Skip to main content
Top
Published in:

Open Access 01-12-2024 | Research

Obtaining HBV core protein VLPs carrying SARS-CoV-2 nucleocapsid conserved fragments as vaccine candidates

Authors: Yadira Lobaina, Alexis Musacchio, Panchao Ai, Rong Chen, Edith Suzarte, Glay Chinea, Miaohong Zhang, Zhiqiang Zhou, Yaqin Lan, Ricardo Silva, Gerardo Guillén, Ke Yang, Wen Li, Yasser Perera, Lisset Hermida

Published in: Virology Journal | Issue 1/2024

Login to get access

Abstract

The Hepatitis B core antigen (HBcAg) has been used as a carrier of several heterologous protein fragments based on its capacity to form virus-like particles (VLPs) and to activate innate and adaptive immune responses. In the present work, two chimeric proteins were designed as potential pancorona vaccine candidates, comprising the N- or C- terminal domain of SARS-CoV-2 nucleocapsid (N) protein fused to HBcAg. The recombinant proteins, obtained in E. coli, were named CN-1 and CND-1, respectively. The final protein preparations were able to form 10–25 nm particles, visualized by TEM. Both proteins were recognized by sera from COVID-19 convalescent donors; however, the antigenicity of CND-1 tends to be higher. The immunogenicity of both proteins was studied in Balb/C mice by intranasal route without adjuvant. After three doses, only CND-1 elicited a positive immune response, systemic and mucosal, against SARS-CoV-2 N protein. CND-1 was evaluated in a second experiment mixed with the CpG ODN-39 M as nasal adjuvant. The induced anti-N immunity was significantly enhanced, and the antibodies generated were cross-reactive with N protein from Omicron variant, and SARS-CoV-1. Also, an anti-N broad cellular immune response was detected in spleen, by IFN-γ ELISpot. The nasal formulation composed by CND-1 and ODN-39 M constitutes an attractive component for a second generation coronavirus vaccine, increasing the scope of S protein-based vaccines, by inducing mucosal immunity and systemic broad humoral and cellular responses against Sarbecovirus N protein.
Appendix
Available only for authorised users
Literature
3.
go back to reference Seeger C, Mason WS. Molecular biology of hepatitis B virus infection. Virology. 2015;479–480:672–86.CrossRefPubMed Seeger C, Mason WS. Molecular biology of hepatitis B virus infection. Virology. 2015;479–480:672–86.CrossRefPubMed
13.
go back to reference Koletzki D, Lundkvist A, Sjölander KB, Gelderblom HR, Niedrig M, Meisel H, Krüger DH, Ulrich R. Puumala (PUU) hantavirus strain differences and insertion positions in the hepatitis B virus core antigen influence B-cell immunogenicity and protective potential of core-derived particles. Virology. 2000;276(2):364–75. https://doi.org/10.1006/viro.2000.0540.CrossRefPubMed Koletzki D, Lundkvist A, Sjölander KB, Gelderblom HR, Niedrig M, Meisel H, Krüger DH, Ulrich R. Puumala (PUU) hantavirus strain differences and insertion positions in the hepatitis B virus core antigen influence B-cell immunogenicity and protective potential of core-derived particles. Virology. 2000;276(2):364–75. https://​doi.​org/​10.​1006/​viro.​2000.​0540.CrossRefPubMed
16.
go back to reference Matchett WE, Vineet Joag J, Stolley M, Shepherd FK, Quarnstrom CF, Mickelson CK, Wijeyesinghe S, Soerens AG, Becker S, Thiede JM, Weyu E, O’Flanagan SD, Walter JA, Vu MN, Menachery VD, Bold TD, Vezys V, Jenkins MK, Langlois RA, Masopust D. Cutting edge: nucleocapsid vaccine elicits spike-independent sars-cov-2 protective immunity. J0 Immun. 2021;207(2):376–9. https://doi.org/10.4049/jimmunol.2100421.CrossRef Matchett WE, Vineet Joag J, Stolley M, Shepherd FK, Quarnstrom CF, Mickelson CK, Wijeyesinghe S, Soerens AG, Becker S, Thiede JM, Weyu E, O’Flanagan SD, Walter JA, Vu MN, Menachery VD, Bold TD, Vezys V, Jenkins MK, Langlois RA, Masopust D. Cutting edge: nucleocapsid vaccine elicits spike-independent sars-cov-2 protective immunity. J0 Immun. 2021;207(2):376–9. https://​doi.​org/​10.​4049/​jimmunol.​2100421.CrossRef
18.
go back to reference Wood WB. Host specificity of DNA produced by Escherichia coli: bacterial mutations affecting the restriction and modification of DNA. J Mol Biol. 2011;16:118–33.CrossRef Wood WB. Host specificity of DNA produced by Escherichia coli: bacterial mutations affecting the restriction and modification of DNA. J Mol Biol. 2011;16:118–33.CrossRef
19.
go back to reference Bullock WO, Fernandez JM, Short JMS. XL1-blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. Biotechniques. 1987;5:376–8. Bullock WO, Fernandez JM, Short JMS. XL1-blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. Biotechniques. 1987;5:376–8.
20.
21.
go back to reference Towbin H, Staehelin T, Golden J. Electrophoretic transfer of protein from polyacrylamide gel to nitrocellulose sheets procedure and some applications. Proc Natl Acad Sci. 1979;76:4350–4.CrossRefPubMedPubMedCentral Towbin H, Staehelin T, Golden J. Electrophoretic transfer of protein from polyacrylamide gel to nitrocellulose sheets procedure and some applications. Proc Natl Acad Sci. 1979;76:4350–4.CrossRefPubMedPubMedCentral
22.
23.
go back to reference Kundu R, Narean JS, Wang L, Fenn J, Pillay T, Fernandez ND, Conibear E, Koycheva A, Davies M, Tolosa-Wright M, Hakki S, Varro R, McDermott E, Hammett S, Cutajar J, Thwaites RS, Parker E, Rosadas C, McClure M, Tedder R, Taylor GP, Dunning J, Lalvani A. Cross-reactive memory T cells associate with protection against SARS-CoV-2 infection in COVID-19 contacts. Nat Commun. 2022;13(1):80. https://doi.org/10.1038/s41467-021-27674-x.CrossRefPubMedPubMedCentral Kundu R, Narean JS, Wang L, Fenn J, Pillay T, Fernandez ND, Conibear E, Koycheva A, Davies M, Tolosa-Wright M, Hakki S, Varro R, McDermott E, Hammett S, Cutajar J, Thwaites RS, Parker E, Rosadas C, McClure M, Tedder R, Taylor GP, Dunning J, Lalvani A. Cross-reactive memory T cells associate with protection against SARS-CoV-2 infection in COVID-19 contacts. Nat Commun. 2022;13(1):80. https://​doi.​org/​10.​1038/​s41467-021-27674-x.CrossRefPubMedPubMedCentral
24.
go back to reference Ferretti AP, Kula T, Wang Y, Nguyen DMV, Weinheimer A, Dunlap GS, Xu Q, Nabilsi N, Perullo CR, Cristofaro AW, Whitton HJ, Virbasius A, Olivier KJ Jr, Buckner LR, Alistar AT, Whitman ED, Bertino SA, Chattopadhyay S, MacBeath G. Unbiased screens show CD8+ T cells of COVID-19 patients recognize shared epitopes in SARS-CoV-2 that largely reside outside the spike protein. Immunity. 2020;53(5):1095-107.e3. https://doi.org/10.1016/j.immuni.2020.10.006.CrossRefPubMedPubMedCentral Ferretti AP, Kula T, Wang Y, Nguyen DMV, Weinheimer A, Dunlap GS, Xu Q, Nabilsi N, Perullo CR, Cristofaro AW, Whitton HJ, Virbasius A, Olivier KJ Jr, Buckner LR, Alistar AT, Whitman ED, Bertino SA, Chattopadhyay S, MacBeath G. Unbiased screens show CD8+ T cells of COVID-19 patients recognize shared epitopes in SARS-CoV-2 that largely reside outside the spike protein. Immunity. 2020;53(5):1095-107.e3. https://​doi.​org/​10.​1016/​j.​immuni.​2020.​10.​006.CrossRefPubMedPubMedCentral
25.
go back to reference Peng Y, Mentzer AJ, Liu G, Yao X, Yin Z, Dong D, Dejnirattisai W, Rostron T, Supasa P, Liu C, López-Camacho C, Slon-Campos J, Zhao Y, Stuart DI, Paesen GC, Grimes JM, Antson AA, Bayfield OW, Hawkins DEDP, Ker DS, Wang B, Turtle L, Subramaniam K, Thomson P, Zhang P, Dold C, Ratcliff J, Simmonds P, de Silva T, Sopp P, Wellington D, Rajapaksa U, Chen YL, Salio M, Napolitani G, Paes W, Borrow P, Kessler BM, Fry JW, Schwabe NF, Semple MG, Baillie JK, Moore SC, Openshaw PJM, Ansari MA, Dunachie S, Barnes E, Frater J, Kerr G, Goulder P, Lockett T, Levin R, Zhang Y, Jing R, Ho LP. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat Immunol. 2020;21(11):1336–45. https://doi.org/10.1038/s41590-020-0782-6.CrossRefPubMedPubMedCentral Peng Y, Mentzer AJ, Liu G, Yao X, Yin Z, Dong D, Dejnirattisai W, Rostron T, Supasa P, Liu C, López-Camacho C, Slon-Campos J, Zhao Y, Stuart DI, Paesen GC, Grimes JM, Antson AA, Bayfield OW, Hawkins DEDP, Ker DS, Wang B, Turtle L, Subramaniam K, Thomson P, Zhang P, Dold C, Ratcliff J, Simmonds P, de Silva T, Sopp P, Wellington D, Rajapaksa U, Chen YL, Salio M, Napolitani G, Paes W, Borrow P, Kessler BM, Fry JW, Schwabe NF, Semple MG, Baillie JK, Moore SC, Openshaw PJM, Ansari MA, Dunachie S, Barnes E, Frater J, Kerr G, Goulder P, Lockett T, Levin R, Zhang Y, Jing R, Ho LP. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat Immunol. 2020;21(11):1336–45. https://​doi.​org/​10.​1038/​s41590-020-0782-6.CrossRefPubMedPubMedCentral
26.
go back to reference Tarke A, Sidney J, Kidd CK, Dan JM, Ramirez SI, Yu ED, Mateus J, da Silva AR, Moore E, Rubiro P, Methot N, Phillips E, Mallal S, Frazier A, Rawlings SA, Greenbaum JA, Peters B, Smith DM, Crotty S, Weiskopf D, Grifoni A, Sette A. Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. Cell Rep Med. 2021;2(2):100204. https://doi.org/10.1016/j.xcrm.2021.100204.CrossRefPubMedPubMedCentral Tarke A, Sidney J, Kidd CK, Dan JM, Ramirez SI, Yu ED, Mateus J, da Silva AR, Moore E, Rubiro P, Methot N, Phillips E, Mallal S, Frazier A, Rawlings SA, Greenbaum JA, Peters B, Smith DM, Crotty S, Weiskopf D, Grifoni A, Sette A. Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. Cell Rep Med. 2021;2(2):100204. https://​doi.​org/​10.​1016/​j.​xcrm.​2021.​100204.CrossRefPubMedPubMedCentral
31.
go back to reference Riedl P, Stober D, Oehninger C, Melber K, Reimann J, Schirmbeck R. Priming Th1 immunity to viral core particles is facilitated by trace amounts of RNA bound to its arginine-rich domain. J Immunol. 2002;168:4951–9.CrossRefPubMed Riedl P, Stober D, Oehninger C, Melber K, Reimann J, Schirmbeck R. Priming Th1 immunity to viral core particles is facilitated by trace amounts of RNA bound to its arginine-rich domain. J Immunol. 2002;168:4951–9.CrossRefPubMed
36.
go back to reference Scheiermann J, Klinman DM, Klinman D. Vaccines targeting infectious diseases and cancer. Pharmaceutics. 2015;13(2):142. Scheiermann J, Klinman DM, Klinman D. Vaccines targeting infectious diseases and cancer. Pharmaceutics. 2015;13(2):142.
37.
go back to reference Gil L, Marcos E, Izquierdo A, Lazo L, Valdés I, Ambala P, Ochola L, Hitler R, Suzarte E, Álvarez M, et al. The protein DIIIC-2, aggregated with a specific oligodeoxynucleotide and adjuvanted in alum, protects mice and monkeys against DENV-2. Immunol Cell Biol. 2015;93:57–66. https://doi.org/10.1038/icb.2014.63.CrossRefPubMed Gil L, Marcos E, Izquierdo A, Lazo L, Valdés I, Ambala P, Ochola L, Hitler R, Suzarte E, Álvarez M, et al. The protein DIIIC-2, aggregated with a specific oligodeoxynucleotide and adjuvanted in alum, protects mice and monkeys against DENV-2. Immunol Cell Biol. 2015;93:57–66. https://​doi.​org/​10.​1038/​icb.​2014.​63.CrossRefPubMed
38.
go back to reference Gil L, Cobas K, Lazo L, Marcos E, Hernández L, Suzarte E, Izquierdo A, Valdés I, Blanco A, Puentes P, et al. A tetravalent formulation based on recombinant nucleocapsid-like particles from dengue viruses induces a functional immune response in mice and monkeys. J Immunol. 2016;197:3597–606. https://doi.org/10.4049/jimmunol.1600927.CrossRefPubMed Gil L, Cobas K, Lazo L, Marcos E, Hernández L, Suzarte E, Izquierdo A, Valdés I, Blanco A, Puentes P, et al. A tetravalent formulation based on recombinant nucleocapsid-like particles from dengue viruses induces a functional immune response in mice and monkeys. J Immunol. 2016;197:3597–606. https://​doi.​org/​10.​4049/​jimmunol.​1600927.CrossRefPubMed
40.
go back to reference McMahan K, Yu J, Mercado NB, Loos C, Tostanoski LH, Chandrashekar A, Liu J, Peter L, Atyeo C, Zhu A, Bondzie EA, Dagotto G, Gebre MS, Jacob-Dolan C, Li Z, Nampanya F, Patel S, Pessaint L, Van Ry A, Blade K, Yalley-Ogunro J, Cabus M, Brown R, Cook A, Teow E, Andersen H, Lewis MG, Lauffenburger DA, Alter G, Barouch DH. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature. 2021;590(7847):630–4. https://doi.org/10.1038/s41586-020-03041-6.CrossRefPubMed McMahan K, Yu J, Mercado NB, Loos C, Tostanoski LH, Chandrashekar A, Liu J, Peter L, Atyeo C, Zhu A, Bondzie EA, Dagotto G, Gebre MS, Jacob-Dolan C, Li Z, Nampanya F, Patel S, Pessaint L, Van Ry A, Blade K, Yalley-Ogunro J, Cabus M, Brown R, Cook A, Teow E, Andersen H, Lewis MG, Lauffenburger DA, Alter G, Barouch DH. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature. 2021;590(7847):630–4. https://​doi.​org/​10.​1038/​s41586-020-03041-6.CrossRefPubMed
44.
go back to reference Gromowskia GD, Macedo-Cincotta C, Mayer S, King J, Swafford I, McCracken MK, Coleman D, Enoch J, Storme C, Darden J, Peel S, Epperson D, McKee K, Currier JK, Okuliczi J, Paquin-Proulx D, Cowden J, Peachmanb K. Humoral immune responses associated with control of SARS-CoV-2 breakthrough infections in a vaccinated US military population. eBioMedicine. 2023;94:104683. https://doi.org/10.1016/j.ebiom.2023.104683.CrossRef Gromowskia GD, Macedo-Cincotta C, Mayer S, King J, Swafford I, McCracken MK, Coleman D, Enoch J, Storme C, Darden J, Peel S, Epperson D, McKee K, Currier JK, Okuliczi J, Paquin-Proulx D, Cowden J, Peachmanb K. Humoral immune responses associated with control of SARS-CoV-2 breakthrough infections in a vaccinated US military population. eBioMedicine. 2023;94:104683. https://​doi.​org/​10.​1016/​j.​ebiom.​2023.​104683.CrossRef
51.
Metadata
Title
Obtaining HBV core protein VLPs carrying SARS-CoV-2 nucleocapsid conserved fragments as vaccine candidates
Authors
Yadira Lobaina
Alexis Musacchio
Panchao Ai
Rong Chen
Edith Suzarte
Glay Chinea
Miaohong Zhang
Zhiqiang Zhou
Yaqin Lan
Ricardo Silva
Gerardo Guillén
Ke Yang
Wen Li
Yasser Perera
Lisset Hermida
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2024
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-024-02583-9

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the broader systemic effects of menopause, so you can help patients in your clinics through the transition.

Launching: Thursday 12th December 2024
 

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Register your interest now

Keynote webinar | Spotlight on adolescent vaping

  • Live
  • Webinar | 29-01-2025 | 18:00 (CET)

Growing numbers of young people are using e-cigarettes, despite warnings of respiratory effects and addiction. How can doctors tackle the epidemic, and what health effects should you prepare to manage in your clinics?

Watch it live: Wednesday 29th January, 18:00-19:30 CET
 

Prof. Ann McNeill
Dr. Debbie Robson
Benji Horwell
Developed by: Springer Medicine
Join the webinar

Keynote webinar | Spotlight on modern management of frailty

Frailty has a significant impact on health and wellbeing, especially in older adults. Our experts explain the factors that contribute to the development of frailty and how you can manage the condition and reduce the risk of disability, dependency, and mortality in your patients.

Prof. Alfonso Cruz-Jentoft
Prof. Barbara C. van Munster
Prof. Mirko Petrovic
Developed by: Springer Medicine
Watch now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more