Skip to main content
Top
Published in:

10-08-2024 | Pancreatic Cancer | Review Article

Identifying Actionable Alterations in KRAS Wild-Type Pancreatic Cancer

Authors: Ahmed Elhariri, Jaydeepbhai Patel, Himil Mahadevia, Douaa Albelal, Ahmed K. Ahmed, Jeremy C. Jones, Mitesh J. Borad, Hani Babiker

Published in: Targeted Oncology | Issue 5/2024

Login to get access

Abstract

The 5-year relative survival rate for pancreatic cancer is currently the lowest among all cancer types with a dismal 13%. A Kirsten rat sarcoma virus (KRAS) gene mutation is present in approximately 90% of patients with pancreatic cancer; however, KRAS-specific drugs are not yet widely used in clinical practice for pancreatic cancer, specifically the KRASG12D variant. Advances in genomic testing revealed an opportunity to detect genetic alterations in a subset of patients with no KRAS mutation termed KRAS wild-type. Patients with KRAS wild-type tumors have a propensity to express driver alterations, hence paving the way for utilizing a targeted therapy approach either via clinical trials or standard-of-care drugs. These alterations include fusions, amplifications, translocations, rearrangements and microsatellite instability-high tumors and can be as high as 11% in some studies. Here, we discuss some of the most notable alterations in KRAS wild-type and highlight promising clinical trials.
Literature
1.
2.
3.
go back to reference Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364(19):1817–25.PubMedCrossRef Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364(19):1817–25.PubMedCrossRef
4.
go back to reference Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369(18):1691–703.CrossRef Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369(18):1691–703.CrossRef
5.
go back to reference Wainberg ZA, Melisi D, Macarulla T, Pazo Cid R, Chandana SR, De La Fouchardière C, et al. NALIRIFOX versus nab-paclitaxel and gemcitabine in treatment-naive patients with metastatic pancreatic ductal adenocarcinoma (NAPOLI 3): a randomised, open-label, phase 3 trial. Lancet. 2023;402(10409):1272–81.PubMedCrossRef Wainberg ZA, Melisi D, Macarulla T, Pazo Cid R, Chandana SR, De La Fouchardière C, et al. NALIRIFOX versus nab-paclitaxel and gemcitabine in treatment-naive patients with metastatic pancreatic ductal adenocarcinoma (NAPOLI 3): a randomised, open-label, phase 3 trial. Lancet. 2023;402(10409):1272–81.PubMedCrossRef
7.
go back to reference Strickler JH, Satake H, George TJ, Yaeger R, Hollebecque A, Garrido-Laguna I, et al. Sotorasib in KRAS pG12C-mutated advanced pancreatic cancer. N Engl J Med. 2022;388(1):33–43.PubMedPubMedCentralCrossRef Strickler JH, Satake H, George TJ, Yaeger R, Hollebecque A, Garrido-Laguna I, et al. Sotorasib in KRAS pG12C-mutated advanced pancreatic cancer. N Engl J Med. 2022;388(1):33–43.PubMedPubMedCentralCrossRef
8.
go back to reference Singhi AD, George B, Greenbowe JR, Chung J, Suh J, Maitra A, et al. Real-time targeted genome profile analysis of pancreatic ductal adenocarcinomas identifies genetic alterations that might be targeted with existing drugs or used as biomarkers. Gastroenterology. 2019;156(8):2242-53.e4.PubMedCrossRef Singhi AD, George B, Greenbowe JR, Chung J, Suh J, Maitra A, et al. Real-time targeted genome profile analysis of pancreatic ductal adenocarcinomas identifies genetic alterations that might be targeted with existing drugs or used as biomarkers. Gastroenterology. 2019;156(8):2242-53.e4.PubMedCrossRef
9.
go back to reference Bailey P, Chang DK, Nones K, Johns AL, Patch A-M, Gingras M-C, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531(7592):47–52.PubMedCrossRef Bailey P, Chang DK, Nones K, Johns AL, Patch A-M, Gingras M-C, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531(7592):47–52.PubMedCrossRef
10.
go back to reference Buscail L, Bournet B, Cordelier P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2020;17(3):153–68.PubMedCrossRef Buscail L, Bournet B, Cordelier P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2020;17(3):153–68.PubMedCrossRef
12.
go back to reference Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.PubMedCrossRef Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.PubMedCrossRef
13.
go back to reference Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269): l1.CrossRef Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269): l1.CrossRef
14.
go back to reference Philip PA, Azar I, Xiu J, Hall MJ, Hendifar AE, Lou E, et al. Molecular characterization of KRAS wild-type tumors in patients with pancreatic adenocarcinoma. Clin Cancer Res. 2022;28(12):2704–14.PubMedPubMedCentralCrossRef Philip PA, Azar I, Xiu J, Hall MJ, Hendifar AE, Lou E, et al. Molecular characterization of KRAS wild-type tumors in patients with pancreatic adenocarcinoma. Clin Cancer Res. 2022;28(12):2704–14.PubMedPubMedCentralCrossRef
15.
go back to reference Topham JT, Tsang ES, Karasinska JM, Metcalfe A, Ali H, Kalloger SE, et al. Integrative analysis of KRAS wildtype metastatic pancreatic ductal adenocarcinoma reveals mutation and expression-based similarities to cholangiocarcinoma. Nat Commun. 2022;13(1):5941.PubMedPubMedCentralCrossRef Topham JT, Tsang ES, Karasinska JM, Metcalfe A, Ali H, Kalloger SE, et al. Integrative analysis of KRAS wildtype metastatic pancreatic ductal adenocarcinoma reveals mutation and expression-based similarities to cholangiocarcinoma. Nat Commun. 2022;13(1):5941.PubMedPubMedCentralCrossRef
16.
go back to reference Mehdi M, Szabo A, Shreenivas A, Thomas JP, Tsai S, Christians KK, et al. Chemotherapy-free treatment targeting fusions and driver mutations in KRAS wild-type pancreatic ductal adenocarcinoma, a case series. Ther Adv Med Oncol. 2024;16:17588359241253112.PubMedPubMedCentralCrossRef Mehdi M, Szabo A, Shreenivas A, Thomas JP, Tsai S, Christians KK, et al. Chemotherapy-free treatment targeting fusions and driver mutations in KRAS wild-type pancreatic ductal adenocarcinoma, a case series. Ther Adv Med Oncol. 2024;16:17588359241253112.PubMedPubMedCentralCrossRef
17.
go back to reference Singh H, Keller RB, Kapner KS, Dilly J, Raghavan S, Yuan C, et al. Oncogenic drivers and therapeutic vulnerabilities in KRAS wild-type pancreatic cancer. Clin Cancer Res. 2023;29(22):4627–43.PubMedPubMedCentralCrossRef Singh H, Keller RB, Kapner KS, Dilly J, Raghavan S, Yuan C, et al. Oncogenic drivers and therapeutic vulnerabilities in KRAS wild-type pancreatic cancer. Clin Cancer Res. 2023;29(22):4627–43.PubMedPubMedCentralCrossRef
19.
go back to reference Loo E, Khalili P, Beuhler K, Siddiqi I, Vasef MA. BRAF V600E mutation across multiple tumor types: correlation between DNA-based sequencing and mutation-specific immunohistochemistry. Appl Immunohistochem Mol Morphol. 2018;26(10):709–13.PubMedCrossRef Loo E, Khalili P, Beuhler K, Siddiqi I, Vasef MA. BRAF V600E mutation across multiple tumor types: correlation between DNA-based sequencing and mutation-specific immunohistochemistry. Appl Immunohistochem Mol Morphol. 2018;26(10):709–13.PubMedCrossRef
20.
go back to reference Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90.PubMedCrossRef Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90.PubMedCrossRef
22.
23.
go back to reference Hendifar A, Blais EM, Wolpin B, Subbiah V, Collisson E, Singh I, et al. Retrospective case series analysis of RAF family alterations in pancreatic cancer: real-world outcomes from targeted and standard therapies. JCO Precis Oncol. 2021;5:1325–38.CrossRef Hendifar A, Blais EM, Wolpin B, Subbiah V, Collisson E, Singh I, et al. Retrospective case series analysis of RAF family alterations in pancreatic cancer: real-world outcomes from targeted and standard therapies. JCO Precis Oncol. 2021;5:1325–38.CrossRef
24.
go back to reference Seghers AK, Cuyle PJ, Van Cutsem E. Molecular targeting of a BRAF mutation in pancreatic ductal adenocarcinoma: case report and literature review. Target Oncol. 2020;15(3):407–10.PubMedCrossRef Seghers AK, Cuyle PJ, Van Cutsem E. Molecular targeting of a BRAF mutation in pancreatic ductal adenocarcinoma: case report and literature review. Target Oncol. 2020;15(3):407–10.PubMedCrossRef
25.
go back to reference Sasankan S, Rebuck L, Darrah G, Harari Turquie M, Rabinowitz I. Metastatic pancreatic cancer with BRAF and P53 mutations: case report of therapeutic response to doublet targeted therapy. Case Rep Oncol. 2020;13(3):1239–43.PubMedPubMedCentralCrossRef Sasankan S, Rebuck L, Darrah G, Harari Turquie M, Rabinowitz I. Metastatic pancreatic cancer with BRAF and P53 mutations: case report of therapeutic response to doublet targeted therapy. Case Rep Oncol. 2020;13(3):1239–43.PubMedPubMedCentralCrossRef
26.
go back to reference Butt SU, Mejias A, Morelli C, Torga G, Happe M, Patrikidou A, et al. BRAF/MEK inhibitors for BRAF V600E-mutant cancers in non-approved setting: a case series. Cancer Chemother Pharmacol. 2021;87(3):437–41.PubMedCrossRef Butt SU, Mejias A, Morelli C, Torga G, Happe M, Patrikidou A, et al. BRAF/MEK inhibitors for BRAF V600E-mutant cancers in non-approved setting: a case series. Cancer Chemother Pharmacol. 2021;87(3):437–41.PubMedCrossRef
27.
go back to reference Salama AKS, Li S, Macrae ER, Park JI, Mitchell EP, Zwiebel JA, et al. Dabrafenib and trametinib in patients with tumors with BRAF(V600E) mutations: results of the NCI-MATCH trial subprotocol H. J Clin Oncol. 2020;38(33):3895–904.PubMedPubMedCentralCrossRef Salama AKS, Li S, Macrae ER, Park JI, Mitchell EP, Zwiebel JA, et al. Dabrafenib and trametinib in patients with tumors with BRAF(V600E) mutations: results of the NCI-MATCH trial subprotocol H. J Clin Oncol. 2020;38(33):3895–904.PubMedPubMedCentralCrossRef
28.
go back to reference Subbiah V, Kreitman RJ, Wainberg ZA, Gazzah A, Lassen U, Stein A, et al. Dabrafenib plus trametinib in BRAFV600E-mutated rare cancers: the phase 2 ROAR trial. Nat Med. 2023;29(5):1103–12.PubMedPubMedCentralCrossRef Subbiah V, Kreitman RJ, Wainberg ZA, Gazzah A, Lassen U, Stein A, et al. Dabrafenib plus trametinib in BRAFV600E-mutated rare cancers: the phase 2 ROAR trial. Nat Med. 2023;29(5):1103–12.PubMedPubMedCentralCrossRef
29.
go back to reference Wen PY, Stein A, van den Bent M, De Greve J, Wick A, de Vos FYFL, et al. Dabrafenib plus trametinib in patients with BRAF/V600E-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol. 2022;23(1):53–64.PubMedCrossRef Wen PY, Stein A, van den Bent M, De Greve J, Wick A, de Vos FYFL, et al. Dabrafenib plus trametinib in patients with BRAF/V600E-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol. 2022;23(1):53–64.PubMedCrossRef
30.
go back to reference Ross JS, Wang K, Chmielecki J, Gay L, Johnson A, Chudnovsky J, et al. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy. Int J Cancer. 2016;138(4):881–90.PubMedCrossRef Ross JS, Wang K, Chmielecki J, Gay L, Johnson A, Chudnovsky J, et al. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy. Int J Cancer. 2016;138(4):881–90.PubMedCrossRef
31.
go back to reference Gkountakos A, Singhi AD, Westphalen CB, Scarpa A, Luchini C. Fusion genes in pancreatic tumors. Trends Cancer. 2024;10(5):430–43.PubMedCrossRef Gkountakos A, Singhi AD, Westphalen CB, Scarpa A, Luchini C. Fusion genes in pancreatic tumors. Trends Cancer. 2024;10(5):430–43.PubMedCrossRef
32.
go back to reference Ciner AT, Jiang Y, Hausner P. BRAF-driven pancreatic cancer: prevalence, molecular features, and therapeutic opportunities. Mol Cancer Res. 2023;21(4):293–300.PubMedCrossRef Ciner AT, Jiang Y, Hausner P. BRAF-driven pancreatic cancer: prevalence, molecular features, and therapeutic opportunities. Mol Cancer Res. 2023;21(4):293–300.PubMedCrossRef
33.
go back to reference Hainsworth JD, Meric-Bernstam F, Swanton C, Hurwitz H, Spigel DR, Sweeney C, et al. Targeted therapy for advanced solid tumors on the basis of molecular profiles: results from MyPathway, an open-label, phase IIa multiple basket study. J Clin Oncol. 2018;36(6):536–42.PubMedCrossRef Hainsworth JD, Meric-Bernstam F, Swanton C, Hurwitz H, Spigel DR, Sweeney C, et al. Targeted therapy for advanced solid tumors on the basis of molecular profiles: results from MyPathway, an open-label, phase IIa multiple basket study. J Clin Oncol. 2018;36(6):536–42.PubMedCrossRef
34.
go back to reference Chmielecki J, Hutchinson KE, Frampton GM, Chalmers ZR, Johnson A, Shi C, et al. Comprehensive genomic profiling of pancreatic acinar cell carcinomas identifies recurrent RAF fusions and frequent inactivation of DNA repair genes. Cancer Discov. 2014;4(12):1398–405.PubMedCrossRef Chmielecki J, Hutchinson KE, Frampton GM, Chalmers ZR, Johnson A, Shi C, et al. Comprehensive genomic profiling of pancreatic acinar cell carcinomas identifies recurrent RAF fusions and frequent inactivation of DNA repair genes. Cancer Discov. 2014;4(12):1398–405.PubMedCrossRef
35.
go back to reference Chen CC, Feng W, Lim PX, Kass EM, Jasin M. Homology-directed repair and the role of BRCA1, BRCA2, and related proteins in genome integrity and cancer. Annu Rev Cancer Biol. 2018;2:313–36.PubMedCrossRef Chen CC, Feng W, Lim PX, Kass EM, Jasin M. Homology-directed repair and the role of BRCA1, BRCA2, and related proteins in genome integrity and cancer. Annu Rev Cancer Biol. 2018;2:313–36.PubMedCrossRef
37.
go back to reference Ben-Ammar I, Rousseau A, Nicolle R, Tarabay A, Boige V, Valery M, et al. Precision medicine for KRAS wild-type pancreatic adenocarcinomas. Eur J Cancer. 2024;197: 113497.PubMedCrossRef Ben-Ammar I, Rousseau A, Nicolle R, Tarabay A, Boige V, Valery M, et al. Precision medicine for KRAS wild-type pancreatic adenocarcinomas. Eur J Cancer. 2024;197: 113497.PubMedCrossRef
38.
go back to reference Jia X, Wang K, Xu L, Li N, Zhao Z, Li M. A systematic review and meta-analysis of BRCA1/2 mutation for predicting the effect of platinum-based chemotherapy in triple-negative breast cancer. Breast. 2022;66:31–9.PubMedPubMedCentralCrossRef Jia X, Wang K, Xu L, Li N, Zhao Z, Li M. A systematic review and meta-analysis of BRCA1/2 mutation for predicting the effect of platinum-based chemotherapy in triple-negative breast cancer. Breast. 2022;66:31–9.PubMedPubMedCentralCrossRef
39.
go back to reference Emelyanova M, Pudova E, Khomich D, Krasnov G, Popova A, Abramov I, et al. Platinum-based chemotherapy for pancreatic cancer: impact of mutations in the homologous recombination repair and Fanconi anemia genes. Ther Adv Med Oncol. 2022;14:17588359221083050.PubMedPubMedCentralCrossRef Emelyanova M, Pudova E, Khomich D, Krasnov G, Popova A, Abramov I, et al. Platinum-based chemotherapy for pancreatic cancer: impact of mutations in the homologous recombination repair and Fanconi anemia genes. Ther Adv Med Oncol. 2022;14:17588359221083050.PubMedPubMedCentralCrossRef
41.
go back to reference Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmaña J, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33(3):244–50.PubMedCrossRef Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmaña J, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33(3):244–50.PubMedCrossRef
42.
go back to reference Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall MJ, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381(4):317–27.PubMedPubMedCentralCrossRef Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall MJ, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381(4):317–27.PubMedPubMedCentralCrossRef
43.
go back to reference O’Reilly EM, Lee JW, Zalupski M, Capanu M, Park J, Golan T, et al. Randomized, multicenter, phase II trial of gemcitabine and cisplatin with or without veliparib in patients with pancreas adenocarcinoma and a germline BRCA/PALB2 mutation. J Clin Oncol. 2020;38(13):1378–88.PubMedPubMedCentralCrossRef O’Reilly EM, Lee JW, Zalupski M, Capanu M, Park J, Golan T, et al. Randomized, multicenter, phase II trial of gemcitabine and cisplatin with or without veliparib in patients with pancreas adenocarcinoma and a germline BRCA/PALB2 mutation. J Clin Oncol. 2020;38(13):1378–88.PubMedPubMedCentralCrossRef
44.
go back to reference Terrero G, Datta J, Dennison J, Sussman DA, Lohse I, Merchant NB, et al. Ipilimumab/nivolumab therapy in patients with metastatic pancreatic or biliary cancer with homologous recombination deficiency pathogenic germline variants. JAMA Oncol. 2022;8(6):1–3.PubMedCrossRef Terrero G, Datta J, Dennison J, Sussman DA, Lohse I, Merchant NB, et al. Ipilimumab/nivolumab therapy in patients with metastatic pancreatic or biliary cancer with homologous recombination deficiency pathogenic germline variants. JAMA Oncol. 2022;8(6):1–3.PubMedCrossRef
45.
go back to reference Helsten T, Elkin S, Arthur E, Tomson BN, Carter J, Kurzrock R. The FGFR landscape in cancer: analysis of 4853 tumors by next-generation sequencing. Clin Cancer Res. 2016;22(1):259–67.PubMedCrossRef Helsten T, Elkin S, Arthur E, Tomson BN, Carter J, Kurzrock R. The FGFR landscape in cancer: analysis of 4853 tumors by next-generation sequencing. Clin Cancer Res. 2016;22(1):259–67.PubMedCrossRef
46.
go back to reference Abou-Alfa GK, Sahai V, Hollebecque A, Vaccaro G, Melisi D, Al-Rajabi R, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 2020;21(5):671–84.PubMedPubMedCentralCrossRef Abou-Alfa GK, Sahai V, Hollebecque A, Vaccaro G, Melisi D, Al-Rajabi R, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 2020;21(5):671–84.PubMedPubMedCentralCrossRef
47.
go back to reference Goyal L, Saha SK, Liu LY, Siravegna G, Leshchiner I, Ahronian LG, et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov. 2017;7(3):252–63.PubMedCrossRef Goyal L, Saha SK, Liu LY, Siravegna G, Leshchiner I, Ahronian LG, et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov. 2017;7(3):252–63.PubMedCrossRef
48.
go back to reference Goyal L, Meric-Bernstam F, Hollebecque A, Valle JW, Morizane C, Karasic TB, et al. Futibatinib for FGFR2-rearranged intrahepatic cholangiocarcinoma. N Engl J Med. 2023;388(3):228–39.PubMedCrossRef Goyal L, Meric-Bernstam F, Hollebecque A, Valle JW, Morizane C, Karasic TB, et al. Futibatinib for FGFR2-rearranged intrahepatic cholangiocarcinoma. N Engl J Med. 2023;388(3):228–39.PubMedCrossRef
49.
go back to reference Sootome H, Fujita H, Ito K, Ochiiwa H, Fujioka Y, Ito K, et al. Futibatinib is a novel irreversible FGFR 1–4 inhibitor that shows selective antitumor activity against FGFR-deregulated tumors. Cancer Res. 2020;80(22):4986–97.PubMedCrossRef Sootome H, Fujita H, Ito K, Ochiiwa H, Fujioka Y, Ito K, et al. Futibatinib is a novel irreversible FGFR 1–4 inhibitor that shows selective antitumor activity against FGFR-deregulated tumors. Cancer Res. 2020;80(22):4986–97.PubMedCrossRef
50.
go back to reference Subbiah V, Sahai V, Maglic D, Bruderek K, Touré BB, Zhao S, et al. RLY-4008, the first highly selective FGFR2 inhibitor with activity across FGFR2 alterations and resistance mutations. Cancer Discov. 2023;13(9):2012–31.PubMedPubMedCentralCrossRef Subbiah V, Sahai V, Maglic D, Bruderek K, Touré BB, Zhao S, et al. RLY-4008, the first highly selective FGFR2 inhibitor with activity across FGFR2 alterations and resistance mutations. Cancer Discov. 2023;13(9):2012–31.PubMedPubMedCentralCrossRef
51.
go back to reference Poon D, Tan MH, Khor D. Stage 4 pancreatic adenocarcinoma harbouring an FGFR2-TACC2 fusion mutation with complete response to erdafitinib a pan-fibroblastic growth factor receptor inhibitor. BMJ Case Rep. 2021;14(9): e244271.PubMedPubMedCentralCrossRef Poon D, Tan MH, Khor D. Stage 4 pancreatic adenocarcinoma harbouring an FGFR2-TACC2 fusion mutation with complete response to erdafitinib a pan-fibroblastic growth factor receptor inhibitor. BMJ Case Rep. 2021;14(9): e244271.PubMedPubMedCentralCrossRef
52.
go back to reference Ng CF, Glaspy J, Placencio-Hickok VR, Thomassian S, Gong J, Osipov A, et al. Exceptional response to erdafitinib in FGFR2-mutated metastatic pancreatic ductal adenocarcinoma. J Natl Compr Canc Netw. 2022;20(10):1076–9.PubMedCrossRef Ng CF, Glaspy J, Placencio-Hickok VR, Thomassian S, Gong J, Osipov A, et al. Exceptional response to erdafitinib in FGFR2-mutated metastatic pancreatic ductal adenocarcinoma. J Natl Compr Canc Netw. 2022;20(10):1076–9.PubMedCrossRef
53.
go back to reference Helal C, Valéry M, Ducreux M, Hollebecque A, Smolenschi C. FGFR2 fusion in metastatic pancreatic ductal adenocarcinoma: is there hope? Eur J Cancer. 2022;176:168–70.PubMedCrossRef Helal C, Valéry M, Ducreux M, Hollebecque A, Smolenschi C. FGFR2 fusion in metastatic pancreatic ductal adenocarcinoma: is there hope? Eur J Cancer. 2022;176:168–70.PubMedCrossRef
54.
go back to reference Stein L, Reeser JW, Wing MR, Murugesan K, Paruchuri A, Risch Z, et al. Abstract 3395: clinical impact of FGFR inhibitors on FGFR2 positive pancreatic cancer. Cancer Res. 2023;83(7 Suppl.):3395.CrossRef Stein L, Reeser JW, Wing MR, Murugesan K, Paruchuri A, Risch Z, et al. Abstract 3395: clinical impact of FGFR inhibitors on FGFR2 positive pancreatic cancer. Cancer Res. 2023;83(7 Suppl.):3395.CrossRef
56.
go back to reference Singhi AD, Ali SM, Lacy J, Hendifar A, Nguyen K, Koo J, et al. Identification of targetable ALK rearrangements in pancreatic ductal adenocarcinoma. J Natl Compr Canc Netw. 2017;15(5):555–62.PubMedCrossRef Singhi AD, Ali SM, Lacy J, Hendifar A, Nguyen K, Koo J, et al. Identification of targetable ALK rearrangements in pancreatic ductal adenocarcinoma. J Natl Compr Canc Netw. 2017;15(5):555–62.PubMedCrossRef
57.
go back to reference Gower A, Golestany B, Gong J, Singhi AD, Hendifar AE. Novel ALK fusion, PPFIBP1-ALK, in pancreatic ductal adenocarcinoma responsive to alectinib and lorlatinib. JCO Precis Oncol. 2020;4:865–70.CrossRef Gower A, Golestany B, Gong J, Singhi AD, Hendifar AE. Novel ALK fusion, PPFIBP1-ALK, in pancreatic ductal adenocarcinoma responsive to alectinib and lorlatinib. JCO Precis Oncol. 2020;4:865–70.CrossRef
58.
go back to reference Ou K, Liu X, Li W, Yang Y, Ying J, Yang L. ALK rearrangement-positive pancreatic cancer with brain metastasis has remarkable response to ALK inhibitors: a case report. Front Oncol. 2021;11: 724815.PubMedPubMedCentralCrossRef Ou K, Liu X, Li W, Yang Y, Ying J, Yang L. ALK rearrangement-positive pancreatic cancer with brain metastasis has remarkable response to ALK inhibitors: a case report. Front Oncol. 2021;11: 724815.PubMedPubMedCentralCrossRef
59.
go back to reference Parejo-Alonso B, Royo-García A, Espiau-Romera P, Courtois S, Curiel-García Á, Zagorac S, et al. Pharmacological targeting of the receptor ALK inhibits tumorigenicity and overcomes chemoresistance in pancreatic ductal adenocarcinoma. Biomed Pharmacother. 2023;158: 114162.PubMedCrossRef Parejo-Alonso B, Royo-García A, Espiau-Romera P, Courtois S, Curiel-García Á, Zagorac S, et al. Pharmacological targeting of the receptor ALK inhibits tumorigenicity and overcomes chemoresistance in pancreatic ductal adenocarcinoma. Biomed Pharmacother. 2023;158: 114162.PubMedCrossRef
60.
go back to reference Adashek JJ, Sapkota S, de Castro LR, Seiwert TY. Complete response to alectinib in ALK-fusion metastatic salivary ductal carcinoma. Precis Oncol. 2023;7(1):36.CrossRef Adashek JJ, Sapkota S, de Castro LR, Seiwert TY. Complete response to alectinib in ALK-fusion metastatic salivary ductal carcinoma. Precis Oncol. 2023;7(1):36.CrossRef
61.
go back to reference Solomon BJ, Besse B, Bauer TM, Felip E, Soo RA, Camidge DR, et al. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol. 2018;19(12):1654–67.PubMedCrossRef Solomon BJ, Besse B, Bauer TM, Felip E, Soo RA, Camidge DR, et al. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol. 2018;19(12):1654–67.PubMedCrossRef
62.
go back to reference Dagogo-Jack I, Brannon AR, Ferris LA, Campbell CD, Lin JJ, Schultz KR, et al. Tracking the evolution of resistance to ALK tyrosine kinase inhibitors through longitudinal analysis of circulating tumor DNA. JCO Precis Oncol. 2018;2:1–14. Dagogo-Jack I, Brannon AR, Ferris LA, Campbell CD, Lin JJ, Schultz KR, et al. Tracking the evolution of resistance to ALK tyrosine kinase inhibitors through longitudinal analysis of circulating tumor DNA. JCO Precis Oncol. 2018;2:1–14.
63.
go back to reference Jonna S, Feldman RA, Swensen J, Gatalica Z, Korn WM, Borghaei H, et al. Detection of NRG1 gene fusions in solid tumors. Clin Cancer Res. 2019;25(16):4966–72.PubMedPubMedCentralCrossRef Jonna S, Feldman RA, Swensen J, Gatalica Z, Korn WM, Borghaei H, et al. Detection of NRG1 gene fusions in solid tumors. Clin Cancer Res. 2019;25(16):4966–72.PubMedPubMedCentralCrossRef
64.
go back to reference Fernandez-Cuesta L, Thomas RK. Molecular pathways: targeting NRG1 fusions in lung cancer. Clin Cancer Res. 2015;21(9):1989–94.PubMedCrossRef Fernandez-Cuesta L, Thomas RK. Molecular pathways: targeting NRG1 fusions in lung cancer. Clin Cancer Res. 2015;21(9):1989–94.PubMedCrossRef
65.
go back to reference Jones MR, Lim H, Shen Y, Pleasance E, Ch’ng C, Reisle C, et al. Successful targeting of the NRG1 pathway indicates novel treatment strategy for metastatic cancer. Ann Oncol. 2017;28(12):3092–7.PubMedCrossRef Jones MR, Lim H, Shen Y, Pleasance E, Ch’ng C, Reisle C, et al. Successful targeting of the NRG1 pathway indicates novel treatment strategy for metastatic cancer. Ann Oncol. 2017;28(12):3092–7.PubMedCrossRef
66.
go back to reference Gay ND, Wang Y, Beadling C, Warrick A, Neff T, Corless CL, et al. Durable response to afatinib in lung adenocarcinoma harboring NRG1 gene fusions. J Thorac Oncol. 2017;12(8):e107–10.PubMedCrossRef Gay ND, Wang Y, Beadling C, Warrick A, Neff T, Corless CL, et al. Durable response to afatinib in lung adenocarcinoma harboring NRG1 gene fusions. J Thorac Oncol. 2017;12(8):e107–10.PubMedCrossRef
67.
go back to reference Jones MR, Williamson LM, Topham JT, Lee MKC, Goytain A, Ho J, et al. NRG1 gene fusions are recurrent, clinically actionable gene rearrangements in KRAS wild-type pancreatic ductal adenocarcinoma. Clin Cancer Res. 2019;25(15):4674–81.PubMedCrossRef Jones MR, Williamson LM, Topham JT, Lee MKC, Goytain A, Ho J, et al. NRG1 gene fusions are recurrent, clinically actionable gene rearrangements in KRAS wild-type pancreatic ductal adenocarcinoma. Clin Cancer Res. 2019;25(15):4674–81.PubMedCrossRef
68.
go back to reference Schram AM, O’Reilly EM, O’Kane GM, Goto K, Kim D-W, Neuzillet C, et al. Efficacy and safety of zenocutuzumab in advanced pancreas cancer and other solid tumors harboring NRG1 fusions. J Clin Oncol. 2021;39(15 Suppl.):3003.CrossRef Schram AM, O’Reilly EM, O’Kane GM, Goto K, Kim D-W, Neuzillet C, et al. Efficacy and safety of zenocutuzumab in advanced pancreas cancer and other solid tumors harboring NRG1 fusions. J Clin Oncol. 2021;39(15 Suppl.):3003.CrossRef
69.
go back to reference Odintsov I, Lui AJW, Sisso WJ, Gladstone E, Liu Z, Delasos L, et al. The anti-HER3 mAb seribantumab effectively inhibits growth of patient-derived and isogenic cell line and xenograft models with oncogenic NRG1 fusions. Clin Cancer Res. 2021;27(11):3154–66.PubMedPubMedCentralCrossRef Odintsov I, Lui AJW, Sisso WJ, Gladstone E, Liu Z, Delasos L, et al. The anti-HER3 mAb seribantumab effectively inhibits growth of patient-derived and isogenic cell line and xenograft models with oncogenic NRG1 fusions. Clin Cancer Res. 2021;27(11):3154–66.PubMedPubMedCentralCrossRef
70.
go back to reference Kim D-W, Schram AM, Hollebecque A, Nishino K, Macarulla T, Rha DY, et al. The phase I/II eNRGy trial: zenocutuzumab in patients with cancers harboring NRG1 gene fusions. Future Oncol. 2024;20(16):1057–67.PubMedCrossRef Kim D-W, Schram AM, Hollebecque A, Nishino K, Macarulla T, Rha DY, et al. The phase I/II eNRGy trial: zenocutuzumab in patients with cancers harboring NRG1 gene fusions. Future Oncol. 2024;20(16):1057–67.PubMedCrossRef
71.
go back to reference Liu SV, Frohn C, Minasi L, Fernamberg K, Klink AJ, Gajra A, et al. Real-world outcomes associated with afatinib use in patients with solid tumors harboring NRG1 gene fusions. Lung Cancer. 2024;188: 107469.PubMedCrossRef Liu SV, Frohn C, Minasi L, Fernamberg K, Klink AJ, Gajra A, et al. Real-world outcomes associated with afatinib use in patients with solid tumors harboring NRG1 gene fusions. Lung Cancer. 2024;188: 107469.PubMedCrossRef
72.
go back to reference Amit M, Na’ara S, Fridman E, Vladovski E, Wasserman T, Milman N, et al. RET, a targetable driver of pancreatic adenocarcinoma. Int J Cancer. 2019;144(12):3014–22.PubMedCrossRef Amit M, Na’ara S, Fridman E, Vladovski E, Wasserman T, Milman N, et al. RET, a targetable driver of pancreatic adenocarcinoma. Int J Cancer. 2019;144(12):3014–22.PubMedCrossRef
73.
go back to reference Kato S, Subbiah V, Marchlik E, Elkin SK, Carter JL, Kurzrock R. RET aberrations in diverse cancers: next-generation sequencing of 4,871 patients. Clin Cancer Res. 2017;23(8):1988–97.PubMedCrossRef Kato S, Subbiah V, Marchlik E, Elkin SK, Carter JL, Kurzrock R. RET aberrations in diverse cancers: next-generation sequencing of 4,871 patients. Clin Cancer Res. 2017;23(8):1988–97.PubMedCrossRef
74.
go back to reference Subbiah V, Wolf J, Konda B, Kang H, Spira A, Weiss J, et al. Tumour-agnostic efficacy and safety of selpercatinib in patients with RET fusion-positive solid tumours other than lung or thyroid tumours (LIBRETTO-001): a phase 1/2, open-label, basket trial. Lancet Oncol. 2022;23(10):1261–73.PubMedCrossRef Subbiah V, Wolf J, Konda B, Kang H, Spira A, Weiss J, et al. Tumour-agnostic efficacy and safety of selpercatinib in patients with RET fusion-positive solid tumours other than lung or thyroid tumours (LIBRETTO-001): a phase 1/2, open-label, basket trial. Lancet Oncol. 2022;23(10):1261–73.PubMedCrossRef
76.
go back to reference Manea CA, Badiu DC, Ploscaru IC, Zgura A, Bacinschi X, Smarandache CG, et al. A review of NTRK fusions in cancer. Ann Med Surg (Lond). 2022;79: 103893.PubMedPubMedCentral Manea CA, Badiu DC, Ploscaru IC, Zgura A, Bacinschi X, Smarandache CG, et al. A review of NTRK fusions in cancer. Ann Med Surg (Lond). 2022;79: 103893.PubMedPubMedCentral
77.
go back to reference Pishvaian MJ, Garrido-Laguna I, Liu SV, Multani PS, Chow-Maneval E, Rolfo C. Entrectinib in TRK and ROS1 fusion-positive metastatic pancreatic cancer. JCO Precis Oncol. 2018;2:1–7.PubMedCrossRef Pishvaian MJ, Garrido-Laguna I, Liu SV, Multani PS, Chow-Maneval E, Rolfo C. Entrectinib in TRK and ROS1 fusion-positive metastatic pancreatic cancer. JCO Precis Oncol. 2018;2:1–7.PubMedCrossRef
78.
go back to reference Hyman D, Tan DSW, van Tilburg C, Albert C, Geoerger B, Farago A, et al. 365O: durability of response with larotrectinib in adult and pediatric patients with TRK fusion cancer. Ann Oncol. 2019;30: ix123.CrossRef Hyman D, Tan DSW, van Tilburg C, Albert C, Geoerger B, Farago A, et al. 365O: durability of response with larotrectinib in adult and pediatric patients with TRK fusion cancer. Ann Oncol. 2019;30: ix123.CrossRef
79.
go back to reference Yun KM, Narezkina A, Redfern C, Velasco K, Bazhenova L. Repotrectinib in a patient with NTRK fusion-positive pancreatic carcinoma and congenital long QT syndrome. JCO Precis Oncol. 2024;8: e2300265.PubMedCrossRef Yun KM, Narezkina A, Redfern C, Velasco K, Bazhenova L. Repotrectinib in a patient with NTRK fusion-positive pancreatic carcinoma and congenital long QT syndrome. JCO Precis Oncol. 2024;8: e2300265.PubMedCrossRef
80.
go back to reference Solomon BJ, Drilon A, Lin JJ, Bazhenova L, Goto K, De Langen J, et al. 1372P Repotrectinib in patients (pts) with NTRK fusion-positive (NTRK+) advanced solid tumors, including NSCLC: update from the phase I/II TRIDENT-1 trial. Ann Oncol. 2023;34:S787–8.CrossRef Solomon BJ, Drilon A, Lin JJ, Bazhenova L, Goto K, De Langen J, et al. 1372P Repotrectinib in patients (pts) with NTRK fusion-positive (NTRK+) advanced solid tumors, including NSCLC: update from the phase I/II TRIDENT-1 trial. Ann Oncol. 2023;34:S787–8.CrossRef
81.
go back to reference Nagasaka M, Zhang SS, Baca Y, Xiu J, Nieva J, Vanderwalde A, et al. Pan-tumor survey of ROS1 fusions detected by next-generation RNA and whole transcriptome sequencing. BMC Cancer. 2023;23(1):1000.PubMedPubMedCentralCrossRef Nagasaka M, Zhang SS, Baca Y, Xiu J, Nieva J, Vanderwalde A, et al. Pan-tumor survey of ROS1 fusions detected by next-generation RNA and whole transcriptome sequencing. BMC Cancer. 2023;23(1):1000.PubMedPubMedCentralCrossRef
82.
go back to reference Shaw AT, Ou SH, Bang YJ, Camidge DR, Solomon BJ, Salgia R, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014;371(21):1963–71.PubMedPubMedCentralCrossRef Shaw AT, Ou SH, Bang YJ, Camidge DR, Solomon BJ, Salgia R, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014;371(21):1963–71.PubMedPubMedCentralCrossRef
83.
go back to reference Drilon A, Siena S, Dziadziuszko R, Barlesi F, Krebs MG, Shaw AT, et al. Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020;21(2):261–70.PubMedCrossRef Drilon A, Siena S, Dziadziuszko R, Barlesi F, Krebs MG, Shaw AT, et al. Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020;21(2):261–70.PubMedCrossRef
84.
go back to reference Drilon A, Camidge DR, Lin JJ, Kim S-W, Solomon BJ, Dziadziuszko R, et al. Repotrectinib in ROS1 fusion-positive non-small-cell lung cancer. N Engl J Med. 2024;390(2):118–31.PubMedCrossRef Drilon A, Camidge DR, Lin JJ, Kim S-W, Solomon BJ, Dziadziuszko R, et al. Repotrectinib in ROS1 fusion-positive non-small-cell lung cancer. N Engl J Med. 2024;390(2):118–31.PubMedCrossRef
86.
go back to reference Latham A, Srinivasan P, Kemel Y, Shia J, Bandlamudi C, Mandelker D, et al. Microsatellite instability is associated with the presence of Lynch syndrome pan-cancer. J Clin Oncol. 2019;37(4):286–95.PubMedCrossRef Latham A, Srinivasan P, Kemel Y, Shia J, Bandlamudi C, Mandelker D, et al. Microsatellite instability is associated with the presence of Lynch syndrome pan-cancer. J Clin Oncol. 2019;37(4):286–95.PubMedCrossRef
87.
go back to reference Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen H-Z, et al. Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol. 2017;1:1–15.CrossRef Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen H-Z, et al. Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol. 2017;1:1–15.CrossRef
88.
go back to reference Luchini C, Brosens LAA, Wood LD, Chatterjee D, Shin JI, Sciammarella C, et al. Comprehensive characterisation of pancreatic ductal adenocarcinoma with microsatellite instability: histology, molecular pathology and clinical implications. Gut. 2021;70(1):148–56.PubMedCrossRef Luchini C, Brosens LAA, Wood LD, Chatterjee D, Shin JI, Sciammarella C, et al. Comprehensive characterisation of pancreatic ductal adenocarcinoma with microsatellite instability: histology, molecular pathology and clinical implications. Gut. 2021;70(1):148–56.PubMedCrossRef
89.
go back to reference Chakrabarti S, Bucheit L, Starr JS, Innis-Shelton R, Shergill A, Dada H, et al. Detection of microsatellite instability-high (MSI-H) by liquid biopsy predicts robust and durable response to immunotherapy in patients with pancreatic cancer. J Immunother Cancer. 2022;10(6): e004485.PubMedPubMedCentralCrossRef Chakrabarti S, Bucheit L, Starr JS, Innis-Shelton R, Shergill A, Dada H, et al. Detection of microsatellite instability-high (MSI-H) by liquid biopsy predicts robust and durable response to immunotherapy in patients with pancreatic cancer. J Immunother Cancer. 2022;10(6): e004485.PubMedPubMedCentralCrossRef
90.
go back to reference Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord JP, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2020;38(1):1–10.PubMedCrossRef Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord JP, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2020;38(1):1–10.PubMedCrossRef
91.
go back to reference Coston T, Desai A, Babiker H, Sonbol MB, Chakrabarti S, Mahipal A, et al. Efficacy of immune checkpoint inhibition and cytotoxic chemotherapy in mismatch repair-deficient and microsatellite instability-high pancreatic cancer: Mayo Clinic experience. JCO Precis Oncol. 2023;7: e2200706.PubMedCrossRef Coston T, Desai A, Babiker H, Sonbol MB, Chakrabarti S, Mahipal A, et al. Efficacy of immune checkpoint inhibition and cytotoxic chemotherapy in mismatch repair-deficient and microsatellite instability-high pancreatic cancer: Mayo Clinic experience. JCO Precis Oncol. 2023;7: e2200706.PubMedCrossRef
92.
go back to reference O’Connor CA, Harrold E, Lin Y-T, Walch HS, Gazzo A, Kane SR, et al. Somatic mismatch repair deficiency in pancreas cancer (PC): immune checkpoint blockade (ICB) outcomes and exploratory genomic analyses. J Clin Oncol. 2024;42(16 Suppl.):4144.CrossRef O’Connor CA, Harrold E, Lin Y-T, Walch HS, Gazzo A, Kane SR, et al. Somatic mismatch repair deficiency in pancreas cancer (PC): immune checkpoint blockade (ICB) outcomes and exploratory genomic analyses. J Clin Oncol. 2024;42(16 Suppl.):4144.CrossRef
93.
go back to reference Schultheis B, Reuter D, Ebert MP, Siveke J, Kerkhoff A, Berdel WE, et al. Gemcitabine combined with the monoclonal antibody nimotuzumab is an active first-line regimen in KRAS wildtype patients with locally advanced or metastatic pancreatic cancer: a multicenter, randomized phase IIb study. Ann Oncol. 2017;28(10):2429–35.PubMedCrossRef Schultheis B, Reuter D, Ebert MP, Siveke J, Kerkhoff A, Berdel WE, et al. Gemcitabine combined with the monoclonal antibody nimotuzumab is an active first-line regimen in KRAS wildtype patients with locally advanced or metastatic pancreatic cancer: a multicenter, randomized phase IIb study. Ann Oncol. 2017;28(10):2429–35.PubMedCrossRef
94.
go back to reference Qin S, Li J, Bai Y, Wang Z, Chen Z, Xu R, et al. Nimotuzumab plus gemcitabine for K-Ras wild-type locally advanced or metastatic pancreatic cancer. J Clin Oncol. 2023;41(33):5163–73.PubMedCrossRef Qin S, Li J, Bai Y, Wang Z, Chen Z, Xu R, et al. Nimotuzumab plus gemcitabine for K-Ras wild-type locally advanced or metastatic pancreatic cancer. J Clin Oncol. 2023;41(33):5163–73.PubMedCrossRef
95.
go back to reference Cecchini M, Sklar J, Lacy J. EGFR exon 19 deletion in pancreatic adenocarcinoma responds to erlotinib, followed by T790M-mediated resistance. J Natl Compr Canc Netw. 2017;15(9):1085–9.PubMedCrossRef Cecchini M, Sklar J, Lacy J. EGFR exon 19 deletion in pancreatic adenocarcinoma responds to erlotinib, followed by T790M-mediated resistance. J Natl Compr Canc Netw. 2017;15(9):1085–9.PubMedCrossRef
96.
go back to reference Park R, Al-Jumayli M, Miller K, Saeed A, Saeed A. Exceptional response to erlotinib monotherapy in EGFR exon 19-deleted, KRAS wild-type, chemo-refractory advanced pancreatic adenocarcinoma. Cancer Treat Res Commun. 2021;27: 100342.PubMedCrossRef Park R, Al-Jumayli M, Miller K, Saeed A, Saeed A. Exceptional response to erlotinib monotherapy in EGFR exon 19-deleted, KRAS wild-type, chemo-refractory advanced pancreatic adenocarcinoma. Cancer Treat Res Commun. 2021;27: 100342.PubMedCrossRef
97.
go back to reference Jardim DL, Schwaederle M, Wei C, Lee JJ, Hong DS, Eggermont AM, et al. Impact of a biomarker-based strategy on oncology drug development: a meta-analysis of clinical trials leading to FDA approval. J Nat Cancer Instit. 2015;107(11): djv253.CrossRef Jardim DL, Schwaederle M, Wei C, Lee JJ, Hong DS, Eggermont AM, et al. Impact of a biomarker-based strategy on oncology drug development: a meta-analysis of clinical trials leading to FDA approval. J Nat Cancer Instit. 2015;107(11): djv253.CrossRef
98.
go back to reference Wagle N, Grabiner BC, Van Allen EM, Hodis E, Jacobus S, Supko JG, et al. Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Cancer Discov. 2014;4(5):546–53.PubMedPubMedCentralCrossRef Wagle N, Grabiner BC, Van Allen EM, Hodis E, Jacobus S, Supko JG, et al. Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Cancer Discov. 2014;4(5):546–53.PubMedPubMedCentralCrossRef
99.
go back to reference Peters S, Michielin O, Zimmermann S. Dramatic response induced by vemurafenib in a BRAF V600E-mutated lung adenocarcinoma. J Clin Oncol. 2013;31(20):e341–4.PubMedCrossRef Peters S, Michielin O, Zimmermann S. Dramatic response induced by vemurafenib in a BRAF V600E-mutated lung adenocarcinoma. J Clin Oncol. 2013;31(20):e341–4.PubMedCrossRef
100.
go back to reference Munoz J, Schlette E, Kurzrock R. Rapid response to vemurafenib in a heavily pretreated patient with hairy cell leukemia and a BRAF mutation. J Clin Oncol. 2013;31(20):e351–2.PubMedCrossRef Munoz J, Schlette E, Kurzrock R. Rapid response to vemurafenib in a heavily pretreated patient with hairy cell leukemia and a BRAF mutation. J Clin Oncol. 2013;31(20):e351–2.PubMedCrossRef
101.
102.
go back to reference Mangat PK, Halabi S, Bruinooge SS, Garrett-Mayer E, Alva A, Janeway KA, et al. Rationale and design of the targeted agent and profiling utilization registry study. JCO Precis Oncol. 2018;2:1–14.CrossRef Mangat PK, Halabi S, Bruinooge SS, Garrett-Mayer E, Alva A, Janeway KA, et al. Rationale and design of the targeted agent and profiling utilization registry study. JCO Precis Oncol. 2018;2:1–14.CrossRef
Metadata
Title
Identifying Actionable Alterations in KRAS Wild-Type Pancreatic Cancer
Authors
Ahmed Elhariri
Jaydeepbhai Patel
Himil Mahadevia
Douaa Albelal
Ahmed K. Ahmed
Jeremy C. Jones
Mitesh J. Borad
Hani Babiker
Publication date
10-08-2024
Publisher
Springer International Publishing
Published in
Targeted Oncology / Issue 5/2024
Print ISSN: 1776-2596
Electronic ISSN: 1776-260X
DOI
https://doi.org/10.1007/s11523-024-01088-3

Other articles of this Issue 5/2024

Targeted Oncology 5/2024 Go to the issue