Skip to main content
Top
Published in:

21-10-2024 | Opioids | REVIEW

Respiratory Depression Associated with Opioids: A Narrative Review

Authors: Mellar P. Davis, Sandra DiScala, Amy Davis

Published in: Current Treatment Options in Oncology | Issue 11/2024

Login to get access

Opinion

All opioids have a risk of causing respiratory depression and reduced cerebral circulation. Fentanyl has the greatest risk of causing both. This is particularly a concern when combined with illicit opioids such as diamorphine (also known as heroin). Fentanyl should not be used as a frontline potent opioid due its significant risks. Buprenorphine, a schedule III opioid, morphine, or hydromorphone is preferred, followed by oxycodone, which has a significant risk of abuse relative to buprenorphine and morphine. Although all opioids were equally effective in producing analgesia, the relative safety of each opioid is no longer a secondary concern when prescribing. In the face of an international opioid epidemic, clinicians need to choose opioid analgesics safely, wisely, and carefully.
Literature
1.
go back to reference Robert M, Jouanjus E, Khouri C, Fouilhe Sam-Lai N, Revol B. The opioid epidemic: A worldwide exploratory study using the WHO pharmacovigilance database. Addiction. 2023;118(4):771–5.PubMedCrossRef Robert M, Jouanjus E, Khouri C, Fouilhe Sam-Lai N, Revol B. The opioid epidemic: A worldwide exploratory study using the WHO pharmacovigilance database. Addiction. 2023;118(4):771–5.PubMedCrossRef
2.
go back to reference Palau CB, Akikuni M, Latsky-Campbell B, Wagner J. The Drug Overdose Epidemic in the U.S.-Mexico Border Region: Shifts, Progression, and Community Characteristics. Subst Use Misuse. 2024;59(2):184–92.PubMedCrossRef Palau CB, Akikuni M, Latsky-Campbell B, Wagner J. The Drug Overdose Epidemic in the U.S.-Mexico Border Region: Shifts, Progression, and Community Characteristics. Subst Use Misuse. 2024;59(2):184–92.PubMedCrossRef
3.
4.
go back to reference Infante AF, Elmes AT, Gimbar RP, Messmer SE, Neeb C, Jarrett JB. Stronger, longer, better opioid antagonists? Nalmefene is NOT a naloxone replacement. Int J Drug Policy. 2024;124:104323.PubMedCrossRef Infante AF, Elmes AT, Gimbar RP, Messmer SE, Neeb C, Jarrett JB. Stronger, longer, better opioid antagonists? Nalmefene is NOT a naloxone replacement. Int J Drug Policy. 2024;124:104323.PubMedCrossRef
5.
go back to reference Delaney SR, Konforte D, Stefan C, et al. Drug checking services as a surveillance tool for clinical laboratories: Examining trends in the unregulated fentanyl supply. Clin Biochem. 2023;111:11–6.PubMedCrossRef Delaney SR, Konforte D, Stefan C, et al. Drug checking services as a surveillance tool for clinical laboratories: Examining trends in the unregulated fentanyl supply. Clin Biochem. 2023;111:11–6.PubMedCrossRef
6.
go back to reference Kelly E, Sutcliffe K, Cavallo D, Ramos-Gonzalez N, Alhosan N, Henderson G. The anomalous pharmacology of fentanyl. Br J Pharmacol. 2023;180(7):797–812.PubMedCrossRef Kelly E, Sutcliffe K, Cavallo D, Ramos-Gonzalez N, Alhosan N, Henderson G. The anomalous pharmacology of fentanyl. Br J Pharmacol. 2023;180(7):797–812.PubMedCrossRef
7.
go back to reference Cook RR, Foot C, Arah OA, et al. Estimating the impact of stimulant use on initiation of buprenorphine and extended-release naltrexone in two clinical trials and real-world populations. Addict Sci Clin Pract. 2023;18(1):11.PubMedPubMedCentralCrossRef Cook RR, Foot C, Arah OA, et al. Estimating the impact of stimulant use on initiation of buprenorphine and extended-release naltrexone in two clinical trials and real-world populations. Addict Sci Clin Pract. 2023;18(1):11.PubMedPubMedCentralCrossRef
8.
go back to reference Orndorff M, Shipp GM, Kerver JM, Ondersma SJ, Alshaarawy O. Trends in cocaine use among United States females of reproductive age, 2005–2019. Am J Addict. 2024;33(3):313–9.PubMedCrossRef Orndorff M, Shipp GM, Kerver JM, Ondersma SJ, Alshaarawy O. Trends in cocaine use among United States females of reproductive age, 2005–2019. Am J Addict. 2024;33(3):313–9.PubMedCrossRef
10.
go back to reference Friedman J, Shover CL. Charting the fourth wave: Geographic, temporal, race/ethnicity and demographic trends in polysubstance fentanyl overdose deaths in the United States, 2010–2021. Addiction. 2023;118(12):2477–85.PubMedCrossRef Friedman J, Shover CL. Charting the fourth wave: Geographic, temporal, race/ethnicity and demographic trends in polysubstance fentanyl overdose deaths in the United States, 2010–2021. Addiction. 2023;118(12):2477–85.PubMedCrossRef
11.
go back to reference Friedman J, Godvin M, Molina C, et al. Fentanyl, heroin, and methamphetamine-based counterfeit pills sold at tourist-oriented pharmacies in Mexico: An ethnographic and drug checking study. Drug Alcohol Depend. 2023;249:110819.PubMedPubMedCentralCrossRef Friedman J, Godvin M, Molina C, et al. Fentanyl, heroin, and methamphetamine-based counterfeit pills sold at tourist-oriented pharmacies in Mexico: An ethnographic and drug checking study. Drug Alcohol Depend. 2023;249:110819.PubMedPubMedCentralCrossRef
12.
go back to reference Ikeda K, Kawakami K, Onimaru H, et al. The respiratory control mechanisms in the brainstem and spinal cord: integrative views of the neuroanatomy and neurophysiology. J Physiol Sci. 2017;67(1):45–62.PubMedCrossRef Ikeda K, Kawakami K, Onimaru H, et al. The respiratory control mechanisms in the brainstem and spinal cord: integrative views of the neuroanatomy and neurophysiology. J Physiol Sci. 2017;67(1):45–62.PubMedCrossRef
14.
go back to reference Jonkman AH, de Vries HJ, Heunks LMA. Physiology of the Respiratory Drive in ICU Patients: Implications for Diagnosis and Treatment. Crit Care. 2020;24(1):104.PubMedPubMedCentralCrossRef Jonkman AH, de Vries HJ, Heunks LMA. Physiology of the Respiratory Drive in ICU Patients: Implications for Diagnosis and Treatment. Crit Care. 2020;24(1):104.PubMedPubMedCentralCrossRef
15.
go back to reference Ritter B, Zhang W. Early postnatal maturation of GABAA-mediated inhibition in the brainstem respiratory rhythm-generating network of the mouse. Eur J Neurosci. 2000;12(8):2975–84.PubMedCrossRef Ritter B, Zhang W. Early postnatal maturation of GABAA-mediated inhibition in the brainstem respiratory rhythm-generating network of the mouse. Eur J Neurosci. 2000;12(8):2975–84.PubMedCrossRef
16.
go back to reference Sun X, Thorn Perez C, Halemani DN, et al. Opioids modulate an emergent rhythmogenic process to depress breathing. Elife. 2019;8. Sun X, Thorn Perez C, Halemani DN, et al. Opioids modulate an emergent rhythmogenic process to depress breathing. Elife. 2019;8.
17.
go back to reference Kam K, Worrell JW, Ventalon C, Emiliani V, Feldman JL. Emergence of population bursts from simultaneous activation of small subsets of preBotzinger complex inspiratory neurons. J Neurosci. 2013;33(8):3332–8.PubMedPubMedCentralCrossRef Kam K, Worrell JW, Ventalon C, Emiliani V, Feldman JL. Emergence of population bursts from simultaneous activation of small subsets of preBotzinger complex inspiratory neurons. J Neurosci. 2013;33(8):3332–8.PubMedPubMedCentralCrossRef
18.
go back to reference Damasceno RS, Takakura AC, Moreira TS. Regulation of the chemosensory control of breathing by Kolliker-Fuse neurons. Am J Physiol Regul Integr Comp Physiol. 2014;307(1):R57-67.PubMedCrossRef Damasceno RS, Takakura AC, Moreira TS. Regulation of the chemosensory control of breathing by Kolliker-Fuse neurons. Am J Physiol Regul Integr Comp Physiol. 2014;307(1):R57-67.PubMedCrossRef
19.
go back to reference Levitt ES, Abdala AP, Paton JF, Bissonnette JM, Williams JT. mu opioid receptor activation hyperpolarizes respiratory-controlling Kolliker-Fuse neurons and suppresses post-inspiratory drive. J Physiol. 2015;593(19):4453–69.PubMedPubMedCentralCrossRef Levitt ES, Abdala AP, Paton JF, Bissonnette JM, Williams JT. mu opioid receptor activation hyperpolarizes respiratory-controlling Kolliker-Fuse neurons and suppresses post-inspiratory drive. J Physiol. 2015;593(19):4453–69.PubMedPubMedCentralCrossRef
20.
go back to reference Dhingra RR, Furuya WI, Bautista TG, Dick TE, Galan RF, Dutschmann M. Increasing Local Excitability of Brainstem Respiratory Nuclei Reveals a Distributed Network Underlying Respiratory Motor Pattern Formation. Front Physiol. 2019;10:887.PubMedPubMedCentralCrossRef Dhingra RR, Furuya WI, Bautista TG, Dick TE, Galan RF, Dutschmann M. Increasing Local Excitability of Brainstem Respiratory Nuclei Reveals a Distributed Network Underlying Respiratory Motor Pattern Formation. Front Physiol. 2019;10:887.PubMedPubMedCentralCrossRef
21.
go back to reference Bateman JT, Levitt ES. Opioid suppression of an excitatory pontomedullary respiratory circuit by convergent mechanisms. Elife. 2023;12. Bateman JT, Levitt ES. Opioid suppression of an excitatory pontomedullary respiratory circuit by convergent mechanisms. Elife. 2023;12.
22.
go back to reference Kaur S, Pedersen NP, Yokota S, et al. Glutamatergic signaling from the parabrachial nucleus plays a critical role in hypercapnic arousal. J Neurosci. 2013;33(18):7627–40.PubMedPubMedCentralCrossRef Kaur S, Pedersen NP, Yokota S, et al. Glutamatergic signaling from the parabrachial nucleus plays a critical role in hypercapnic arousal. J Neurosci. 2013;33(18):7627–40.PubMedPubMedCentralCrossRef
23.
go back to reference Martelli D, Stanic D, Dutschmann M. The emerging role of the parabrachial complex in the generation of wakefulness drive and its implication for respiratory control. Respir Physiol Neurobiol. 2013;188(3):318–23.PubMedCrossRef Martelli D, Stanic D, Dutschmann M. The emerging role of the parabrachial complex in the generation of wakefulness drive and its implication for respiratory control. Respir Physiol Neurobiol. 2013;188(3):318–23.PubMedCrossRef
24.
go back to reference Lynch N, Lima JD, Spinieli RL, Kaur S. Opioids, sleep, analgesia and respiratory depression: Their convergence on Mu (mu)-opioid receptors in the parabrachial area. Front Neurosci. 2023;17:1134842.PubMedPubMedCentralCrossRef Lynch N, Lima JD, Spinieli RL, Kaur S. Opioids, sleep, analgesia and respiratory depression: Their convergence on Mu (mu)-opioid receptors in the parabrachial area. Front Neurosci. 2023;17:1134842.PubMedPubMedCentralCrossRef
25.
go back to reference Dahan A, Sarton E, Teppema L, et al. Anesthetic potency and influence of morphine and sevoflurane on respiration in mu-opioid receptor knockout mice. Anesthesiology. 2001;94(5):824–32.PubMedCrossRef Dahan A, Sarton E, Teppema L, et al. Anesthetic potency and influence of morphine and sevoflurane on respiration in mu-opioid receptor knockout mice. Anesthesiology. 2001;94(5):824–32.PubMedCrossRef
26.
go back to reference Engstrom L, Engblom D, Ortegren U, Mackerlova L, Paues J, Blomqvist A. Preproenkephalin mRNA expression in rat parabrachial neurons: relation to cells activated by systemic immune challenge. Neurosci Lett. 2001;316(3):165–8.PubMedCrossRef Engstrom L, Engblom D, Ortegren U, Mackerlova L, Paues J, Blomqvist A. Preproenkephalin mRNA expression in rat parabrachial neurons: relation to cells activated by systemic immune challenge. Neurosci Lett. 2001;316(3):165–8.PubMedCrossRef
27.
go back to reference Dutschmann M, Morschel M, Kron M, Herbert H. Development of adaptive behaviour of the respiratory network: implications for the pontine Kolliker-Fuse nucleus. Respir Physiol Neurobiol. 2004;143(2–3):155–65.PubMedCrossRef Dutschmann M, Morschel M, Kron M, Herbert H. Development of adaptive behaviour of the respiratory network: implications for the pontine Kolliker-Fuse nucleus. Respir Physiol Neurobiol. 2004;143(2–3):155–65.PubMedCrossRef
28.
go back to reference Baldo BA. Current research in pathophysiology of opioid-induced respiratory depression, neonatal opioid withdrawal syndrome, and neonatal antidepressant exposure syndrome. Curr Res Toxicol. 2022;3:100078.PubMedPubMedCentralCrossRef Baldo BA. Current research in pathophysiology of opioid-induced respiratory depression, neonatal opioid withdrawal syndrome, and neonatal antidepressant exposure syndrome. Curr Res Toxicol. 2022;3:100078.PubMedPubMedCentralCrossRef
29.
go back to reference Kirby GC, McQueen DS. Characterization of opioid receptors in the cat carotid body involved in chemosensory depression in vivo. Br J Pharmacol. 1986;88(4):889–98.PubMedPubMedCentralCrossRef Kirby GC, McQueen DS. Characterization of opioid receptors in the cat carotid body involved in chemosensory depression in vivo. Br J Pharmacol. 1986;88(4):889–98.PubMedPubMedCentralCrossRef
30.
go back to reference Varga AG, Reid BT, Kieffer BL, Levitt ES. Differential impact of two critical respiratory centres in opioid-induced respiratory depression in awake mice. J Physiol. 2020;598(1):189–205.PubMedCrossRef Varga AG, Reid BT, Kieffer BL, Levitt ES. Differential impact of two critical respiratory centres in opioid-induced respiratory depression in awake mice. J Physiol. 2020;598(1):189–205.PubMedCrossRef
31.
go back to reference Zhuang J, Gao X, Gao F, Xu F. Mu-opioid receptors in the caudomedial NTS are critical for respiratory responses to stimulation of bronchopulmonary C-fibers and carotid body in conscious rats. Respir Physiol Neurobiol. 2017;235:71–8.PubMedCrossRef Zhuang J, Gao X, Gao F, Xu F. Mu-opioid receptors in the caudomedial NTS are critical for respiratory responses to stimulation of bronchopulmonary C-fibers and carotid body in conscious rats. Respir Physiol Neurobiol. 2017;235:71–8.PubMedCrossRef
32.
go back to reference Poole SL, Deuchars J, Lewis DI, Deuchars SA. Subdivision-specific responses of neurons in the nucleus of the tractus solitarius to activation of mu-opioid receptors in the rat. J Neurophysiol. 2007;98(5):3060–71.PubMedCrossRef Poole SL, Deuchars J, Lewis DI, Deuchars SA. Subdivision-specific responses of neurons in the nucleus of the tractus solitarius to activation of mu-opioid receptors in the rat. J Neurophysiol. 2007;98(5):3060–71.PubMedCrossRef
33.
go back to reference Souza G, Stornetta RL, Stornetta DS, Abbott SBG, Guyenet PG. Contribution of the Retrotrapezoid Nucleus and Carotid Bodies to Hypercapnia- and Hypoxia-induced Arousal from Sleep. J Neurosci. 2019;39(49):9725–37.PubMedPubMedCentralCrossRef Souza G, Stornetta RL, Stornetta DS, Abbott SBG, Guyenet PG. Contribution of the Retrotrapezoid Nucleus and Carotid Bodies to Hypercapnia- and Hypoxia-induced Arousal from Sleep. J Neurosci. 2019;39(49):9725–37.PubMedPubMedCentralCrossRef
34.
go back to reference Pisanski A, Pagliardini S. The parafacial respiratory group and the control of active expiration. Respir Physiol Neurobiol. 2019;265:153–60.PubMedCrossRef Pisanski A, Pagliardini S. The parafacial respiratory group and the control of active expiration. Respir Physiol Neurobiol. 2019;265:153–60.PubMedCrossRef
35.
go back to reference Guyenet PG, Stornetta RL, Souza G, Abbott SBG, Shi Y, Bayliss DA. The Retrotrapezoid Nucleus: Central Chemoreceptor and Regulator of Breathing Automaticity. Trends Neurosci. 2019;42(11):807–24.PubMedPubMedCentralCrossRef Guyenet PG, Stornetta RL, Souza G, Abbott SBG, Shi Y, Bayliss DA. The Retrotrapezoid Nucleus: Central Chemoreceptor and Regulator of Breathing Automaticity. Trends Neurosci. 2019;42(11):807–24.PubMedPubMedCentralCrossRef
36.
go back to reference Holloway BB, Viar KE, Stornetta RL, Guyenet PG. The retrotrapezoid nucleus stimulates breathing by releasing glutamate in adult conscious mice. Eur J Neurosci. 2015;42(6):2271–82.PubMedPubMedCentralCrossRef Holloway BB, Viar KE, Stornetta RL, Guyenet PG. The retrotrapezoid nucleus stimulates breathing by releasing glutamate in adult conscious mice. Eur J Neurosci. 2015;42(6):2271–82.PubMedPubMedCentralCrossRef
37.
go back to reference Abbott SB, Stornetta RL, Coates MB, Guyenet PG. Phox2b-expressing neurons of the parafacial region regulate breathing rate, inspiration, and expiration in conscious rats. J Neurosci. 2011;31(45):16410–22.PubMedPubMedCentralCrossRef Abbott SB, Stornetta RL, Coates MB, Guyenet PG. Phox2b-expressing neurons of the parafacial region regulate breathing rate, inspiration, and expiration in conscious rats. J Neurosci. 2011;31(45):16410–22.PubMedPubMedCentralCrossRef
38.
go back to reference Koshiya N, Guyenet PG. NTS neurons with carotid chemoreceptor inputs arborize in the rostral ventrolateral medulla. Am J Physiol. 1996;270(6 Pt 2):R1273-1278.PubMed Koshiya N, Guyenet PG. NTS neurons with carotid chemoreceptor inputs arborize in the rostral ventrolateral medulla. Am J Physiol. 1996;270(6 Pt 2):R1273-1278.PubMed
39.
go back to reference Pattinson KT, Governo RJ, MacIntosh BJ, et al. Opioids depress cortical centers responsible for the volitional control of respiration. J Neurosci. 2009;29(25):8177–86.PubMedPubMedCentralCrossRef Pattinson KT, Governo RJ, MacIntosh BJ, et al. Opioids depress cortical centers responsible for the volitional control of respiration. J Neurosci. 2009;29(25):8177–86.PubMedPubMedCentralCrossRef
40.
go back to reference Tracey I, Mantyh PW. The cerebral signature for pain perception and its modulation. Neuron. 2007;55(3):377–91.PubMedCrossRef Tracey I, Mantyh PW. The cerebral signature for pain perception and its modulation. Neuron. 2007;55(3):377–91.PubMedCrossRef
41.
go back to reference Hayen A, Wanigasekera V, Faull OK, et al. Opioid suppression of conditioned anticipatory brain responses to breathlessness. Neuroimage. 2017;150:383–94.PubMedCrossRef Hayen A, Wanigasekera V, Faull OK, et al. Opioid suppression of conditioned anticipatory brain responses to breathlessness. Neuroimage. 2017;150:383–94.PubMedCrossRef
42.
go back to reference Saper CB, Loewy AD. Efferent connections of the parabrachial nucleus in the rat. Brain Res. 1980;197(2):291–317.PubMedCrossRef Saper CB, Loewy AD. Efferent connections of the parabrachial nucleus in the rat. Brain Res. 1980;197(2):291–317.PubMedCrossRef
43.
44.
go back to reference Dahan A, Aarts L, Smith TW. Incidence, Reversal, and Prevention of Opioid-induced Respiratory Depression. Anesthesiology. 2010;112(1):226–38.PubMedCrossRef Dahan A, Aarts L, Smith TW. Incidence, Reversal, and Prevention of Opioid-induced Respiratory Depression. Anesthesiology. 2010;112(1):226–38.PubMedCrossRef
45.
go back to reference Baldo BA, Rose MA. Mechanisms of opioid-induced respiratory depression. Arch Toxicol. 2022;96(8):2247–60.PubMedCrossRef Baldo BA, Rose MA. Mechanisms of opioid-induced respiratory depression. Arch Toxicol. 2022;96(8):2247–60.PubMedCrossRef
46.
go back to reference Varga AG, Maletz SN, Bateman JT, Reid BT, Levitt ES. Neurochemistry of the Kolliker-Fuse nucleus from a respiratory perspective. J Neurochem. 2021;156(1):16–37.PubMedCrossRef Varga AG, Maletz SN, Bateman JT, Reid BT, Levitt ES. Neurochemistry of the Kolliker-Fuse nucleus from a respiratory perspective. J Neurochem. 2021;156(1):16–37.PubMedCrossRef
47.
go back to reference Ashhad S, Feldman JL. Emergent Elements of Inspiratory Rhythmogenesis: Network Synchronization and Synchrony Propagation. Neuron. 2020;106(3):482–497 e484. Ashhad S, Feldman JL. Emergent Elements of Inspiratory Rhythmogenesis: Network Synchronization and Synchrony Propagation. Neuron. 2020;106(3):482–497 e484.
48.
49.
go back to reference Baertsch NA, Bush NE, Burgraff NJ, Ramirez JM. Dual mechanisms of opioid-induced respiratory depression in the inspiratory rhythm-generating network. Elife. 2021;10. Baertsch NA, Bush NE, Burgraff NJ, Ramirez JM. Dual mechanisms of opioid-induced respiratory depression in the inspiratory rhythm-generating network. Elife. 2021;10.
50.
go back to reference Bachmutsky I, Wei XP, Kish E, Yackle K. Opioids depress breathing through two small brainstem sites. Elife. 2020;9. Bachmutsky I, Wei XP, Kish E, Yackle K. Opioids depress breathing through two small brainstem sites. Elife. 2020;9.
51.
go back to reference Palkovic B, Cook-Snyder D, Callison JJ, et al. Contribution of the caudal medullary raphe to opioid induced respiratory depression. Respir Physiol Neurobiol. 2022;299:103855.PubMedPubMedCentralCrossRef Palkovic B, Cook-Snyder D, Callison JJ, et al. Contribution of the caudal medullary raphe to opioid induced respiratory depression. Respir Physiol Neurobiol. 2022;299:103855.PubMedPubMedCentralCrossRef
52.
go back to reference Zhang Z, Xu F, Zhang C, Liang X. Activation of opioid mu receptors in caudal medullary raphe region inhibits the ventilatory response to hypercapnia in anesthetized rats. Anesthesiology. 2007;107(2):288–97.PubMedCrossRef Zhang Z, Xu F, Zhang C, Liang X. Activation of opioid mu receptors in caudal medullary raphe region inhibits the ventilatory response to hypercapnia in anesthetized rats. Anesthesiology. 2007;107(2):288–97.PubMedCrossRef
53.
go back to reference Maletz SN, Reid BT, Varga AG, Levitt ES. Nucleus Tractus Solitarius Neurons Activated by Hypercapnia and Hypoxia Lack Mu Opioid Receptor Expression. Front Mol Neurosci. 2022;15:932189.PubMedPubMedCentralCrossRef Maletz SN, Reid BT, Varga AG, Levitt ES. Nucleus Tractus Solitarius Neurons Activated by Hypercapnia and Hypoxia Lack Mu Opioid Receptor Expression. Front Mol Neurosci. 2022;15:932189.PubMedPubMedCentralCrossRef
54.
go back to reference Lazarov NE, Atanasova DY. Mechanisms of Chemosensory Transduction in the Carotid Body. Adv Anat Embryol Cell Biol. 2023;237:49–62.PubMedCrossRef Lazarov NE, Atanasova DY. Mechanisms of Chemosensory Transduction in the Carotid Body. Adv Anat Embryol Cell Biol. 2023;237:49–62.PubMedCrossRef
55.
go back to reference Lazarov NE, Atanasova DY. Carotid Body: The Primary Peripheral Arterial Chemoreceptor. Adv Anat Embryol Cell Biol. 2023;237:1–3.PubMedCrossRef Lazarov NE, Atanasova DY. Carotid Body: The Primary Peripheral Arterial Chemoreceptor. Adv Anat Embryol Cell Biol. 2023;237:1–3.PubMedCrossRef
56.
go back to reference Ricker EM, Pye RL, Barr BL, Wyatt CN. Selective mu and kappa Opioid Agonists Inhibit Voltage-Gated Ca2+ Entry in Isolated Neonatal Rat Carotid Body Type I Cells. Adv Exp Med Biol. 2015;860:49–54.PubMedCrossRef Ricker EM, Pye RL, Barr BL, Wyatt CN. Selective mu and kappa Opioid Agonists Inhibit Voltage-Gated Ca2+ Entry in Isolated Neonatal Rat Carotid Body Type I Cells. Adv Exp Med Biol. 2015;860:49–54.PubMedCrossRef
57.
go back to reference Zhang Z, Zhuang J, Zhang C, Xu F. Activation of opioid mu-receptors in the commissural subdivision of the nucleus tractus solitarius abolishes the ventilatory response to hypoxia in anesthetized rats. Anesthesiology. 2011;115(2):353–63.PubMedCrossRef Zhang Z, Zhuang J, Zhang C, Xu F. Activation of opioid mu-receptors in the commissural subdivision of the nucleus tractus solitarius abolishes the ventilatory response to hypoxia in anesthetized rats. Anesthesiology. 2011;115(2):353–63.PubMedCrossRef
58.
go back to reference Zhang Z, Xu F, Zhang C, Liang X. Activation of opioid micro-receptors in medullary raphe depresses sighs. Am J Physiol Regul Integr Comp Physiol. 2009;296(5):R1528-1537.PubMedPubMedCentralCrossRef Zhang Z, Xu F, Zhang C, Liang X. Activation of opioid micro-receptors in medullary raphe depresses sighs. Am J Physiol Regul Integr Comp Physiol. 2009;296(5):R1528-1537.PubMedPubMedCentralCrossRef
59.
go back to reference Biancardi V, Bicego KC, Almeida MC, Gargaglioni LH. Locus coeruleus noradrenergic neurons and CO2 drive to breathing. Pflugers Arch. 2008;455(6):1119–28.PubMedCrossRef Biancardi V, Bicego KC, Almeida MC, Gargaglioni LH. Locus coeruleus noradrenergic neurons and CO2 drive to breathing. Pflugers Arch. 2008;455(6):1119–28.PubMedCrossRef
60.
go back to reference Levitt ES, Williams JT. Morphine desensitization and cellular tolerance are distinguished in rat locus ceruleus neurons. Mol Pharmacol. 2012;82(5):983–92.PubMedPubMedCentralCrossRef Levitt ES, Williams JT. Morphine desensitization and cellular tolerance are distinguished in rat locus ceruleus neurons. Mol Pharmacol. 2012;82(5):983–92.PubMedPubMedCentralCrossRef
61.
63.
go back to reference van Dam CJ, Algera MH, Olofsen E, et al. Opioid utility function: methods and implications. Ann Palliat Med. 2020;9(2):528–36.PubMedCrossRef van Dam CJ, Algera MH, Olofsen E, et al. Opioid utility function: methods and implications. Ann Palliat Med. 2020;9(2):528–36.PubMedCrossRef
64.
go back to reference Roozekrans M, van der Schrier R, Aarts L, et al. Benefit versus Severe Side Effects of Opioid Analgesia: Novel Utility Functions of Probability of Analgesia and Respiratory Depression. Anesthesiology. 2018;128(5):932–42.PubMedCrossRef Roozekrans M, van der Schrier R, Aarts L, et al. Benefit versus Severe Side Effects of Opioid Analgesia: Novel Utility Functions of Probability of Analgesia and Respiratory Depression. Anesthesiology. 2018;128(5):932–42.PubMedCrossRef
65.
go back to reference Yassen A, Olofsen E, Kan J, Dahan A, Danhof M. Pharmacokinetic-pharmacodynamic modeling of the effectiveness and safety of buprenorphine and fentanyl in rats. Pharm Res. 2008;25(1):183–93.PubMedCrossRef Yassen A, Olofsen E, Kan J, Dahan A, Danhof M. Pharmacokinetic-pharmacodynamic modeling of the effectiveness and safety of buprenorphine and fentanyl in rats. Pharm Res. 2008;25(1):183–93.PubMedCrossRef
66.
go back to reference Yassen A, Kan J, Olofsen E, Suidgeest E, Dahan A, Danhof M. Pharmacokinetic-pharmacodynamic modeling of the respiratory depressant effect of norbuprenorphine in rats. J Pharmacol Exp Ther. 2007;321(2):598–607.PubMedCrossRef Yassen A, Kan J, Olofsen E, Suidgeest E, Dahan A, Danhof M. Pharmacokinetic-pharmacodynamic modeling of the respiratory depressant effect of norbuprenorphine in rats. J Pharmacol Exp Ther. 2007;321(2):598–607.PubMedCrossRef
67.
go back to reference Yassen A, Olofsen E, Romberg R, et al. Mechanism-based PK/PD modeling of the respiratory depressant effect of buprenorphine and fentanyl in healthy volunteers. Clin Pharmacol Ther. 2007;81(1):50–8.PubMedCrossRef Yassen A, Olofsen E, Romberg R, et al. Mechanism-based PK/PD modeling of the respiratory depressant effect of buprenorphine and fentanyl in healthy volunteers. Clin Pharmacol Ther. 2007;81(1):50–8.PubMedCrossRef
68.
go back to reference Dahan A, Yassen A, Romberg R, et al. Buprenorphine induces ceiling in respiratory depression but not in analgesia. Br J Anaesth. 2006;96(5):627–32.PubMedCrossRef Dahan A, Yassen A, Romberg R, et al. Buprenorphine induces ceiling in respiratory depression but not in analgesia. Br J Anaesth. 2006;96(5):627–32.PubMedCrossRef
69.
go back to reference Dahan A, Yassen A, Bijl H, et al. Comparison of the respiratory effects of intravenous buprenorphine and fentanyl in humans and rats. Br J Anaesth. 2005;94(6):825–34.PubMedCrossRef Dahan A, Yassen A, Bijl H, et al. Comparison of the respiratory effects of intravenous buprenorphine and fentanyl in humans and rats. Br J Anaesth. 2005;94(6):825–34.PubMedCrossRef
70.
go back to reference Roth JV. Opioid-Induced Respiratory Depression: Is Hydromorphone Safer Than Morphine? Anesth Analg. 2021;132(4):e60.PubMedCrossRef Roth JV. Opioid-Induced Respiratory Depression: Is Hydromorphone Safer Than Morphine? Anesth Analg. 2021;132(4):e60.PubMedCrossRef
71.
go back to reference Romberg R, Sarton E, Teppema L, Matthes HW, Kieffer BL, Dahan A. Comparison of morphine-6-glucuronide and morphine on respiratory depressant and antinociceptive responses in wild type and mu-opioid receptor deficient mice. Br J Anaesth. 2003;91(6):862–70.PubMedCrossRef Romberg R, Sarton E, Teppema L, Matthes HW, Kieffer BL, Dahan A. Comparison of morphine-6-glucuronide and morphine on respiratory depressant and antinociceptive responses in wild type and mu-opioid receptor deficient mice. Br J Anaesth. 2003;91(6):862–70.PubMedCrossRef
72.
go back to reference Kilpatrick GJ, Smith TW. Morphine-6-glucuronide: actions and mechanisms. Med Res Rev. 2005;25(5):521–44.PubMedCrossRef Kilpatrick GJ, Smith TW. Morphine-6-glucuronide: actions and mechanisms. Med Res Rev. 2005;25(5):521–44.PubMedCrossRef
73.
go back to reference Khanna AK, Bergese SD, Jungquist CR, et al. Prediction of Opioid-Induced Respiratory Depression on Inpatient Wards Using Continuous Capnography and Oximetry: An International Prospective. Observational Trial Anesth Analg. 2020;131(4):1012–24.PubMedCrossRef Khanna AK, Bergese SD, Jungquist CR, et al. Prediction of Opioid-Induced Respiratory Depression on Inpatient Wards Using Continuous Capnography and Oximetry: An International Prospective. Observational Trial Anesth Analg. 2020;131(4):1012–24.PubMedCrossRef
74.
go back to reference Webster LR, Hansen E, Stoddard GJ, Rynders A, Ostler D, Lennon H. Ventilatory Response to Hypercapnia as Experimental Model to Study Effects of Oxycodone on Respiratory Depression. Curr Rev Clin Exp Pharmacol. 2022;17(1):72–80.PubMedCrossRef Webster LR, Hansen E, Stoddard GJ, Rynders A, Ostler D, Lennon H. Ventilatory Response to Hypercapnia as Experimental Model to Study Effects of Oxycodone on Respiratory Depression. Curr Rev Clin Exp Pharmacol. 2022;17(1):72–80.PubMedCrossRef
75.
go back to reference Vozoris NT, Gill SS, O’Donnell DE. Opioids in COPD: the “whole picture” includes results from real-world, population-based observational studies. Br J Clin Pharmacol. 2016;81(4):797–8.PubMedPubMedCentralCrossRef Vozoris NT, Gill SS, O’Donnell DE. Opioids in COPD: the “whole picture” includes results from real-world, population-based observational studies. Br J Clin Pharmacol. 2016;81(4):797–8.PubMedPubMedCentralCrossRef
76.
go back to reference Vozoris NT, Wang X, Fischer HD, et al. Incident opioid drug use among older adults with chronic obstructive pulmonary disease: a population-based cohort study. Br J Clin Pharmacol. 2016;81(1):161–70.PubMedCrossRef Vozoris NT, Wang X, Fischer HD, et al. Incident opioid drug use among older adults with chronic obstructive pulmonary disease: a population-based cohort study. Br J Clin Pharmacol. 2016;81(1):161–70.PubMedCrossRef
77.
go back to reference Webster LR, Cater J, Smith T. Pharmacokinetics of Buprenorphine Buccal Film and Orally-administered Oxycodone in a Respiratory Study: An Analysis of Secondary Outcomes from a Randomized Controlled Trial. Pain Ther. 2022;11(3):817–25.PubMedPubMedCentralCrossRef Webster LR, Cater J, Smith T. Pharmacokinetics of Buprenorphine Buccal Film and Orally-administered Oxycodone in a Respiratory Study: An Analysis of Secondary Outcomes from a Randomized Controlled Trial. Pain Ther. 2022;11(3):817–25.PubMedPubMedCentralCrossRef
78.
go back to reference Bass A, Webster LR, Matschke KT, Malhotra BK, Wolfram G. Effects of intravenous oxycodone alone or in combination with naltrexone on measures of respiratory depression: a randomized placebo-controlled study. Ther Adv Drug Saf. 2019;10:2042098618821274.PubMedPubMedCentralCrossRef Bass A, Webster LR, Matschke KT, Malhotra BK, Wolfram G. Effects of intravenous oxycodone alone or in combination with naltrexone on measures of respiratory depression: a randomized placebo-controlled study. Ther Adv Drug Saf. 2019;10:2042098618821274.PubMedPubMedCentralCrossRef
79.
go back to reference Mohammed W, Alhaddad H, Marie N, et al. Comparison of tolerance to morphine-induced respiratory and analgesic effects in mice. Toxicol Lett. 2013;217(3):251–9.PubMedCrossRef Mohammed W, Alhaddad H, Marie N, et al. Comparison of tolerance to morphine-induced respiratory and analgesic effects in mice. Toxicol Lett. 2013;217(3):251–9.PubMedCrossRef
80.
go back to reference Algera MH, Olofsen E, Moss L, et al. Tolerance to Opioid-Induced Respiratory Depression in Chronic High-Dose Opioid Users: A Model-Based Comparison With Opioid-Naive Individuals. Clin Pharmacol Ther. 2021;109(3):637–45.PubMedCrossRef Algera MH, Olofsen E, Moss L, et al. Tolerance to Opioid-Induced Respiratory Depression in Chronic High-Dose Opioid Users: A Model-Based Comparison With Opioid-Naive Individuals. Clin Pharmacol Ther. 2021;109(3):637–45.PubMedCrossRef
81.
go back to reference Hill R, Lyndon A, Withey S, et al. Ethanol Reversal of Tolerance to the Respiratory Depressant Effects of Morphine. Neuropsychopharmacology. 2016;41(3):762–73.PubMedCrossRef Hill R, Lyndon A, Withey S, et al. Ethanol Reversal of Tolerance to the Respiratory Depressant Effects of Morphine. Neuropsychopharmacology. 2016;41(3):762–73.PubMedCrossRef
82.
go back to reference Vellani V, Giacomoni C. Gabapentin Inhibits Protein Kinase C Epsilon Translocation in Cultured Sensory Neurons with Additive Effects When Coapplied with Paracetamol (Acetaminophen). ScientificWorldJournal. 2017;2017:3595903.PubMedPubMedCentralCrossRef Vellani V, Giacomoni C. Gabapentin Inhibits Protein Kinase C Epsilon Translocation in Cultured Sensory Neurons with Additive Effects When Coapplied with Paracetamol (Acetaminophen). ScientificWorldJournal. 2017;2017:3595903.PubMedPubMedCentralCrossRef
83.
go back to reference Williams JT, Ingram SL, Henderson G, et al. Regulation of mu-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev. 2013;65(1):223–54.PubMedPubMedCentralCrossRef Williams JT, Ingram SL, Henderson G, et al. Regulation of mu-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev. 2013;65(1):223–54.PubMedPubMedCentralCrossRef
84.
go back to reference Olofsen E, Algera MH, Moss L, et al. Modeling buprenorphine reduction of fentanyl-induced respiratory depression. JCI Insight. 2022;7(9). Olofsen E, Algera MH, Moss L, et al. Modeling buprenorphine reduction of fentanyl-induced respiratory depression. JCI Insight. 2022;7(9).
85.
go back to reference Moss LM, Algera MH, Dobbins R, et al. Effect of sustained high buprenorphine plasma concentrations on fentanyl-induced respiratory depression: A placebo-controlled crossover study in healthy volunteers and opioid-tolerant patients. PLoS ONE. 2022;17(1):e0256752.PubMedPubMedCentralCrossRef Moss LM, Algera MH, Dobbins R, et al. Effect of sustained high buprenorphine plasma concentrations on fentanyl-induced respiratory depression: A placebo-controlled crossover study in healthy volunteers and opioid-tolerant patients. PLoS ONE. 2022;17(1):e0256752.PubMedPubMedCentralCrossRef
86.
go back to reference Zamani N, Buckley NA, Hassanian-Moghaddam H. Buprenorphine to reverse respiratory depression from methadone overdose in opioid-dependent patients: a prospective randomized trial. Crit Care. 2020;24(1):44.PubMedPubMedCentralCrossRef Zamani N, Buckley NA, Hassanian-Moghaddam H. Buprenorphine to reverse respiratory depression from methadone overdose in opioid-dependent patients: a prospective randomized trial. Crit Care. 2020;24(1):44.PubMedPubMedCentralCrossRef
87.
go back to reference Savilampi J, Omari T, Magnuson A, Ahlstrand R. Effects of remifentanil on pharyngeal swallowing: A double blind randomised cross-over study in healthy volunteers. Eur J Anaesthesiol. 2016;33(9):622–30.PubMedCrossRef Savilampi J, Omari T, Magnuson A, Ahlstrand R. Effects of remifentanil on pharyngeal swallowing: A double blind randomised cross-over study in healthy volunteers. Eur J Anaesthesiol. 2016;33(9):622–30.PubMedCrossRef
88.
go back to reference Hardemark Cedborg AI, Sundman E, Boden K, et al. Effects of morphine and midazolam on pharyngeal function, airway protection, and coordination of breathing and swallowing in healthy adults. Anesthesiology. 2015;122(6):1253–67.PubMedCrossRef Hardemark Cedborg AI, Sundman E, Boden K, et al. Effects of morphine and midazolam on pharyngeal function, airway protection, and coordination of breathing and swallowing in healthy adults. Anesthesiology. 2015;122(6):1253–67.PubMedCrossRef
89.
go back to reference Hajiha M, DuBord MA, Liu H, Horner RL. Opioid receptor mechanisms at the hypoglossal motor pool and effects on tongue muscle activity in vivo. J Physiol. 2009;587(Pt 11):2677–92.PubMedPubMedCentralCrossRef Hajiha M, DuBord MA, Liu H, Horner RL. Opioid receptor mechanisms at the hypoglossal motor pool and effects on tongue muscle activity in vivo. J Physiol. 2009;587(Pt 11):2677–92.PubMedPubMedCentralCrossRef
90.
go back to reference Tagaito Y, Isono S, Nishino T. Upper airway reflexes during a combination of propofol and fentanyl anesthesia. Anesthesiology. 1998;88(6):1459–66.PubMedCrossRef Tagaito Y, Isono S, Nishino T. Upper airway reflexes during a combination of propofol and fentanyl anesthesia. Anesthesiology. 1998;88(6):1459–66.PubMedCrossRef
91.
go back to reference Cavallo D, Kelly E, Henderson G, Abdala Sheikh AP. Comparison of the effects of fentanyls and other mu opioid receptor agonists on the electrical activity of respiratory muscles in the rat. Front Pharmacol. 2023;14:1277248.PubMedPubMedCentralCrossRef Cavallo D, Kelly E, Henderson G, Abdala Sheikh AP. Comparison of the effects of fentanyls and other mu opioid receptor agonists on the electrical activity of respiratory muscles in the rat. Front Pharmacol. 2023;14:1277248.PubMedPubMedCentralCrossRef
92.
go back to reference Baruah U, Gaur H, Saigal D, Pandey D. Wooden chest syndrome: A curious case of fentanyl induced rigidity in adults. Indian J Anaesth. 2022;66(12):881–2.PubMedPubMedCentralCrossRef Baruah U, Gaur H, Saigal D, Pandey D. Wooden chest syndrome: A curious case of fentanyl induced rigidity in adults. Indian J Anaesth. 2022;66(12):881–2.PubMedPubMedCentralCrossRef
93.
go back to reference Pergolizzi JV Jr, Webster LR, Vortsman E, Ann LeQuang J, Raffa RB. Wooden Chest syndrome: The atypical pharmacology of fentanyl overdose. J Clin Pharm Ther. 2021;46(6):1505–8.PubMedCrossRef Pergolizzi JV Jr, Webster LR, Vortsman E, Ann LeQuang J, Raffa RB. Wooden Chest syndrome: The atypical pharmacology of fentanyl overdose. J Clin Pharm Ther. 2021;46(6):1505–8.PubMedCrossRef
94.
go back to reference Kinshella MW, Gauthier T, Lysyshyn M. Rigidity, dyskinesia and other atypical overdose presentations observed at a supervised injection site, Vancouver, Canada. Harm Reduct J. 2018;15(1):64.PubMedPubMedCentralCrossRef Kinshella MW, Gauthier T, Lysyshyn M. Rigidity, dyskinesia and other atypical overdose presentations observed at a supervised injection site, Vancouver, Canada. Harm Reduct J. 2018;15(1):64.PubMedPubMedCentralCrossRef
95.
go back to reference Streisand JB, Bailey PL, LeMaire L, et al. Fentanyl-induced rigidity and unconsciousness in human volunteers. Incidence, duration, and plasma concentrations. Anesthesiology. 1993;78:629–34.PubMedCrossRef Streisand JB, Bailey PL, LeMaire L, et al. Fentanyl-induced rigidity and unconsciousness in human volunteers. Incidence, duration, and plasma concentrations. Anesthesiology. 1993;78:629–34.PubMedCrossRef
96.
go back to reference Grell FL, Koons RA, Denson JS. Fentanyl in anesthesia: a report of 500 cases. Anesth Analg. 1970;49(4):523–32.PubMedCrossRef Grell FL, Koons RA, Denson JS. Fentanyl in anesthesia: a report of 500 cases. Anesth Analg. 1970;49(4):523–32.PubMedCrossRef
97.
go back to reference Yasuda I, Hirano T, Yusa T, Satoh M. Tracheal constriction by morphine and by fentanyl in man. Anesthesiology. 1978;49(2):117–9.PubMedCrossRef Yasuda I, Hirano T, Yusa T, Satoh M. Tracheal constriction by morphine and by fentanyl in man. Anesthesiology. 1978;49(2):117–9.PubMedCrossRef
98.
go back to reference Jerussi TP, Capacchione JF, Benvenga MJ. Reversal of opioid-induced muscular rigidity in rats: evidence for alpha-2 adrenergic involvement. Pharmacol Biochem Behav. 1987;28(2):283–9.PubMedCrossRef Jerussi TP, Capacchione JF, Benvenga MJ. Reversal of opioid-induced muscular rigidity in rats: evidence for alpha-2 adrenergic involvement. Pharmacol Biochem Behav. 1987;28(2):283–9.PubMedCrossRef
99.
go back to reference Lui PW, Tsen LY, Fu MJ, Yeh CP, Lee TY, Chan SH. Inhibition by intrathecal prazosin but not yohimbine of fentanyl-induced muscular rigidity in the rat. Neurosci Lett. 1995;201(2):167–70.PubMedCrossRef Lui PW, Tsen LY, Fu MJ, Yeh CP, Lee TY, Chan SH. Inhibition by intrathecal prazosin but not yohimbine of fentanyl-induced muscular rigidity in the rat. Neurosci Lett. 1995;201(2):167–70.PubMedCrossRef
100.
go back to reference Miner NB, Schutzer WE, Zarnegarnia Y, Janowsky A, Torralva R. Fentanyl causes naloxone-resistant vocal cord closure: A platform for testing opioid overdose treatments. Drug Alcohol Depend. 2021;227:108974.PubMedCrossRef Miner NB, Schutzer WE, Zarnegarnia Y, Janowsky A, Torralva R. Fentanyl causes naloxone-resistant vocal cord closure: A platform for testing opioid overdose treatments. Drug Alcohol Depend. 2021;227:108974.PubMedCrossRef
101.
go back to reference Ackerman WE, Phero JC, Theodore GT. Ineffective ventilation during conscious sedation due to chest wall rigidity after intravenous midazolam and fentanyl. Anesth Prog. 1990;37(1):46–8.PubMedPubMedCentral Ackerman WE, Phero JC, Theodore GT. Ineffective ventilation during conscious sedation due to chest wall rigidity after intravenous midazolam and fentanyl. Anesth Prog. 1990;37(1):46–8.PubMedPubMedCentral
102.
go back to reference Fairbairn N, Coffin PO, Walley AY. Naloxone for heroin, prescription opioid, and illicitly made fentanyl overdoses: Challenges and innovations responding to a dynamic epidemic. Int J Drug Policy. 2017;46:172–9.PubMedPubMedCentralCrossRef Fairbairn N, Coffin PO, Walley AY. Naloxone for heroin, prescription opioid, and illicitly made fentanyl overdoses: Challenges and innovations responding to a dynamic epidemic. Int J Drug Policy. 2017;46:172–9.PubMedPubMedCentralCrossRef
103.
go back to reference Horng HC, Ho MT, Huang CH, Yeh CC, Cherng CH. Negative pressure pulmonary edema following naloxone administration in a patient with fentanyl-induced respiratory depression. Acta Anaesthesiol Taiwan. 2010;48(3):155–7.PubMedCrossRef Horng HC, Ho MT, Huang CH, Yeh CC, Cherng CH. Negative pressure pulmonary edema following naloxone administration in a patient with fentanyl-induced respiratory depression. Acta Anaesthesiol Taiwan. 2010;48(3):155–7.PubMedCrossRef
104.
go back to reference Baumann MH, Kopajtic TA, Madras BK. Pharmacological Research as a Key Component in Mitigating the Opioid Overdose Crisis. Trends Pharmacol Sci. 2018;39(12):995–8.PubMedCrossRef Baumann MH, Kopajtic TA, Madras BK. Pharmacological Research as a Key Component in Mitigating the Opioid Overdose Crisis. Trends Pharmacol Sci. 2018;39(12):995–8.PubMedCrossRef
105.
go back to reference Milne B, Quintin L, Gillon JY, Pujol JF. Fentanyl decreases catecholamine metabolism measured by in vivo voltammetry in the rat locus coeruleus. Can J Physiol Pharmacol. 1989;67(5):532–6.PubMedCrossRef Milne B, Quintin L, Gillon JY, Pujol JF. Fentanyl decreases catecholamine metabolism measured by in vivo voltammetry in the rat locus coeruleus. Can J Physiol Pharmacol. 1989;67(5):532–6.PubMedCrossRef
106.
go back to reference Lui PW, Chang GJ, Lee TY, Chan SH. Antagonization of fentanyl-induced muscular rigidity by denervation of the coerulospinal noradrenergic pathway in the rat. Neurosci Lett. 1993;157(2):145–8.PubMedCrossRef Lui PW, Chang GJ, Lee TY, Chan SH. Antagonization of fentanyl-induced muscular rigidity by denervation of the coerulospinal noradrenergic pathway in the rat. Neurosci Lett. 1993;157(2):145–8.PubMedCrossRef
107.
go back to reference Lui PW, Lee TY, Chan SH. Involvement of coerulospinal noradrenergic pathway in fentanyl-induced muscular rigidity in rats. Neurosci Lett. 1990;108(1–2):183–8.PubMedCrossRef Lui PW, Lee TY, Chan SH. Involvement of coerulospinal noradrenergic pathway in fentanyl-induced muscular rigidity in rats. Neurosci Lett. 1990;108(1–2):183–8.PubMedCrossRef
108.
go back to reference Raymon HK, Leslie FM. Opioid effects on [3H]norepinephrine release from dissociated embryonic locus coeruleus cell cultures. J Neurochem. 1994;62(3):1015–24.PubMedCrossRef Raymon HK, Leslie FM. Opioid effects on [3H]norepinephrine release from dissociated embryonic locus coeruleus cell cultures. J Neurochem. 1994;62(3):1015–24.PubMedCrossRef
109.
go back to reference Griffioen KJ, Venkatesan P, Huang ZG, et al. Fentanyl inhibits GABAergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Brain Res. 2004;1007(1–2):109–15.PubMedCrossRef Griffioen KJ, Venkatesan P, Huang ZG, et al. Fentanyl inhibits GABAergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Brain Res. 2004;1007(1–2):109–15.PubMedCrossRef
110.
go back to reference Lui PW, Lee TY, Chan SH. Involvement of locus coeruleus and noradrenergic neurotransmission in fentanyl-induced muscular rigidity in the rat. Neurosci Lett. 1989;96(1):114–9.PubMedCrossRef Lui PW, Lee TY, Chan SH. Involvement of locus coeruleus and noradrenergic neurotransmission in fentanyl-induced muscular rigidity in the rat. Neurosci Lett. 1989;96(1):114–9.PubMedCrossRef
111.
go back to reference Mather LE. Clinical pharmacokinetics of fentanyl and its newer derivatives. Clin Pharmacokinet. 1983;8(5):422–46.PubMedCrossRef Mather LE. Clinical pharmacokinetics of fentanyl and its newer derivatives. Clin Pharmacokinet. 1983;8(5):422–46.PubMedCrossRef
112.
go back to reference Atcheson R, Rowbotham DJ, Lambert DG. Fentanyl inhibits the uptake of [3H]noradrenaline in cultured neuronal cells. Br J Anaesth. 1993;71(4):540–3.PubMedCrossRef Atcheson R, Rowbotham DJ, Lambert DG. Fentanyl inhibits the uptake of [3H]noradrenaline in cultured neuronal cells. Br J Anaesth. 1993;71(4):540–3.PubMedCrossRef
113.
go back to reference Hamilton WK, Cullen SC. Effect of levallorphan tartrate upon opiate induced respiratory depression. Anesthesiology. 1953;14(6):550–4.PubMedCrossRef Hamilton WK, Cullen SC. Effect of levallorphan tartrate upon opiate induced respiratory depression. Anesthesiology. 1953;14(6):550–4.PubMedCrossRef
114.
go back to reference Jenkins AJ, Keenan RM, Henningfield JE, Cone EJ. Pharmacokinetics and pharmacodynamics of smoked heroin. J Anal Toxicol. 1994;18(6):317–30.PubMedCrossRef Jenkins AJ, Keenan RM, Henningfield JE, Cone EJ. Pharmacokinetics and pharmacodynamics of smoked heroin. J Anal Toxicol. 1994;18(6):317–30.PubMedCrossRef
115.
go back to reference Sokoll MD, Hoyt JL, Gergis SD. Studies in muscle rigidity, nitrous oxide, and narcotic analgesic agents. Anesth Analg. 1972;51(1):16–20.PubMedCrossRef Sokoll MD, Hoyt JL, Gergis SD. Studies in muscle rigidity, nitrous oxide, and narcotic analgesic agents. Anesth Analg. 1972;51(1):16–20.PubMedCrossRef
116.
go back to reference Freund FG, Martin WE, Wong KC, Hornbein TF. Abdominal-muscle rigidity induced by morphine and nitrous oxide. Anesthesiology. 1973;38(4):358–62.PubMedCrossRef Freund FG, Martin WE, Wong KC, Hornbein TF. Abdominal-muscle rigidity induced by morphine and nitrous oxide. Anesthesiology. 1973;38(4):358–62.PubMedCrossRef
117.
go back to reference Somerville NJ, O’Donnell J, Gladden RM, et al. Characteristics of Fentanyl Overdose - Massachusetts, 2014–2016. MMWR Morb Mortal Wkly Rep. 2017;66(14):382–6.PubMedPubMedCentralCrossRef Somerville NJ, O’Donnell J, Gladden RM, et al. Characteristics of Fentanyl Overdose - Massachusetts, 2014–2016. MMWR Morb Mortal Wkly Rep. 2017;66(14):382–6.PubMedPubMedCentralCrossRef
118.
go back to reference Slavova S, Costich JF, Bunn TL, et al. Heroin and fentanyl overdoses in Kentucky: Epidemiology and surveillance. Int J Drug Policy. 2017;46:120–9.PubMedCrossRef Slavova S, Costich JF, Bunn TL, et al. Heroin and fentanyl overdoses in Kentucky: Epidemiology and surveillance. Int J Drug Policy. 2017;46:120–9.PubMedCrossRef
119.
go back to reference Burns G, DeRienz RT, Baker DD, Casavant M, Spiller HA. Could chest wall rigidity be a factor in rapid death from illicit fentanyl abuse? Clin Toxicol (Phila). 2016;54(5):420–3.PubMedCrossRef Burns G, DeRienz RT, Baker DD, Casavant M, Spiller HA. Could chest wall rigidity be a factor in rapid death from illicit fentanyl abuse? Clin Toxicol (Phila). 2016;54(5):420–3.PubMedCrossRef
120.
go back to reference van Lemmen M, Florian J, Li Z, et al. Opioid Overdose: Limitations in Naloxone Reversal of Respiratory Depression and Prevention of Cardiac Arrest. Anesthesiology. 2023;139(3):342–53.PubMedCrossRef van Lemmen M, Florian J, Li Z, et al. Opioid Overdose: Limitations in Naloxone Reversal of Respiratory Depression and Prevention of Cardiac Arrest. Anesthesiology. 2023;139(3):342–53.PubMedCrossRef
121.
go back to reference Jalal H, Buchanich JM, Roberts MS, Balmert LC, Zhang K, Burke DS. Changing dynamics of the drug overdose epidemic in the United States from 1979 through 2016. Science. 2018;361(6408). Jalal H, Buchanich JM, Roberts MS, Balmert LC, Zhang K, Burke DS. Changing dynamics of the drug overdose epidemic in the United States from 1979 through 2016. Science. 2018;361(6408).
122.
go back to reference Hill R, Santhakumar R, Dewey W, Kelly E, Henderson G. Fentanyl depression of respiration: Comparison with heroin and morphine. Br J Pharmacol. 2020;177(2):254–66.PubMedCrossRef Hill R, Santhakumar R, Dewey W, Kelly E, Henderson G. Fentanyl depression of respiration: Comparison with heroin and morphine. Br J Pharmacol. 2020;177(2):254–66.PubMedCrossRef
123.
go back to reference Solis E Jr, Cameron-Burr KT, Shaham Y, Kiyatkin EA. Fentanyl-Induced Brain Hypoxia Triggers Brain Hyperglycemia and Biphasic Changes in Brain Temperature. Neuropsychopharmacology. 2018;43(4):810–9.PubMedCrossRef Solis E Jr, Cameron-Burr KT, Shaham Y, Kiyatkin EA. Fentanyl-Induced Brain Hypoxia Triggers Brain Hyperglycemia and Biphasic Changes in Brain Temperature. Neuropsychopharmacology. 2018;43(4):810–9.PubMedCrossRef
124.
go back to reference Solis E, Jr., Cameron-Burr KT, Shaham Y, Kiyatkin EA. Intravenous Heroin Induces Rapid Brain Hypoxia and Hyperglycemia that Precede Brain Metabolic Response. eNeuro. 2017;4(3). Solis E, Jr., Cameron-Burr KT, Shaham Y, Kiyatkin EA. Intravenous Heroin Induces Rapid Brain Hypoxia and Hyperglycemia that Precede Brain Metabolic Response. eNeuro. 2017;4(3).
125.
go back to reference Hossmann KA. The hypoxic brain. Insights from ischemia research. Adv Exp Med Biol. 1999;474:155–69.PubMedCrossRef Hossmann KA. The hypoxic brain. Insights from ischemia research. Adv Exp Med Biol. 1999;474:155–69.PubMedCrossRef
126.
go back to reference Kiyatkin EA. Respiratory depression and brain hypoxia induced by opioid drugs: Morphine, oxycodone, heroin, and fentanyl. Neuropharmacology. 2019;151:219–26.PubMedPubMedCentralCrossRef Kiyatkin EA. Respiratory depression and brain hypoxia induced by opioid drugs: Morphine, oxycodone, heroin, and fentanyl. Neuropharmacology. 2019;151:219–26.PubMedPubMedCentralCrossRef
127.
go back to reference Kiyatkin EA. Central and Peripheral Mechanisms Underlying Physiological and Drug-Induced Fluctuations in Brain Oxygen in Freely-Moving Rats. Front Integr Neurosci. 2018;12:44.PubMedPubMedCentralCrossRef Kiyatkin EA. Central and Peripheral Mechanisms Underlying Physiological and Drug-Induced Fluctuations in Brain Oxygen in Freely-Moving Rats. Front Integr Neurosci. 2018;12:44.PubMedPubMedCentralCrossRef
128.
go back to reference Kozell LB, Eshleman AJ, Wolfrum KM, et al. Pharmacologic Characterization of Substituted Nitazenes at mu, kappa, and Delta Opioid Receptors Suggests High Potential for Toxicity. J Pharmacol Exp Ther. 2024;389(2):219–28.PubMedPubMedCentralCrossRef Kozell LB, Eshleman AJ, Wolfrum KM, et al. Pharmacologic Characterization of Substituted Nitazenes at mu, kappa, and Delta Opioid Receptors Suggests High Potential for Toxicity. J Pharmacol Exp Ther. 2024;389(2):219–28.PubMedPubMedCentralCrossRef
129.
go back to reference Vandeputte MM, Krotulski AJ, Walther D, et al. Pharmacological evaluation and forensic case series of N-pyrrolidino etonitazene (etonitazepyne), a newly emerging 2-benzylbenzimidazole “nitazene” synthetic opioid. Arch Toxicol. 2022;96(6):1845–63.PubMedCrossRef Vandeputte MM, Krotulski AJ, Walther D, et al. Pharmacological evaluation and forensic case series of N-pyrrolidino etonitazene (etonitazepyne), a newly emerging 2-benzylbenzimidazole “nitazene” synthetic opioid. Arch Toxicol. 2022;96(6):1845–63.PubMedCrossRef
130.
go back to reference Vandeputte MM, Verougstraete N, Walther D, et al. First identification, chemical analysis and pharmacological characterization of N-piperidinyl etonitazene (etonitazepipne), a recent addition to the 2-benzylbenzimidazole opioid subclass. Arch Toxicol. 2022;96(6):1865–80.PubMedCrossRef Vandeputte MM, Verougstraete N, Walther D, et al. First identification, chemical analysis and pharmacological characterization of N-piperidinyl etonitazene (etonitazepipne), a recent addition to the 2-benzylbenzimidazole opioid subclass. Arch Toxicol. 2022;96(6):1865–80.PubMedCrossRef
131.
go back to reference Kimani MM, Kern S, Lanzarotta A, et al. Rapid screening of 2-benzylbenzimidazole nitazene analogs in suspect counterfeit tablets using Raman, SERS, DART-TD-MS, and FT-IR. Drug Test Anal. 2023;15(5):539–50.PubMedCrossRef Kimani MM, Kern S, Lanzarotta A, et al. Rapid screening of 2-benzylbenzimidazole nitazene analogs in suspect counterfeit tablets using Raman, SERS, DART-TD-MS, and FT-IR. Drug Test Anal. 2023;15(5):539–50.PubMedCrossRef
132.
go back to reference Dahan A, Franko TS, Carroll JW, et al. Fact vs. fiction: naloxone in the treatment of opioid-induced respiratory depression in the current era of synthetic opioids. Front Public Health. 2024;12:1346109.PubMedPubMedCentralCrossRef Dahan A, Franko TS, Carroll JW, et al. Fact vs. fiction: naloxone in the treatment of opioid-induced respiratory depression in the current era of synthetic opioids. Front Public Health. 2024;12:1346109.PubMedPubMedCentralCrossRef
133.
go back to reference Amaducci A, Aldy K, Campleman SL, et al. Naloxone Use in Novel Potent Opioid and Fentanyl Overdoses in Emergency Department Patients. JAMA Netw Open. 2023;6(8):e2331264.PubMedPubMedCentralCrossRef Amaducci A, Aldy K, Campleman SL, et al. Naloxone Use in Novel Potent Opioid and Fentanyl Overdoses in Emergency Department Patients. JAMA Netw Open. 2023;6(8):e2331264.PubMedPubMedCentralCrossRef
134.
go back to reference Sanvisens A, Sanjeevan I, Zuluaga P, et al. Five-Year Incidence of Hospital-Based Emergencies Related to Acute Recreational Intoxication in Minors. Alcohol Clin Exp Res. 2019;43(10):2179–86.PubMedCrossRef Sanvisens A, Sanjeevan I, Zuluaga P, et al. Five-Year Incidence of Hospital-Based Emergencies Related to Acute Recreational Intoxication in Minors. Alcohol Clin Exp Res. 2019;43(10):2179–86.PubMedCrossRef
135.
137.
go back to reference Shield KD, Rehm J, Rehm MX, Gmel G, Drummond C. The potential impact of increased treatment rates for alcohol dependence in the United Kingdom in 2004. BMC Health Serv Res. 2014;14:53.PubMedPubMedCentralCrossRef Shield KD, Rehm J, Rehm MX, Gmel G, Drummond C. The potential impact of increased treatment rates for alcohol dependence in the United Kingdom in 2004. BMC Health Serv Res. 2014;14:53.PubMedPubMedCentralCrossRef
138.
go back to reference Krieter P, Gyaw S, Crystal R, Skolnick P. Fighting Fire with Fire: Development of Intranasal Nalmefene to Treat Synthetic Opioid Overdose. J Pharmacol Exp Ther. 2019;371(2):409–15.PubMedPubMedCentralCrossRef Krieter P, Gyaw S, Crystal R, Skolnick P. Fighting Fire with Fire: Development of Intranasal Nalmefene to Treat Synthetic Opioid Overdose. J Pharmacol Exp Ther. 2019;371(2):409–15.PubMedPubMedCentralCrossRef
139.
go back to reference Dale O. Pharmacokinetic considerations for community-based dosing of nasal naloxone in opioid overdose in adults. Expert Opin Drug Metab Toxicol. 2022;18(3):203–17.PubMedCrossRef Dale O. Pharmacokinetic considerations for community-based dosing of nasal naloxone in opioid overdose in adults. Expert Opin Drug Metab Toxicol. 2022;18(3):203–17.PubMedCrossRef
140.
go back to reference Krieter P, Chiang CN, Gyaw S, Skolnick P, Snyder R. Pharmacokinetic Interaction between Naloxone and Naltrexone Following Intranasal Administration to Healthy Subjects. Drug Metab Dispos. 2019;47(7):690–8.PubMedPubMedCentralCrossRef Krieter P, Chiang CN, Gyaw S, Skolnick P, Snyder R. Pharmacokinetic Interaction between Naloxone and Naltrexone Following Intranasal Administration to Healthy Subjects. Drug Metab Dispos. 2019;47(7):690–8.PubMedPubMedCentralCrossRef
141.
go back to reference Krieter PA, Chiang CN, Gyaw S, McCann DJ. Comparison of the Pharmacokinetic Properties of Naloxone Following the Use of FDA-Approved Intranasal and Intramuscular Devices Versus a Common Improvised Nasal Naloxone Device. J Clin Pharmacol. 2019;59(8):1078–84.PubMedPubMedCentralCrossRef Krieter PA, Chiang CN, Gyaw S, McCann DJ. Comparison of the Pharmacokinetic Properties of Naloxone Following the Use of FDA-Approved Intranasal and Intramuscular Devices Versus a Common Improvised Nasal Naloxone Device. J Clin Pharmacol. 2019;59(8):1078–84.PubMedPubMedCentralCrossRef
142.
go back to reference Nalmefene returns for reversal of opioid overdose. Med Lett Drugs Ther. 2022;64(1658):141-142. Nalmefene returns for reversal of opioid overdose. Med Lett Drugs Ther. 2022;64(1658):141-142.
143.
go back to reference Bart G, Schluger JH, Borg L, Ho A, Bidlack JM, Kreek MJ. Nalmefene induced elevation in serum prolactin in normal human volunteers: partial kappa opioid agonist activity? Neuropsychopharmacology. 2005;30(12):2254–62.PubMedCrossRef Bart G, Schluger JH, Borg L, Ho A, Bidlack JM, Kreek MJ. Nalmefene induced elevation in serum prolactin in normal human volunteers: partial kappa opioid agonist activity? Neuropsychopharmacology. 2005;30(12):2254–62.PubMedCrossRef
144.
go back to reference Volpe DA, McMahon Tobin GA, Mellon RD, et al. Uniform assessment and ranking of opioid mu receptor binding constants for selected opioid drugs. Regul Toxicol Pharmacol. 2011;59(3):385–90.PubMedCrossRef Volpe DA, McMahon Tobin GA, Mellon RD, et al. Uniform assessment and ranking of opioid mu receptor binding constants for selected opioid drugs. Regul Toxicol Pharmacol. 2011;59(3):385–90.PubMedCrossRef
146.
go back to reference Payne ER, Stancliff S, Rowe K, Christie JA, Dailey MW. Comparison of Administration of 8-Milligram and 4-Milligram Intranasal Naloxone by Law Enforcement During Response to Suspected Opioid Overdose - New York, March 2022-August 2023. MMWR Morb Mortal Wkly Rep. 2024;73(5):110–3.PubMedPubMedCentralCrossRef Payne ER, Stancliff S, Rowe K, Christie JA, Dailey MW. Comparison of Administration of 8-Milligram and 4-Milligram Intranasal Naloxone by Law Enforcement During Response to Suspected Opioid Overdose - New York, March 2022-August 2023. MMWR Morb Mortal Wkly Rep. 2024;73(5):110–3.PubMedPubMedCentralCrossRef
147.
go back to reference Kim S, Wagner HN Jr, Villemagne VL, et al. Longer occupancy of opioid receptors by nalmefene compared to naloxone as measured in vivo by a dual-detector system. J Nucl Med. 1997;38(11):1726–31.PubMed Kim S, Wagner HN Jr, Villemagne VL, et al. Longer occupancy of opioid receptors by nalmefene compared to naloxone as measured in vivo by a dual-detector system. J Nucl Med. 1997;38(11):1726–31.PubMed
149.
go back to reference Tzschentke TM, Christoph T, Kogel BY. The mu-opioid receptor agonist/noradrenaline reuptake inhibition (MOR-NRI) concept in analgesia: the case of tapentadol. CNS Drugs. 2014;28(4):319–29.PubMedCrossRef Tzschentke TM, Christoph T, Kogel BY. The mu-opioid receptor agonist/noradrenaline reuptake inhibition (MOR-NRI) concept in analgesia: the case of tapentadol. CNS Drugs. 2014;28(4):319–29.PubMedCrossRef
150.
go back to reference Chen ZR, Irvine RJ, Somogyi AA, Bochner F. Mu receptor binding of some commonly used opioids and their metabolites. Life Sci. 1991;48(22):2165–71.PubMedCrossRef Chen ZR, Irvine RJ, Somogyi AA, Bochner F. Mu receptor binding of some commonly used opioids and their metabolites. Life Sci. 1991;48(22):2165–71.PubMedCrossRef
Metadata
Title
Respiratory Depression Associated with Opioids: A Narrative Review
Authors
Mellar P. Davis
Sandra DiScala
Amy Davis
Publication date
21-10-2024
Publisher
Springer US
Published in
Current Treatment Options in Oncology / Issue 11/2024
Print ISSN: 1527-2729
Electronic ISSN: 1534-6277
DOI
https://doi.org/10.1007/s11864-024-01274-5

Other articles of this Issue 11/2024

Current Treatment Options in Oncology 11/2024 Go to the issue
SPONSORED

Recent advances in the use of CAR T-cell therapies in relapsed/refractory diffuse large B-cell lymphoma and follicular lymphoma

  • Webinar | 01-10-2024 | 12:30 (CEST)

In this webinar, Professor Martin Dreyling and an esteemed international panel of CAR T-cell therapy experts discuss the latest data on the safety, efficacy, and clinical impact of CAR T-cell therapies in the treatment of r/r DLBCL and r/r FL.

Please note, this webinar is not intended for healthcare professionals based in the US and UK.

Sponsored by:
  • Novartis Pharma AG
Chaired by: Prof. Martin Dreyling
Developed by: Springer Healthcare
Get a reminder for the on-demand version