCentralCrossRef Hassounah NB, Nunez M, Fordyce C, Roe D, Nagle R, Bunch T, McDermott KM (2017) Inhibition of ciliogenesis promotes hedgehog signaling, tumorigenesis, and metastasis in breast cancer. Mol Cancer Res 15:1421–1430PubMedPubMedCentralCrossRef
54.
55.
go back to reference Guan YT, Zhang C, Zhang HY, Wei WL, Yue W, Zhao W, Zhang DH (2023) Primary cilia: structure, dynamics, and roles in cancer cells and tumor microenvironment. J Cell Physiol 238:1788–1807PubMedCrossRef Guan YT, Zhang C, Zhang HY, Wei WL, Yue W, Zhao W, Zhang DH (2023) Primary cilia: structure, dynamics, and roles in cancer cells and tumor microenvironment. J Cell Physiol 238:1788–1807PubMedCrossRef
56.
go back to reference Arnoletti JP, Fanaian N, Reza J, Sause R, Almodovar AJ, Srivastava M, Patel S, Veldhuis PP, Griffith E, Shao YP, Zhu X, Litherland SA (2018) Pancreatic and bile duct cancer circulating tumor cells (CTC) form immune-resistant multi-cell type clusters in the portal venous circulation. Cancer Biol Ther 19:887–897PubMedPubMedCentralCrossRef Arnoletti JP, Fanaian N, Reza J, Sause R, Almodovar AJ, Srivastava M, Patel S, Veldhuis PP, Griffith E, Shao YP, Zhu X, Litherland SA (2018) Pancreatic and bile duct cancer circulating tumor cells (CTC) form immune-resistant multi-cell type clusters in the portal venous circulation. Cancer Biol Ther 19:887–897PubMedPubMedCentralCrossRef
57.
go back to reference Park Y, Jun HR, Choi HW, Hwang DW, Lee JH, Song KB, Lee W, Kwon J, Ha SH, Jun E, Kim SC (2021) Circulating tumour cells as an indicator of early and systemic recurrence after surgical resection in pancreatic ductal adenocarcinoma. Sci Rep 11:1644PubMedPubMedCentralCrossRef Park Y, Jun HR, Choi HW, Hwang DW, Lee JH, Song KB, Lee W, Kwon J, Ha SH, Jun E, Kim SC (2021) Circulating tumour cells as an indicator of early and systemic recurrence after surgical resection in pancreatic ductal adenocarcinoma. Sci Rep 11:1644PubMedPubMedCentralCrossRef
Metadata
Title
A type of pancreatic cancer cells form cell clusters from a solitary condition in a primary ciliogenesis-dependent manner
Authors
Kenji Shirakawa
Ryota Nakazato
Tetsuhiro Hara
Kenichiro Uemura
Faryal Ijaz
Shinya Takahashi
Koji Ikegami
Publication date
12-03-2025
Publisher
Springer Nature Singapore
Published in
Medical Molecular Morphology
Print ISSN: 1860-1480
Electronic ISSN: 1860-1499
DOI
https://doi.org/10.1007/s00795-025-00428-0