Skip to main content
Top
Published in:

Open Access 01-12-2024 | Obesity | Review

The role of autoantibodies in bridging obesity, aging, and immunosenescence

Authors: Taylor R. Valentino, Nan Chen, Priya Makhijani, Saad Khan, Shawn Winer, Xavier S. Revelo, Daniel A. Winer

Published in: Immunity & Ageing | Issue 1/2024

Login to get access

Abstract

Antibodies are essential to immune homeostasis due to their roles in neutralizing pathogenic agents. However, failures in central and peripheral checkpoints that eliminate autoreactive B cells can undermine self-tolerance and generate autoantibodies that mistakenly target self-antigens, leading to inflammation and autoimmune diseases. While autoantibodies are well-studied in autoimmune and in some communicable diseases, their roles in chronic conditions, such as obesity and aging, are less understood. Obesity and aging share similar aspects of immune dysfunction, such as diminished humoral responses and heightened chronic inflammation, which can disrupt immune tolerance and foster autoantigen production, thus giving rise to autoreactive B cells and autoantibodies. In return, these events may also contribute to the pathophysiology of obesity and aging, to the associated autoimmune disorders linked to these conditions, and to the development of immunosenescence, an age-related decline in immune function that heightens vulnerability to infections, chronic diseases, and loss of self-tolerance. Furthermore, the cumulative exposure to antigens and cellular debris during obesity and aging perpetuates pro-inflammatory pathways, linking immunosenescence with other aging hallmarks, such as proteostasis loss and mitochondrial dysfunction. This review examines the mechanisms driving autoantibody generation during obesity and aging and discusses key putative antigenic targets across these conditions. We also explore the therapeutic potential of emerging approaches, such as CAR-T/CAAR-T therapies, vaccines, and BiTEs, to tackle autoimmune-related conditions in aging and obesity.
Literature
1.
2.
go back to reference National Academies of Sciences, Engineering, and, Health M, and Medicine Division; Board on Population Health and Public Health Practice; Committee for the Assessment of NIH Research on Autoimmune Diseases. Enhancing NIH Research on Autoimmune Disease [Internet]. Washington (DC): National Academies Press (US); 2022 [cited 2024 Sep 28]. http://www.ncbi.nlm.nih.gov/books/NBK580299/ National Academies of Sciences, Engineering, and, Health M, and Medicine Division; Board on Population Health and Public Health Practice; Committee for the Assessment of NIH Research on Autoimmune Diseases. Enhancing NIH Research on Autoimmune Disease [Internet]. Washington (DC): National Academies Press (US); 2022 [cited 2024 Sep 28]. http://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK580299/​
3.
go back to reference Winer DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G, et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med. 2011;17:610–7.PubMedPubMedCentralCrossRef Winer DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G, et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med. 2011;17:610–7.PubMedPubMedCentralCrossRef
4.
go back to reference Graham RC. Treatment of bacterial infections with specific antisera: a venerable idea born again. J Lab Clin Med. 1986;108:172–3.PubMed Graham RC. Treatment of bacterial infections with specific antisera: a venerable idea born again. J Lab Clin Med. 1986;108:172–3.PubMed
6.
go back to reference Khan S, Chan YT, Revelo XS, Winer DA. The Immune Landscape of visceral adipose tissue during obesity and aging. Front Endocrinol (Lausanne). 2020;11:267.PubMedCrossRef Khan S, Chan YT, Revelo XS, Winer DA. The Immune Landscape of visceral adipose tissue during obesity and aging. Front Endocrinol (Lausanne). 2020;11:267.PubMedCrossRef
7.
go back to reference Frasca D. Several areas of overlap between obesity and aging indicate obesity as a biomarker of accelerated aging of human B cell function and antibody responses. Immun Ageing. 2022;19:48.PubMedPubMedCentralCrossRef Frasca D. Several areas of overlap between obesity and aging indicate obesity as a biomarker of accelerated aging of human B cell function and antibody responses. Immun Ageing. 2022;19:48.PubMedPubMedCentralCrossRef
8.
go back to reference Frasca D, Ferracci F, Diaz A, Romero M, Lechner S, Blomberg BB. Obesity decreases B cell responses in young and elderly individuals. Obes (Silver Spring). 2016;24:615–25.CrossRef Frasca D, Ferracci F, Diaz A, Romero M, Lechner S, Blomberg BB. Obesity decreases B cell responses in young and elderly individuals. Obes (Silver Spring). 2016;24:615–25.CrossRef
9.
go back to reference Clemente DBP, Maitre L, Bustamante M, Chatzi L, Roumeliotaki T, Fossati S, et al. Obesity is associated with shorter telomeres in 8 year-old children. Sci Rep. 2019;9:18739.PubMedPubMedCentralCrossRef Clemente DBP, Maitre L, Bustamante M, Chatzi L, Roumeliotaki T, Fossati S, et al. Obesity is associated with shorter telomeres in 8 year-old children. Sci Rep. 2019;9:18739.PubMedPubMedCentralCrossRef
10.
go back to reference Tzanetakou IP, Katsilambros NL, Benetos A, Mikhailidis DP, Perrea DN. Is obesity linked to aging? Adipose tissue and the role of telomeres. Ageing Res Rev. 2012;11:220–9.PubMedCrossRef Tzanetakou IP, Katsilambros NL, Benetos A, Mikhailidis DP, Perrea DN. Is obesity linked to aging? Adipose tissue and the role of telomeres. Ageing Res Rev. 2012;11:220–9.PubMedCrossRef
11.
go back to reference Pérez LM, Pareja-Galeano H, Sanchis-Gomar F, Emanuele E, Lucia A, Gálvez BG. Adipaging: ageing and obesity share biological hallmarks related to a dysfunctional adipose tissue. J Physiol. 2016;594:3187–207.PubMedPubMedCentralCrossRef Pérez LM, Pareja-Galeano H, Sanchis-Gomar F, Emanuele E, Lucia A, Gálvez BG. Adipaging: ageing and obesity share biological hallmarks related to a dysfunctional adipose tissue. J Physiol. 2016;594:3187–207.PubMedPubMedCentralCrossRef
13.
14.
go back to reference Fonseca DLM, Filgueiras IS, Marques AHC, Vojdani E, Halpert G, Ostrinski Y, et al. Severe COVID-19 patients exhibit elevated levels of autoantibodies targeting cardiolipin and platelet glycoprotein with age: a systems biology approach. NPJ Aging. 2023;9:21.PubMedPubMedCentralCrossRef Fonseca DLM, Filgueiras IS, Marques AHC, Vojdani E, Halpert G, Ostrinski Y, et al. Severe COVID-19 patients exhibit elevated levels of autoantibodies targeting cardiolipin and platelet glycoprotein with age: a systems biology approach. NPJ Aging. 2023;9:21.PubMedPubMedCentralCrossRef
15.
go back to reference Clement CC, Osan J, Buque A, Nanaware PP, Chang Y-C, Perino G, et al. PDIA3 epitope-driven immune autoreactivity contributes to hepatic damage in type 2 diabetes. Sci Immunol. 2022;7:eabl3795.PubMedPubMedCentralCrossRef Clement CC, Osan J, Buque A, Nanaware PP, Chang Y-C, Perino G, et al. PDIA3 epitope-driven immune autoreactivity contributes to hepatic damage in type 2 diabetes. Sci Immunol. 2022;7:eabl3795.PubMedPubMedCentralCrossRef
16.
go back to reference Frasca D, Diaz A, Romero M, Thaller S, Blomberg BB. Metabolic requirements of human pro-inflammatory B cells in aging and obesity. PLoS ONE. 2019;14:e0219545.PubMedPubMedCentralCrossRef Frasca D, Diaz A, Romero M, Thaller S, Blomberg BB. Metabolic requirements of human pro-inflammatory B cells in aging and obesity. PLoS ONE. 2019;14:e0219545.PubMedPubMedCentralCrossRef
17.
go back to reference Crescioli S, Correa I, Ng J, Willsmore ZN, Laddach R, Chenoweth A, et al. B cell profiles, antibody repertoire and reactivity reveal dysregulated responses with autoimmune features in melanoma. Nat Commun. 2023;14:3378.PubMedPubMedCentralCrossRef Crescioli S, Correa I, Ng J, Willsmore ZN, Laddach R, Chenoweth A, et al. B cell profiles, antibody repertoire and reactivity reveal dysregulated responses with autoimmune features in melanoma. Nat Commun. 2023;14:3378.PubMedPubMedCentralCrossRef
18.
go back to reference Shiwaku H, Katayama S, Gao M, Kondo K, Nakano Y, Motokawa Y, et al. Analyzing schizophrenia-related phenotypes in mice caused by autoantibodies against NRXN1α in schizophrenia. Brain Behav Immun. 2023;111:32–45.PubMedCrossRef Shiwaku H, Katayama S, Gao M, Kondo K, Nakano Y, Motokawa Y, et al. Analyzing schizophrenia-related phenotypes in mice caused by autoantibodies against NRXN1α in schizophrenia. Brain Behav Immun. 2023;111:32–45.PubMedCrossRef
19.
go back to reference Frasca D, Romero M, Diaz A, Blomberg BB. Obesity accelerates age defects in B cells, and weight loss improves B cell function. Immun Ageing. 2023;20:35.PubMedPubMedCentralCrossRef Frasca D, Romero M, Diaz A, Blomberg BB. Obesity accelerates age defects in B cells, and weight loss improves B cell function. Immun Ageing. 2023;20:35.PubMedPubMedCentralCrossRef
20.
go back to reference Mazor RD, Nathan N, Gilboa A, Stoler-Barak L, Moss L, Solomonov I, et al. Tumor-reactive antibodies evolve from non-binding and autoreactive precursors. Cell. 2022;185:1208–e122221.PubMedCrossRef Mazor RD, Nathan N, Gilboa A, Stoler-Barak L, Moss L, Solomonov I, et al. Tumor-reactive antibodies evolve from non-binding and autoreactive precursors. Cell. 2022;185:1208–e122221.PubMedCrossRef
21.
go back to reference von Stemann JH, Rigas AS, Thørner LW, Rasmussen DGK, Pedersen OB, Rostgaard K, et al. Prevalence and correlation of cytokine-specific autoantibodies with epidemiological factors and C-reactive protein in 8,972 healthy individuals: results from the Danish blood Donor Study. PLoS ONE. 2017;12:e0179981.CrossRef von Stemann JH, Rigas AS, Thørner LW, Rasmussen DGK, Pedersen OB, Rostgaard K, et al. Prevalence and correlation of cytokine-specific autoantibodies with epidemiological factors and C-reactive protein in 8,972 healthy individuals: results from the Danish blood Donor Study. PLoS ONE. 2017;12:e0179981.CrossRef
22.
go back to reference Hagadorn KA, Peterson ME, Kole H, Scott B, Skinner J, Diouf A, et al. Autoantibodies inhibit Plasmodium Falciparum growth and are associated with protection from clinical malaria. Immunity. 2024;57:1769–e17794.PubMedCrossRef Hagadorn KA, Peterson ME, Kole H, Scott B, Skinner J, Diouf A, et al. Autoantibodies inhibit Plasmodium Falciparum growth and are associated with protection from clinical malaria. Immunity. 2024;57:1769–e17794.PubMedCrossRef
23.
go back to reference Meier HCS, Sandler DP, Simonsick EM, Weng N-P, Parks CG. Sex differences in the association between antinuclear antibody positivity with diabetes and multimorbidity in older adults: results from the Baltimore Longitudinal Study of Aging. Exp Gerontol. 2020;135:110906.PubMedPubMedCentralCrossRef Meier HCS, Sandler DP, Simonsick EM, Weng N-P, Parks CG. Sex differences in the association between antinuclear antibody positivity with diabetes and multimorbidity in older adults: results from the Baltimore Longitudinal Study of Aging. Exp Gerontol. 2020;135:110906.PubMedPubMedCentralCrossRef
24.
go back to reference Shome M, Chung Y, Chavan R, Park JG, Qiu J, LaBaer J. Serum autoantibodyome reveals that healthy individuals share common autoantibodies. Cell Rep. 2022;39:110873.PubMedPubMedCentralCrossRef Shome M, Chung Y, Chavan R, Park JG, Qiu J, LaBaer J. Serum autoantibodyome reveals that healthy individuals share common autoantibodies. Cell Rep. 2022;39:110873.PubMedPubMedCentralCrossRef
25.
go back to reference Rubin SJS, Bloom MS, Robinson WH. B cell checkpoints in autoimmune rheumatic diseases. Nat Rev Rheumatol. 2019;15:303–15.PubMedCrossRef Rubin SJS, Bloom MS, Robinson WH. B cell checkpoints in autoimmune rheumatic diseases. Nat Rev Rheumatol. 2019;15:303–15.PubMedCrossRef
27.
go back to reference Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science. 2003;301:1374–7.PubMedCrossRef Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science. 2003;301:1374–7.PubMedCrossRef
28.
go back to reference Labrie JE, Borghesi L, Gerstein RM. Bone marrow microenvironmental changes in aged mice compromise V(D)J recombinase activity and B cell generation. Semin Immunol. 2005;17:347–55.PubMedCrossRef Labrie JE, Borghesi L, Gerstein RM. Bone marrow microenvironmental changes in aged mice compromise V(D)J recombinase activity and B cell generation. Semin Immunol. 2005;17:347–55.PubMedCrossRef
29.
go back to reference Rivera-Munoz P, Malivert L, Derdouch S, Azerrad C, Abramowski V, Revy P, et al. DNA repair and the immune system: from V(D)J recombination to aging lymphocytes. Eur J Immunol. 2007;37(Suppl 1):S71–82.PubMedCrossRef Rivera-Munoz P, Malivert L, Derdouch S, Azerrad C, Abramowski V, Revy P, et al. DNA repair and the immune system: from V(D)J recombination to aging lymphocytes. Eur J Immunol. 2007;37(Suppl 1):S71–82.PubMedCrossRef
31.
go back to reference Alves da Costa T, Peterson JN, Lang J, Shulman J, Liang X, Freed BM, et al. Central human B cell tolerance manifests with a distinctive cell phenotype and is enforced via CXCR4 signaling in Hu-mice. Proc Natl Acad Sci U S A. 2021;118:e2021570118.PubMedPubMedCentralCrossRef Alves da Costa T, Peterson JN, Lang J, Shulman J, Liang X, Freed BM, et al. Central human B cell tolerance manifests with a distinctive cell phenotype and is enforced via CXCR4 signaling in Hu-mice. Proc Natl Acad Sci U S A. 2021;118:e2021570118.PubMedPubMedCentralCrossRef
32.
go back to reference Carbone LD, Bůžková P, Fink HA, Robbins JA, Bethel M, Hamrick MW, et al. Association of Plasma SDF-1 with bone Mineral density, body composition, and hip fractures in older adults: the Cardiovascular Health Study. Calcif Tissue Int. 2017;100:599–608.PubMedPubMedCentralCrossRef Carbone LD, Bůžková P, Fink HA, Robbins JA, Bethel M, Hamrick MW, et al. Association of Plasma SDF-1 with bone Mineral density, body composition, and hip fractures in older adults: the Cardiovascular Health Study. Calcif Tissue Int. 2017;100:599–608.PubMedPubMedCentralCrossRef
33.
go back to reference Bonasia CG, Abdulahad WH, Rutgers A, Heeringa P, Bos NA. B cell activation and escape of Tolerance checkpoints: recent insights from studying Autoreactive B cells. Cells. 2021;10:1190.PubMedPubMedCentralCrossRef Bonasia CG, Abdulahad WH, Rutgers A, Heeringa P, Bos NA. B cell activation and escape of Tolerance checkpoints: recent insights from studying Autoreactive B cells. Cells. 2021;10:1190.PubMedPubMedCentralCrossRef
34.
go back to reference Vossenkämper A, Blair PA, Safinia N, Fraser LD, Das L, Sanders TJ, et al. A role for gut-associated lymphoid tissue in shaping the human B cell repertoire. J Exp Med. 2013;210:1665–74.PubMedPubMedCentralCrossRef Vossenkämper A, Blair PA, Safinia N, Fraser LD, Das L, Sanders TJ, et al. A role for gut-associated lymphoid tissue in shaping the human B cell repertoire. J Exp Med. 2013;210:1665–74.PubMedPubMedCentralCrossRef
35.
go back to reference Weinstein JS, Herman EI, Lainez B, Licona-Limón P, Esplugues E, Flavell R, et al. TFH cells progressively differentiate to regulate the germinal center response. Nat Immunol. 2016;17:1197–205.PubMedPubMedCentralCrossRef Weinstein JS, Herman EI, Lainez B, Licona-Limón P, Esplugues E, Flavell R, et al. TFH cells progressively differentiate to regulate the germinal center response. Nat Immunol. 2016;17:1197–205.PubMedPubMedCentralCrossRef
36.
go back to reference Cyster JG, Goodnow CC. Antigen-induced exclusion from follicles and anergy are separate and complementary processes that influence peripheral B cell fate. Immunity. 1995;3:691–701.PubMedCrossRef Cyster JG, Goodnow CC. Antigen-induced exclusion from follicles and anergy are separate and complementary processes that influence peripheral B cell fate. Immunity. 1995;3:691–701.PubMedCrossRef
37.
go back to reference Brink R, Phan TG, Self-Reactive B. Cells in the Germinal Center reaction. Annu Rev Immunol. 2018;36:339–57.PubMedCrossRef Brink R, Phan TG, Self-Reactive B. Cells in the Germinal Center reaction. Annu Rev Immunol. 2018;36:339–57.PubMedCrossRef
39.
go back to reference Yong PFK, Salzer U, Grimbacher B. The role of costimulation in antibody deficiencies: ICOS and common variable immunodeficiency. Immunol Rev. 2009;229:101–13.PubMedCrossRef Yong PFK, Salzer U, Grimbacher B. The role of costimulation in antibody deficiencies: ICOS and common variable immunodeficiency. Immunol Rev. 2009;229:101–13.PubMedCrossRef
40.
go back to reference Luo W, Weisel F, Shlomchik MJ. B cell receptor and CD40 Signaling are rewired for synergistic induction of the c-Myc transcription factor in Germinal Center B cells. Immunity. 2018;48:313–e3265.PubMedPubMedCentralCrossRef Luo W, Weisel F, Shlomchik MJ. B cell receptor and CD40 Signaling are rewired for synergistic induction of the c-Myc transcription factor in Germinal Center B cells. Immunity. 2018;48:313–e3265.PubMedPubMedCentralCrossRef
41.
go back to reference Ozaki K, Spolski R, Feng CG, Qi C-F, Cheng J, Sher A, et al. A critical role for IL-21 in regulating immunoglobulin production. Science. 2002;298:1630–4.PubMedCrossRef Ozaki K, Spolski R, Feng CG, Qi C-F, Cheng J, Sher A, et al. A critical role for IL-21 in regulating immunoglobulin production. Science. 2002;298:1630–4.PubMedCrossRef
42.
go back to reference Ettinger R, Sims GP, Fairhurst A-M, Robbins R, da Silva YS, Spolski R, et al. IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J Immunol. 2005;175:7867–79.PubMedCrossRef Ettinger R, Sims GP, Fairhurst A-M, Robbins R, da Silva YS, Spolski R, et al. IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J Immunol. 2005;175:7867–79.PubMedCrossRef
44.
go back to reference Kim Y, Manara F, Grassmann S, Belcheva KT, Reyes K, Kim H et al. IL-21 shapes the B cell response in a context-dependent manner. bioRxiv. 2024;2024.07.13.600808. Kim Y, Manara F, Grassmann S, Belcheva KT, Reyes K, Kim H et al. IL-21 shapes the B cell response in a context-dependent manner. bioRxiv. 2024;2024.07.13.600808.
45.
go back to reference Sato Y, Silina K, van den Broek M, Hirahara K, Yanagita M. The roles of tertiary lymphoid structures in chronic diseases. Nat Rev Nephrol. 2023;19:525–37.PubMedCrossRef Sato Y, Silina K, van den Broek M, Hirahara K, Yanagita M. The roles of tertiary lymphoid structures in chronic diseases. Nat Rev Nephrol. 2023;19:525–37.PubMedCrossRef
46.
go back to reference Ligon MM, Wang C, DeJong EN, Schulz C, Bowdish DME, Mysorekar IU. Single cell and tissue-transcriptomic analysis of murine bladders reveals age- and TNFα-dependent but microbiota-independent tertiary lymphoid tissue formation. Mucosal Immunol. 2020;13:908–18.PubMedPubMedCentralCrossRef Ligon MM, Wang C, DeJong EN, Schulz C, Bowdish DME, Mysorekar IU. Single cell and tissue-transcriptomic analysis of murine bladders reveals age- and TNFα-dependent but microbiota-independent tertiary lymphoid tissue formation. Mucosal Immunol. 2020;13:908–18.PubMedPubMedCentralCrossRef
47.
go back to reference Singh P, Coskun ZZ, Goode C, Dean A, Thompson-Snipes L, Darlington G. Lymphoid neogenesis and immune infiltration in aged liver. Hepatology. 2008;47:1680–90.PubMedCrossRef Singh P, Coskun ZZ, Goode C, Dean A, Thompson-Snipes L, Darlington G. Lymphoid neogenesis and immune infiltration in aged liver. Hepatology. 2008;47:1680–90.PubMedCrossRef
48.
go back to reference Sato Y, Oguchi A, Fukushima Y, Masuda K, Toriu N, Taniguchi K, et al. CD153/CD30 signaling promotes age-dependent tertiary lymphoid tissue expansion and kidney injury. J Clin Invest. 2022;132:e146071.PubMedPubMedCentralCrossRef Sato Y, Oguchi A, Fukushima Y, Masuda K, Toriu N, Taniguchi K, et al. CD153/CD30 signaling promotes age-dependent tertiary lymphoid tissue expansion and kidney injury. J Clin Invest. 2022;132:e146071.PubMedPubMedCentralCrossRef
51.
go back to reference Sogkas G, Atschekzei F, Adriawan IR, Dubrowinskaja N, Witte T, Schmidt RE. Cellular and molecular mechanisms breaking immune tolerance in inborn errors of immunity. Cell Mol Immunol. 2021;18:1122–40.PubMedPubMedCentralCrossRef Sogkas G, Atschekzei F, Adriawan IR, Dubrowinskaja N, Witte T, Schmidt RE. Cellular and molecular mechanisms breaking immune tolerance in inborn errors of immunity. Cell Mol Immunol. 2021;18:1122–40.PubMedPubMedCentralCrossRef
52.
go back to reference Shirafkan F, Hensel L, Rattay K. Immune tolerance and the prevention of autoimmune diseases essentially depend on thymic tissue homeostasis. Front Immunol. 2024;15:1339714.PubMedPubMedCentralCrossRef Shirafkan F, Hensel L, Rattay K. Immune tolerance and the prevention of autoimmune diseases essentially depend on thymic tissue homeostasis. Front Immunol. 2024;15:1339714.PubMedPubMedCentralCrossRef
53.
go back to reference Almanan M, Raynor J, Ogunsulire I, Malyshkina A, Mukherjee S, Hummel SA, et al. IL-10-producing tfh cells accumulate with age and link inflammation with age-related immune suppression. Sci Adv. 2020;6:eabb0806.PubMedPubMedCentralCrossRef Almanan M, Raynor J, Ogunsulire I, Malyshkina A, Mukherjee S, Hummel SA, et al. IL-10-producing tfh cells accumulate with age and link inflammation with age-related immune suppression. Sci Adv. 2020;6:eabb0806.PubMedPubMedCentralCrossRef
54.
go back to reference Liu Z, Liu S, Zhang Y, Zeng W, Wang S, Ji P, et al. Distinct roles of ICOS and CD40L in human T-B cell adhesion and antibody production. Cell Immunol. 2021;368:104420.PubMedCrossRef Liu Z, Liu S, Zhang Y, Zeng W, Wang S, Ji P, et al. Distinct roles of ICOS and CD40L in human T-B cell adhesion and antibody production. Cell Immunol. 2021;368:104420.PubMedCrossRef
55.
go back to reference Li K, Romero M, Cañardo M, Garcia D, Diaz A, Blomberg BB, et al. B cells from old mice induce the generation of inflammatory T cells through metabolic pathways. Mech Ageing Dev. 2023;209:111742.PubMedCrossRef Li K, Romero M, Cañardo M, Garcia D, Diaz A, Blomberg BB, et al. B cells from old mice induce the generation of inflammatory T cells through metabolic pathways. Mech Ageing Dev. 2023;209:111742.PubMedCrossRef
56.
go back to reference Makhijani P, Basso PJ, Chan YT, Chen N, Baechle J, Khan S, et al. Regulation of the immune system by the insulin receptor in health and disease. Front Endocrinol (Lausanne). 2023;14:1128622.PubMedCrossRef Makhijani P, Basso PJ, Chan YT, Chen N, Baechle J, Khan S, et al. Regulation of the immune system by the insulin receptor in health and disease. Front Endocrinol (Lausanne). 2023;14:1128622.PubMedCrossRef
57.
go back to reference Ersching J, Efeyan A, Mesin L, Jacobsen JT, Pasqual G, Grabiner BC, et al. Germinal Center Selection and Affinity Maturation require dynamic regulation of mTORC1 kinase. Immunity. 2017;46:1045–e10586.PubMedPubMedCentralCrossRef Ersching J, Efeyan A, Mesin L, Jacobsen JT, Pasqual G, Grabiner BC, et al. Germinal Center Selection and Affinity Maturation require dynamic regulation of mTORC1 kinase. Immunity. 2017;46:1045–e10586.PubMedPubMedCentralCrossRef
58.
59.
go back to reference Frasca D, Romero M, Diaz A, Alter-Wolf S, Ratliff M, Landin AM, et al. A molecular mechanism for TNF-α-mediated downregulation of B cell responses. J Immunol. 2012;188:279–86.PubMedCrossRef Frasca D, Romero M, Diaz A, Alter-Wolf S, Ratliff M, Landin AM, et al. A molecular mechanism for TNF-α-mediated downregulation of B cell responses. J Immunol. 2012;188:279–86.PubMedCrossRef
60.
go back to reference Frasca D, Diaz A, Romero M, Landin AM, Blomberg BB. High TNF-α levels in resting B cells negatively correlate with their response. Exp Gerontol. 2014;54:116–22.PubMedCrossRef Frasca D, Diaz A, Romero M, Landin AM, Blomberg BB. High TNF-α levels in resting B cells negatively correlate with their response. Exp Gerontol. 2014;54:116–22.PubMedCrossRef
62.
go back to reference Li H, Wu Q, Li J, Yang P, Zhu Z, Luo B, et al. Cutting Edge: defective follicular exclusion of apoptotic antigens due to marginal zone macrophage defects in autoimmune BXD2 mice. J Immunol. 2013;190:4465–9.PubMedCrossRef Li H, Wu Q, Li J, Yang P, Zhu Z, Luo B, et al. Cutting Edge: defective follicular exclusion of apoptotic antigens due to marginal zone macrophage defects in autoimmune BXD2 mice. J Immunol. 2013;190:4465–9.PubMedCrossRef
63.
go back to reference Moss CE, Johnston SA, Kimble JV, Clements M, Codd V, Hamby S, et al. Aging-related defects in macrophage function are driven by MYC and USF1 transcriptional programs. Cell Rep. 2024;43:114073.PubMedCrossRef Moss CE, Johnston SA, Kimble JV, Clements M, Codd V, Hamby S, et al. Aging-related defects in macrophage function are driven by MYC and USF1 transcriptional programs. Cell Rep. 2024;43:114073.PubMedCrossRef
64.
go back to reference Hu H, Cheng X, Li F, Guan Z, Xu J, Wu D, et al. Defective efferocytosis by aged macrophages promotes STING signaling mediated inflammatory liver injury. Cell Death Discov. 2023;9:236.PubMedPubMedCentralCrossRef Hu H, Cheng X, Li F, Guan Z, Xu J, Wu D, et al. Defective efferocytosis by aged macrophages promotes STING signaling mediated inflammatory liver injury. Cell Death Discov. 2023;9:236.PubMedPubMedCentralCrossRef
65.
go back to reference Soler Palacios B, Estrada-Capetillo L, Izquierdo E, Criado G, Nieto C, Municio C, et al. Macrophages from the synovium of active rheumatoid arthritis exhibit an activin A-dependent pro-inflammatory profile. J Pathol. 2015;235:515–26.PubMedCrossRef Soler Palacios B, Estrada-Capetillo L, Izquierdo E, Criado G, Nieto C, Municio C, et al. Macrophages from the synovium of active rheumatoid arthritis exhibit an activin A-dependent pro-inflammatory profile. J Pathol. 2015;235:515–26.PubMedCrossRef
66.
go back to reference Tsigalou C, Vallianou N, Dalamaga M. Autoantibody production in obesity: is there evidence for a link between obesity and autoimmunity? Curr Obes Rep. 2020;9:245–54.PubMedCrossRef Tsigalou C, Vallianou N, Dalamaga M. Autoantibody production in obesity: is there evidence for a link between obesity and autoimmunity? Curr Obes Rep. 2020;9:245–54.PubMedCrossRef
67.
go back to reference Frasca D, Reidy L, Romero M, Diaz A, Cray C, Kahl K, et al. The majority of SARS-CoV-2-specific antibodies in COVID-19 patients with obesity are autoimmune and not neutralizing. Int J Obes (Lond). 2022;46:427–32.PubMedCrossRef Frasca D, Reidy L, Romero M, Diaz A, Cray C, Kahl K, et al. The majority of SARS-CoV-2-specific antibodies in COVID-19 patients with obesity are autoimmune and not neutralizing. Int J Obes (Lond). 2022;46:427–32.PubMedCrossRef
68.
69.
go back to reference Tedeschi SK, Cui J, Arkema EV, Robinson WH, Sokolove J, Lingampalli N, et al. Elevated BMI and antibodies to citrullinated proteins interact to increase rheumatoid arthritis risk and shorten time to diagnosis: a nested case-control study of women in the nurses’ Health studies. Semin Arthritis Rheum. 2017;46:692–8.PubMedCrossRef Tedeschi SK, Cui J, Arkema EV, Robinson WH, Sokolove J, Lingampalli N, et al. Elevated BMI and antibodies to citrullinated proteins interact to increase rheumatoid arthritis risk and shorten time to diagnosis: a nested case-control study of women in the nurses’ Health studies. Semin Arthritis Rheum. 2017;46:692–8.PubMedCrossRef
70.
go back to reference Li L, Feng D, Zeng J, Ye P, Chen Y, Wei D. Association between rheumatoid factor and metabolic syndrome in general population. Diabetol Metab Syndr. 2022;14:165.PubMedPubMedCentralCrossRef Li L, Feng D, Zeng J, Ye P, Chen Y, Wei D. Association between rheumatoid factor and metabolic syndrome in general population. Diabetol Metab Syndr. 2022;14:165.PubMedPubMedCentralCrossRef
71.
go back to reference Frasca D, Diaz A, Romero M, Garcia D, Jayram D, Thaller S, et al. Identification and characterization of adipose tissue-derived human antibodies with anti-self specificity. Front Immunol. 2020;11:392.PubMedPubMedCentralCrossRef Frasca D, Diaz A, Romero M, Garcia D, Jayram D, Thaller S, et al. Identification and characterization of adipose tissue-derived human antibodies with anti-self specificity. Front Immunol. 2020;11:392.PubMedPubMedCentralCrossRef
72.
go back to reference Hägglöf T, Vanz C, Kumagai A, Dudley E, Ortega V, Siller M, et al. T-bet + B cells accumulate in adipose tissue and exacerbate metabolic disorder during obesity. Cell Metab. 2022;34:1121–e11366.PubMedPubMedCentralCrossRef Hägglöf T, Vanz C, Kumagai A, Dudley E, Ortega V, Siller M, et al. T-bet + B cells accumulate in adipose tissue and exacerbate metabolic disorder during obesity. Cell Metab. 2022;34:1121–e11366.PubMedPubMedCentralCrossRef
73.
go back to reference Kirichenko TV, Markina YV, Bogatyreva AI, Tolstik TV, Varaeva YR, Starodubova AV. The role of Adipokines in inflammatory mechanisms of obesity. Int J Mol Sci. 2022;23:14982.PubMedPubMedCentralCrossRef Kirichenko TV, Markina YV, Bogatyreva AI, Tolstik TV, Varaeva YR, Starodubova AV. The role of Adipokines in inflammatory mechanisms of obesity. Int J Mol Sci. 2022;23:14982.PubMedPubMedCentralCrossRef
74.
go back to reference Revelo XS, Ghazarian M, Chng MHY, Luck H, Kim JH, Zeng K, et al. Nucleic acid-targeting pathways promote inflammation in obesity-related insulin resistance. Cell Rep. 2016;16:717–30.PubMedPubMedCentralCrossRef Revelo XS, Ghazarian M, Chng MHY, Luck H, Kim JH, Zeng K, et al. Nucleic acid-targeting pathways promote inflammation in obesity-related insulin resistance. Cell Rep. 2016;16:717–30.PubMedPubMedCentralCrossRef
76.
go back to reference Wen L, Zhang B, Wu X, Liu R, Fan H, Han L, et al. Toll-like receptors 7 and 9 regulate the proliferation and differentiation of B cells in systemic lupus erythematosus. Front Immunol. 2023;14:1093208.PubMedPubMedCentralCrossRef Wen L, Zhang B, Wu X, Liu R, Fan H, Han L, et al. Toll-like receptors 7 and 9 regulate the proliferation and differentiation of B cells in systemic lupus erythematosus. Front Immunol. 2023;14:1093208.PubMedPubMedCentralCrossRef
77.
go back to reference Desnues B, Macedo AB, Roussel-Queval A, Bonnardel J, Henri S, Demaria O, et al. TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice. Proc Natl Acad Sci U S A. 2014;111:1497–502.PubMedPubMedCentralCrossRef Desnues B, Macedo AB, Roussel-Queval A, Bonnardel J, Henri S, Demaria O, et al. TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice. Proc Natl Acad Sci U S A. 2014;111:1497–502.PubMedPubMedCentralCrossRef
78.
go back to reference Hanna Kazazian N, Wang Y, Roussel-Queval A, Marcadet L, Chasson L, Laprie C, et al. Lupus Autoimmunity and metabolic parameters are exacerbated upon high Fat Diet-Induced obesity due to TLR7 Signaling. Front Immunol. 2019;10:2015.PubMedPubMedCentralCrossRef Hanna Kazazian N, Wang Y, Roussel-Queval A, Marcadet L, Chasson L, Laprie C, et al. Lupus Autoimmunity and metabolic parameters are exacerbated upon high Fat Diet-Induced obesity due to TLR7 Signaling. Front Immunol. 2019;10:2015.PubMedPubMedCentralCrossRef
79.
go back to reference Kakalij RM, Dsouza DL, Ha L, Boesen EI. TLR7 activation by imiquimod worsens glycemic control in female FVB/N mice consuming a high-fat diet. Physiol Rep. 2024;12:e15949.PubMedPubMedCentralCrossRef Kakalij RM, Dsouza DL, Ha L, Boesen EI. TLR7 activation by imiquimod worsens glycemic control in female FVB/N mice consuming a high-fat diet. Physiol Rep. 2024;12:e15949.PubMedPubMedCentralCrossRef
82.
go back to reference Pal A, Lin C-T, Boykov I, Benson E, Kidd G, Fisher-Wellman KH, et al. High Fat Diet-Induced obesity dysregulates splenic B cell mitochondrial activity. Nutrients. 2023;15:4807.PubMedPubMedCentralCrossRef Pal A, Lin C-T, Boykov I, Benson E, Kidd G, Fisher-Wellman KH, et al. High Fat Diet-Induced obesity dysregulates splenic B cell mitochondrial activity. Nutrients. 2023;15:4807.PubMedPubMedCentralCrossRef
84.
go back to reference Frasca D, Romero M, Diaz A, Garcia D, Thaller S, Blomberg BB. B cells with a senescent-Associated Secretory phenotype Accumulate in the adipose tissue of individuals with obesity. Int J Mol Sci. 2021;22:1839.PubMedPubMedCentralCrossRef Frasca D, Romero M, Diaz A, Garcia D, Thaller S, Blomberg BB. B cells with a senescent-Associated Secretory phenotype Accumulate in the adipose tissue of individuals with obesity. Int J Mol Sci. 2021;22:1839.PubMedPubMedCentralCrossRef
85.
go back to reference Pająk B, Zieliński R, Priebe W. The impact of Glycolysis and its inhibitors on the Immune response to inflammation and autoimmunity. Molecules. 2024;29:1298.PubMedPubMedCentralCrossRef Pająk B, Zieliński R, Priebe W. The impact of Glycolysis and its inhibitors on the Immune response to inflammation and autoimmunity. Molecules. 2024;29:1298.PubMedPubMedCentralCrossRef
86.
go back to reference Li J, Zhao M, Luo W, Huang J, Zhao B, Zhou Z. B cell metabolism in autoimmune diseases: signaling pathways and interventions. Front Immunol. 2023;14:1232820.PubMedPubMedCentralCrossRef Li J, Zhao M, Luo W, Huang J, Zhao B, Zhou Z. B cell metabolism in autoimmune diseases: signaling pathways and interventions. Front Immunol. 2023;14:1232820.PubMedPubMedCentralCrossRef
87.
go back to reference Shaikh SR, Beck MA, Alwarawrah Y, MacIver NJ. Emerging mechanisms of obesity-associated immune dysfunction. Nat Rev Endocrinol. 2024;20:136–48.PubMedCrossRef Shaikh SR, Beck MA, Alwarawrah Y, MacIver NJ. Emerging mechanisms of obesity-associated immune dysfunction. Nat Rev Endocrinol. 2024;20:136–48.PubMedCrossRef
88.
go back to reference Kim D-H, Do M-S. BAFF knockout improves systemic inflammation via regulating adipose tissue distribution in high-fat diet-induced obesity. Exp Mol Med. 2015;47:e129.PubMedPubMedCentralCrossRef Kim D-H, Do M-S. BAFF knockout improves systemic inflammation via regulating adipose tissue distribution in high-fat diet-induced obesity. Exp Mol Med. 2015;47:e129.PubMedPubMedCentralCrossRef
89.
go back to reference Tada F, Abe M, Kawasaki K, Miyake T, Shiyi C, Hiasa Y, et al. B cell activating factor in obesity is regulated by oxidative stress in adipocytes. J Clin Biochem Nutr. 2013;52:120–7.PubMedPubMedCentralCrossRef Tada F, Abe M, Kawasaki K, Miyake T, Shiyi C, Hiasa Y, et al. B cell activating factor in obesity is regulated by oxidative stress in adipocytes. J Clin Biochem Nutr. 2013;52:120–7.PubMedPubMedCentralCrossRef
90.
go back to reference Sánchez DCV, Castellanos SG, Sandoval MEV, García AG. B-Cell activating factor increases related to adiposity, insulin resistance, and endothelial dysfunction in overweight and obese subjects. Life (Basel). 2022;12:634.PubMed Sánchez DCV, Castellanos SG, Sandoval MEV, García AG. B-Cell activating factor increases related to adiposity, insulin resistance, and endothelial dysfunction in overweight and obese subjects. Life (Basel). 2022;12:634.PubMed
91.
go back to reference Caro-Maldonado A, Wang R, Nichols AG, Kuraoka M, Milasta S, Sun LD, et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J Immunol. 2014;192:3626–36.PubMedCrossRef Caro-Maldonado A, Wang R, Nichols AG, Kuraoka M, Milasta S, Sun LD, et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J Immunol. 2014;192:3626–36.PubMedCrossRef
92.
go back to reference Thien M, Phan TG, Gardam S, Amesbury M, Basten A, Mackay F, et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity. 2004;20:785–98.PubMedCrossRef Thien M, Phan TG, Gardam S, Amesbury M, Basten A, Mackay F, et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity. 2004;20:785–98.PubMedCrossRef
93.
go back to reference Beyze A, Larroque C, Le Quintrec M. The role of antibody glycosylation in autoimmune and alloimmune kidney diseases. Nat Rev Nephrol. 2024;20:672–89.PubMedCrossRef Beyze A, Larroque C, Le Quintrec M. The role of antibody glycosylation in autoimmune and alloimmune kidney diseases. Nat Rev Nephrol. 2024;20:672–89.PubMedCrossRef
94.
go back to reference Deriš H, Tominac P, Vučković F, Briški N, Astrup A, Blaak EE, et al. Effects of low-calorie and different weight-maintenance diets on IgG glycome composition. Front Immunol. 2022;13:995186.PubMedPubMedCentralCrossRef Deriš H, Tominac P, Vučković F, Briški N, Astrup A, Blaak EE, et al. Effects of low-calorie and different weight-maintenance diets on IgG glycome composition. Front Immunol. 2022;13:995186.PubMedPubMedCentralCrossRef
95.
go back to reference Liu D, Li Q, Dong J, Li D, Xu X, Xing W, et al. The Association between normal BMI with Central Adiposity and Proinflammatory potential immunoglobulin G N-Glycosylation. Diabetes Metab Syndr Obes. 2019;12:2373–85.PubMedPubMedCentralCrossRef Liu D, Li Q, Dong J, Li D, Xu X, Xing W, et al. The Association between normal BMI with Central Adiposity and Proinflammatory potential immunoglobulin G N-Glycosylation. Diabetes Metab Syndr Obes. 2019;12:2373–85.PubMedPubMedCentralCrossRef
96.
go back to reference Tanigaki K, Sacharidou A, Peng J, Chambliss KL, Yuhanna IS, Ghosh D, et al. Hyposialylated IgG activates endothelial IgG receptor FcγRIIB to promote obesity-induced insulin resistance. J Clin Invest. 2018;128:309–22.PubMedCrossRef Tanigaki K, Sacharidou A, Peng J, Chambliss KL, Yuhanna IS, Ghosh D, et al. Hyposialylated IgG activates endothelial IgG receptor FcγRIIB to promote obesity-induced insulin resistance. J Clin Invest. 2018;128:309–22.PubMedCrossRef
97.
go back to reference Greto VL, Cvetko A, Štambuk T, Dempster NJ, Kifer D, Deriš H, et al. Extensive weight loss reduces glycan age by altering IgG N-glycosylation. Int J Obes (Lond). 2021;45:1521–31.PubMedCrossRef Greto VL, Cvetko A, Štambuk T, Dempster NJ, Kifer D, Deriš H, et al. Extensive weight loss reduces glycan age by altering IgG N-glycosylation. Int J Obes (Lond). 2021;45:1521–31.PubMedCrossRef
98.
go back to reference Arai S, Maehara N, Iwamura Y, Honda S, Nakashima K, Kai T, et al. Obesity-associated autoantibody production requires AIM to retain the immunoglobulin M immune complex on follicular dendritic cells. Cell Rep. 2013;3:1187–98.PubMedCrossRef Arai S, Maehara N, Iwamura Y, Honda S, Nakashima K, Kai T, et al. Obesity-associated autoantibody production requires AIM to retain the immunoglobulin M immune complex on follicular dendritic cells. Cell Rep. 2013;3:1187–98.PubMedCrossRef
99.
go back to reference Pham TD, Chng MHY, Roskin KM, Jackson KJL, Nguyen KD, Glanville J, et al. High-fat diet induces systemic B-cell repertoire changes associated with insulin resistance. Mucosal Immunol. 2017;10:1468–79.PubMedCrossRef Pham TD, Chng MHY, Roskin KM, Jackson KJL, Nguyen KD, Glanville J, et al. High-fat diet induces systemic B-cell repertoire changes associated with insulin resistance. Mucosal Immunol. 2017;10:1468–79.PubMedCrossRef
104.
go back to reference Frasca D, Diaz A, Romero M, Blomberg BB. Metformin enhances B cell function and antibody responses of Elderly individuals with Type-2 diabetes Mellitus. Front Aging. 2021;2:715981.PubMedPubMedCentralCrossRef Frasca D, Diaz A, Romero M, Blomberg BB. Metformin enhances B cell function and antibody responses of Elderly individuals with Type-2 diabetes Mellitus. Front Aging. 2021;2:715981.PubMedPubMedCentralCrossRef
106.
go back to reference Iborra-Pernichi M, Ruiz García J, Velasco de la Esperanza M, Estrada BS, Bovolenta ER, Cifuentes C, et al. Defective mitochondria remodelling in B cells leads to an aged immune response. Nat Commun. 2024;15:2569.PubMedPubMedCentralCrossRef Iborra-Pernichi M, Ruiz García J, Velasco de la Esperanza M, Estrada BS, Bovolenta ER, Cifuentes C, et al. Defective mitochondria remodelling in B cells leads to an aged immune response. Nat Commun. 2024;15:2569.PubMedPubMedCentralCrossRef
107.
go back to reference Lanahan SM, Yang L, Jones KM, Qi Z, Cabrera EC, Cominsky LY, et al. PI3Kγ in B cells promotes antibody responses and generation of antibody-secreting cells. Nat Immunol. 2024;25:1422–31.PubMedCrossRef Lanahan SM, Yang L, Jones KM, Qi Z, Cabrera EC, Cominsky LY, et al. PI3Kγ in B cells promotes antibody responses and generation of antibody-secreting cells. Nat Immunol. 2024;25:1422–31.PubMedCrossRef
108.
go back to reference Khan S, Chakraborty M, Wu F, Chen N, Wang T, Chan YT et al. B cells promote T cell immunosenescence and mammalian aging parameters. bioRxiv. 2023;2023.09.12.556363. Khan S, Chakraborty M, Wu F, Chen N, Wang T, Chan YT et al. B cells promote T cell immunosenescence and mammalian aging parameters. bioRxiv. 2023;2023.09.12.556363.
109.
go back to reference Arvey A, Rowe M, Legutki JB, An G, Gollapudi A, Lei A, et al. Age-associated changes in the circulating human antibody repertoire are upregulated in autoimmunity. Immun Ageing. 2020;17:28.PubMedPubMedCentralCrossRef Arvey A, Rowe M, Legutki JB, An G, Gollapudi A, Lei A, et al. Age-associated changes in the circulating human antibody repertoire are upregulated in autoimmunity. Immun Ageing. 2020;17:28.PubMedPubMedCentralCrossRef
110.
go back to reference Kumar SJ, Shukla S, Kumar S, Mishra P. Immunosenescence and Inflamm-Aging: clinical interventions and the potential for reversal of aging. Cureus. 2024;16:e53297.PubMedPubMedCentral Kumar SJ, Shukla S, Kumar S, Mishra P. Immunosenescence and Inflamm-Aging: clinical interventions and the potential for reversal of aging. Cureus. 2024;16:e53297.PubMedPubMedCentral
111.
go back to reference Frasca D, Romero M, Garcia D, Diaz A, Blomberg BB. Hyper-metabolic B cells in the spleens of old mice make antibodies with autoimmune specificities. Immun Ageing. 2021;18:9.PubMedPubMedCentralCrossRef Frasca D, Romero M, Garcia D, Diaz A, Blomberg BB. Hyper-metabolic B cells in the spleens of old mice make antibodies with autoimmune specificities. Immun Ageing. 2021;18:9.PubMedPubMedCentralCrossRef
112.
go back to reference Ma S, Ji Z, Zhang B, Geng L, Cai Y, Nie C et al. Spatial transcriptomic landscape unveils immunoglobin-associated senescence as a hallmark of aging. Cell. 2024;S0092-8674(24)01201-7. Ma S, Ji Z, Zhang B, Geng L, Cai Y, Nie C et al. Spatial transcriptomic landscape unveils immunoglobin-associated senescence as a hallmark of aging. Cell. 2024;S0092-8674(24)01201-7.
113.
go back to reference Gibson KL, Wu Y-C, Barnett Y, Duggan O, Vaughan R, Kondeatis E, et al. B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell. 2009;8:18–25.PubMedCrossRef Gibson KL, Wu Y-C, Barnett Y, Duggan O, Vaughan R, Kondeatis E, et al. B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell. 2009;8:18–25.PubMedCrossRef
115.
go back to reference Rodriguez-Zhurbenko N, Quach TD, Hopkins TJ, Rothstein TL, Hernandez AM. Human B-1 cells and B-1 cell antibodies change with advancing age. Front Immunol. 2019;10:483.PubMedPubMedCentralCrossRef Rodriguez-Zhurbenko N, Quach TD, Hopkins TJ, Rothstein TL, Hernandez AM. Human B-1 cells and B-1 cell antibodies change with advancing age. Front Immunol. 2019;10:483.PubMedPubMedCentralCrossRef
116.
go back to reference Van der Put E, Frasca D, King AM, Blomberg BB, Riley RL. Decreased E47 in senescent B cell precursors is stage specific and regulated posttranslationally by protein turnover. J Immunol. 2004;173:818–27.PubMedCrossRef Van der Put E, Frasca D, King AM, Blomberg BB, Riley RL. Decreased E47 in senescent B cell precursors is stage specific and regulated posttranslationally by protein turnover. J Immunol. 2004;173:818–27.PubMedCrossRef
117.
go back to reference Frasca D, Landin AM, Lechner SC, Ryan JG, Schwartz R, Riley RL, et al. Aging down-regulates the transcription factor E2A, activation-induced cytidine deaminase, and ig class switch in human B cells. J Immunol. 2008;180:5283–90.PubMedCrossRef Frasca D, Landin AM, Lechner SC, Ryan JG, Schwartz R, Riley RL, et al. Aging down-regulates the transcription factor E2A, activation-induced cytidine deaminase, and ig class switch in human B cells. J Immunol. 2008;180:5283–90.PubMedCrossRef
118.
go back to reference Collier DA, Ferreira IATM, Kotagiri P, Datir RP, Lim EY, Touizer E, et al. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature. 2021;596:417–22.PubMedPubMedCentralCrossRef Collier DA, Ferreira IATM, Kotagiri P, Datir RP, Lim EY, Touizer E, et al. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature. 2021;596:417–22.PubMedPubMedCentralCrossRef
119.
go back to reference Bastard P, Gervais A, Le Voyer T, Rosain J, Philippot Q, Manry J, et al. Autoantibodies neutralizing type I IFNs are present in ~ 4% of uninfected individuals over 70 years old and account for ~ 20% of COVID-19 deaths. Sci Immunol. 2021;6:eabl4340.PubMedPubMedCentralCrossRef Bastard P, Gervais A, Le Voyer T, Rosain J, Philippot Q, Manry J, et al. Autoantibodies neutralizing type I IFNs are present in ~ 4% of uninfected individuals over 70 years old and account for ~ 20% of COVID-19 deaths. Sci Immunol. 2021;6:eabl4340.PubMedPubMedCentralCrossRef
120.
go back to reference Johnson SA, Rozzo SJ, Cambier JC. Aging-dependent exclusion of antigen-inexperienced cells from the peripheral B cell repertoire. J Immunol. 2002;168:5014–23.PubMedCrossRef Johnson SA, Rozzo SJ, Cambier JC. Aging-dependent exclusion of antigen-inexperienced cells from the peripheral B cell repertoire. J Immunol. 2002;168:5014–23.PubMedCrossRef
121.
go back to reference Ahmed R, Omidian Z, Donner T, Hamad ARA. Hiding in plain sight: time to unlock autoimmune clues in human CD5 + B cells by using nextgen technology. Discov Med. 2018;26:79–83.PubMedPubMedCentral Ahmed R, Omidian Z, Donner T, Hamad ARA. Hiding in plain sight: time to unlock autoimmune clues in human CD5 + B cells by using nextgen technology. Discov Med. 2018;26:79–83.PubMedPubMedCentral
123.
go back to reference Ruan P, Wang S, Yang M, Wu H. The ABC-associated Immunosenescence and Lifestyle interventions in Autoimmune Disease. Rheumatol Immunol Res. 2022;3:128–35.PubMedPubMedCentralCrossRef Ruan P, Wang S, Yang M, Wu H. The ABC-associated Immunosenescence and Lifestyle interventions in Autoimmune Disease. Rheumatol Immunol Res. 2022;3:128–35.PubMedPubMedCentralCrossRef
124.
go back to reference Colonna-Romano G, Bulati M, Aquino A, Pellicanò M, Vitello S, Lio D, et al. A double-negative (IgD-CD27-) B cell population is increased in the peripheral blood of elderly people. Mech Ageing Dev. 2009;130:681–90.PubMedCrossRef Colonna-Romano G, Bulati M, Aquino A, Pellicanò M, Vitello S, Lio D, et al. A double-negative (IgD-CD27-) B cell population is increased in the peripheral blood of elderly people. Mech Ageing Dev. 2009;130:681–90.PubMedCrossRef
125.
go back to reference Hao Y, O’Neill P, Naradikian MS, Scholz JL, Cancro MP. A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood. 2011;118:1294–304.PubMedPubMedCentralCrossRef Hao Y, O’Neill P, Naradikian MS, Scholz JL, Cancro MP. A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood. 2011;118:1294–304.PubMedPubMedCentralCrossRef
127.
go back to reference Nickerson KM, Smita S, Hoehn KB, Marinov AD, Thomas KB, Kos JT, et al. Age-associated B cells are heterogeneous and dynamic drivers of autoimmunity in mice. J Exp Med. 2023;220:e20221346.PubMedPubMedCentralCrossRef Nickerson KM, Smita S, Hoehn KB, Marinov AD, Thomas KB, Kos JT, et al. Age-associated B cells are heterogeneous and dynamic drivers of autoimmunity in mice. J Exp Med. 2023;220:e20221346.PubMedPubMedCentralCrossRef
128.
go back to reference Rubtsov AV, Rubtsova K, Kappler JW, Marrack P. TLR7 drives accumulation of ABCs and autoantibody production in autoimmune-prone mice. Immunol Res. 2013;55:210–6.PubMedPubMedCentralCrossRef Rubtsov AV, Rubtsova K, Kappler JW, Marrack P. TLR7 drives accumulation of ABCs and autoantibody production in autoimmune-prone mice. Immunol Res. 2013;55:210–6.PubMedPubMedCentralCrossRef
129.
go back to reference Dai D, Gu S, Han X, Ding H, Jiang Y, Zhang X, et al. The transcription factor ZEB2 drives the formation of age-associated B cells. Science. 2024;383:413–21.PubMedPubMedCentralCrossRef Dai D, Gu S, Han X, Ding H, Jiang Y, Zhang X, et al. The transcription factor ZEB2 drives the formation of age-associated B cells. Science. 2024;383:413–21.PubMedPubMedCentralCrossRef
131.
go back to reference Vidal-Pedrola G, Naamane N, Cameron JA, Pratt AG, Mellor AL, Isaacs JD, et al. Characterization of age-associated B cells in early drug-naïve rheumatoid arthritis patients. Immunology. 2023;168:640–53.PubMedCrossRef Vidal-Pedrola G, Naamane N, Cameron JA, Pratt AG, Mellor AL, Isaacs JD, et al. Characterization of age-associated B cells in early drug-naïve rheumatoid arthritis patients. Immunology. 2023;168:640–53.PubMedCrossRef
132.
go back to reference Wang S, Wang J, Kumar V, Karnell JL, Naiman B, Gross PS, et al. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet + B cells in SLE. Nat Commun. 2018;9:1758.PubMedPubMedCentralCrossRef Wang S, Wang J, Kumar V, Karnell JL, Naiman B, Gross PS, et al. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet + B cells in SLE. Nat Commun. 2018;9:1758.PubMedPubMedCentralCrossRef
133.
go back to reference Riley RL, Khomtchouk K, Blomberg BB. Age-associated B cells (ABC) inhibit B lymphopoiesis and alter antibody repertoires in old age. Cell Immunol. 2017;321:61–7.PubMedCrossRef Riley RL, Khomtchouk K, Blomberg BB. Age-associated B cells (ABC) inhibit B lymphopoiesis and alter antibody repertoires in old age. Cell Immunol. 2017;321:61–7.PubMedCrossRef
134.
go back to reference Bagavant H, Durslewicz J, Pyclik M, Makuch M, Papinska JA, Deshmukh US. Age-associated B cell infiltration in salivary glands represents a hallmark of Sjögren’s-like disease in aging mice. Geroscience. 2024. Bagavant H, Durslewicz J, Pyclik M, Makuch M, Papinska JA, Deshmukh US. Age-associated B cell infiltration in salivary glands represents a hallmark of Sjögren’s-like disease in aging mice. Geroscience. 2024.
135.
go back to reference Nagele EP, Han M, Acharya NK, DeMarshall C, Kosciuk MC, Nagele RG. Natural IgG autoantibodies are abundant and ubiquitous in human sera, and their number is influenced by age, gender, and disease. PLoS ONE. 2013;8:e60726.PubMedPubMedCentralCrossRef Nagele EP, Han M, Acharya NK, DeMarshall C, Kosciuk MC, Nagele RG. Natural IgG autoantibodies are abundant and ubiquitous in human sera, and their number is influenced by age, gender, and disease. PLoS ONE. 2013;8:e60726.PubMedPubMedCentralCrossRef
136.
go back to reference Yin J, Ibrahim S, Petersen F, Yu X. Autoimmunomic signatures of aging and age-related neurodegenerative diseases are Associated with brain function and ribosomal proteins. Front Aging Neurosci. 2021;13:679688.PubMedPubMedCentralCrossRef Yin J, Ibrahim S, Petersen F, Yu X. Autoimmunomic signatures of aging and age-related neurodegenerative diseases are Associated with brain function and ribosomal proteins. Front Aging Neurosci. 2021;13:679688.PubMedPubMedCentralCrossRef
137.
go back to reference Fernbach S, Mair NK, Abela IA, Groen K, Kuratli R, Lork M et al. Longitudinal analysis over decades reveals the Development and Immune implications of Type I Interferon autoantibodies in an Aging Population. medRxiv. 2024;2024.02.27.24303363. Fernbach S, Mair NK, Abela IA, Groen K, Kuratli R, Lork M et al. Longitudinal analysis over decades reveals the Development and Immune implications of Type I Interferon autoantibodies in an Aging Population. medRxiv. 2024;2024.02.27.24303363.
138.
go back to reference Shen X, Wang C, Zhou X, Zhou W, Hornburg D, Wu S et al. Nonlinear dynamics of multi-omics profiles during human aging. Nat Aging. 2024. Shen X, Wang C, Zhou X, Zhou W, Hornburg D, Wu S et al. Nonlinear dynamics of multi-omics profiles during human aging. Nat Aging. 2024.
139.
go back to reference Lehallier B, Gate D, Schaum N, Nanasi T, Lee SE, Yousef H, et al. Undulating changes in human plasma proteome profiles across the lifespan. Nat Med. 2019;25:1843–50.PubMedPubMedCentralCrossRef Lehallier B, Gate D, Schaum N, Nanasi T, Lee SE, Yousef H, et al. Undulating changes in human plasma proteome profiles across the lifespan. Nat Med. 2019;25:1843–50.PubMedPubMedCentralCrossRef
140.
go back to reference Nie C, Li Y, Li R, Yan Y, Zhang D, Li T, et al. Distinct biological ages of organs and systems identified from a multi-omics study. Cell Rep. 2022;38:110459.PubMedCrossRef Nie C, Li Y, Li R, Yan Y, Zhang D, Li T, et al. Distinct biological ages of organs and systems identified from a multi-omics study. Cell Rep. 2022;38:110459.PubMedCrossRef
141.
go back to reference Olecka M, van Bömmel A, Best L, Haase M, Foerste S, Riege K, et al. Nonlinear DNA methylation trajectories in aging male mice. Nat Commun. 2024;15:3074.PubMedPubMedCentralCrossRef Olecka M, van Bömmel A, Best L, Haase M, Foerste S, Riege K, et al. Nonlinear DNA methylation trajectories in aging male mice. Nat Commun. 2024;15:3074.PubMedPubMedCentralCrossRef
143.
go back to reference Wu A-L, Kolumam G, Stawicki S, Chen Y, Li J, Zavala-Solorio J, et al. Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1. Sci Transl Med. 2011;3:113ra126.PubMedCrossRef Wu A-L, Kolumam G, Stawicki S, Chen Y, Li J, Zavala-Solorio J, et al. Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1. Sci Transl Med. 2011;3:113ra126.PubMedCrossRef
145.
go back to reference van de Stadt LA, de Koning MHMT, van de Stadt RJ, Wolbink G, Dijkmans BAC, Hamann D, et al. Development of the anti-citrullinated protein antibody repertoire prior to the onset of rheumatoid arthritis. Arthritis Rheum. 2011;63:3226–33.PubMedCrossRef van de Stadt LA, de Koning MHMT, van de Stadt RJ, Wolbink G, Dijkmans BAC, Hamann D, et al. Development of the anti-citrullinated protein antibody repertoire prior to the onset of rheumatoid arthritis. Arthritis Rheum. 2011;63:3226–33.PubMedCrossRef
146.
go back to reference Wu C-Y, Yang H-Y, Lai J-H. Anti-citrullinated Protein Antibodies in patients with rheumatoid arthritis: Biological effects and mechanisms of Immunopathogenesis. Int J Mol Sci. 2020;21:4015.PubMedPubMedCentralCrossRef Wu C-Y, Yang H-Y, Lai J-H. Anti-citrullinated Protein Antibodies in patients with rheumatoid arthritis: Biological effects and mechanisms of Immunopathogenesis. Int J Mol Sci. 2020;21:4015.PubMedPubMedCentralCrossRef
147.
148.
go back to reference Malmström V, Catrina AI, Klareskog L. The immunopathogenesis of seropositive rheumatoid arthritis: from triggering to targeting. Nat Rev Immunol. 2017;17:60–75.PubMedCrossRef Malmström V, Catrina AI, Klareskog L. The immunopathogenesis of seropositive rheumatoid arthritis: from triggering to targeting. Nat Rev Immunol. 2017;17:60–75.PubMedCrossRef
149.
go back to reference Visvabharathy L, Zhu C, Orban ZS, Yarnoff K, Palacio N, Jimenez M et al. Autoantibody production is enhanced after mild SARS-CoV-2 infection despite vaccination in individuals with and without long COVID. medRxiv. 2023;2023.04.07.23288243. Visvabharathy L, Zhu C, Orban ZS, Yarnoff K, Palacio N, Jimenez M et al. Autoantibody production is enhanced after mild SARS-CoV-2 infection despite vaccination in individuals with and without long COVID. medRxiv. 2023;2023.04.07.23288243.
150.
go back to reference Acosta-Ampudia Y, Monsalve DM, Rojas M, Rodríguez Y, Zapata E, Ramírez-Santana C, et al. Persistent autoimmune activation and Proinflammatory State in Post-coronavirus Disease 2019 Syndrome. J Infect Dis. 2022;225:2155–62.PubMedCrossRef Acosta-Ampudia Y, Monsalve DM, Rojas M, Rodríguez Y, Zapata E, Ramírez-Santana C, et al. Persistent autoimmune activation and Proinflammatory State in Post-coronavirus Disease 2019 Syndrome. J Infect Dis. 2022;225:2155–62.PubMedCrossRef
151.
go back to reference Cervia-Hasler C, Brüningk SC, Hoch T, Fan B, Muzio G, Thompson RC, et al. Persistent complement dysregulation with signs of thromboinflammation in active long covid. Science. 2024;383:eadg7942.PubMedCrossRef Cervia-Hasler C, Brüningk SC, Hoch T, Fan B, Muzio G, Thompson RC, et al. Persistent complement dysregulation with signs of thromboinflammation in active long covid. Science. 2024;383:eadg7942.PubMedCrossRef
152.
go back to reference Yin K, Peluso MJ, Luo X, Thomas R, Shin M-G, Neidleman J, et al. Long COVID manifests with T cell dysregulation, inflammation and an uncoordinated adaptive immune response to SARS-CoV-2. Nat Immunol. 2024;25:218–25.PubMedPubMedCentralCrossRef Yin K, Peluso MJ, Luo X, Thomas R, Shin M-G, Neidleman J, et al. Long COVID manifests with T cell dysregulation, inflammation and an uncoordinated adaptive immune response to SARS-CoV-2. Nat Immunol. 2024;25:218–25.PubMedPubMedCentralCrossRef
153.
154.
go back to reference Tanaka T, Biancotto A, Moaddel R, Moore AZ, Gonzalez-Freire M, Aon MA, et al. Plasma proteomic signature of age in healthy humans. Aging Cell. 2018;17:e12799.PubMedPubMedCentralCrossRef Tanaka T, Biancotto A, Moaddel R, Moore AZ, Gonzalez-Freire M, Aon MA, et al. Plasma proteomic signature of age in healthy humans. Aging Cell. 2018;17:e12799.PubMedPubMedCentralCrossRef
155.
go back to reference Cao W, Zheng D, Wang G, Zhang J, Ge S, Singh M, et al. Modelling biological age based on plasma peptides in Han Chinese adults. Aging. 2020;12:10676–86.PubMedPubMedCentralCrossRef Cao W, Zheng D, Wang G, Zhang J, Ge S, Singh M, et al. Modelling biological age based on plasma peptides in Han Chinese adults. Aging. 2020;12:10676–86.PubMedPubMedCentralCrossRef
156.
go back to reference Li Z, Wu H, Luo Y, Tan X. Correlation of serum complement factor 5a level with inflammatory response and cognitive function in patients with Alzheimer’s disease of different severity. BMC Neurol. 2023;23:319.PubMedPubMedCentralCrossRef Li Z, Wu H, Luo Y, Tan X. Correlation of serum complement factor 5a level with inflammatory response and cognitive function in patients with Alzheimer’s disease of different severity. BMC Neurol. 2023;23:319.PubMedPubMedCentralCrossRef
157.
go back to reference Pappworth IY, Kulik L, Haluszczak C, Reuter JW, Holers VM, Marchbank KJ. Increased B cell deletion and significantly reduced auto-antibody titre due to premature expression of human complement receptor 2 (CR2, CD21). Mol Immunol. 2009;46:1042–9.PubMedPubMedCentralCrossRef Pappworth IY, Kulik L, Haluszczak C, Reuter JW, Holers VM, Marchbank KJ. Increased B cell deletion and significantly reduced auto-antibody titre due to premature expression of human complement receptor 2 (CR2, CD21). Mol Immunol. 2009;46:1042–9.PubMedPubMedCentralCrossRef
159.
go back to reference Phan TG, Grigorova I, Okada T, Cyster JG. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat Immunol. 2007;8:992–1000.PubMedCrossRef Phan TG, Grigorova I, Okada T, Cyster JG. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat Immunol. 2007;8:992–1000.PubMedCrossRef
160.
go back to reference McCloskey ML, Curotto de Lafaille MA, Carroll MC, Erlebacher A. Acquisition and presentation of follicular dendritic cell-bound antigen by lymph node-resident dendritic cells. J Exp Med. 2011;208:135–48.PubMedPubMedCentralCrossRef McCloskey ML, Curotto de Lafaille MA, Carroll MC, Erlebacher A. Acquisition and presentation of follicular dendritic cell-bound antigen by lymph node-resident dendritic cells. J Exp Med. 2011;208:135–48.PubMedPubMedCentralCrossRef
161.
go back to reference Hearps AC, Martin GE, Angelovich TA, Cheng W-J, Maisa A, Landay AL, et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell. 2012;11:867–75.PubMedCrossRef Hearps AC, Martin GE, Angelovich TA, Cheng W-J, Maisa A, Landay AL, et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell. 2012;11:867–75.PubMedCrossRef
162.
go back to reference Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol. 2018;18:46–61.PubMedCrossRef Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol. 2018;18:46–61.PubMedCrossRef
163.
go back to reference Yang X, Zhang X, Zhao X, Yuan M, Zhang K, Dai J, et al. Antibody-dependent enhancement: ″Evil″ antibodies favorable for viral infections. Viruses. 2022;14:1739.PubMedPubMedCentralCrossRef Yang X, Zhang X, Zhao X, Yuan M, Zhang K, Dai J, et al. Antibody-dependent enhancement: ″Evil″ antibodies favorable for viral infections. Viruses. 2022;14:1739.PubMedPubMedCentralCrossRef
164.
go back to reference Sawant J, Patil A, Kurle S. A review: understanding molecular mechanisms of antibody-dependent enhancement in viral infections. Vaccines (Basel). 2023;11:1240.PubMedCrossRef Sawant J, Patil A, Kurle S. A review: understanding molecular mechanisms of antibody-dependent enhancement in viral infections. Vaccines (Basel). 2023;11:1240.PubMedCrossRef
166.
go back to reference Chalayer E, Gramont B, Zekre F, Goguyer-Deschaumes R, Waeckel L, Grange L, et al. Fc receptors gone wrong: a comprehensive review of their roles in autoimmune and inflammatory diseases. Autoimmun Rev. 2022;21:103016.PubMedCrossRef Chalayer E, Gramont B, Zekre F, Goguyer-Deschaumes R, Waeckel L, Grange L, et al. Fc receptors gone wrong: a comprehensive review of their roles in autoimmune and inflammatory diseases. Autoimmun Rev. 2022;21:103016.PubMedCrossRef
167.
go back to reference Yu X, Lazarus AH. Targeting FcγRs to treat antibody-dependent autoimmunity. Autoimmun Rev. 2016;15:510–2.PubMedCrossRef Yu X, Lazarus AH. Targeting FcγRs to treat antibody-dependent autoimmunity. Autoimmun Rev. 2016;15:510–2.PubMedCrossRef
168.
go back to reference Reefman E, Horst G, Nijk MT, Limburg PC, Kallenberg CGM, Bijl M. Opsonization of late apoptotic cells by systemic lupus erythematosus autoantibodies inhibits their uptake via an fcgamma receptor-dependent mechanism. Arthritis Rheum. 2007;56:3399–411.PubMedCrossRef Reefman E, Horst G, Nijk MT, Limburg PC, Kallenberg CGM, Bijl M. Opsonization of late apoptotic cells by systemic lupus erythematosus autoantibodies inhibits their uptake via an fcgamma receptor-dependent mechanism. Arthritis Rheum. 2007;56:3399–411.PubMedCrossRef
169.
go back to reference Fukue R, Okazaki Y, Gono T, Kuwana M. Abatacept downregulates Fcγ receptor I on circulating monocytes: a potential therapeutic mechanism in patients with rheumatoid arthritis. Arthritis Res Ther. 2022;24:194.PubMedPubMedCentralCrossRef Fukue R, Okazaki Y, Gono T, Kuwana M. Abatacept downregulates Fcγ receptor I on circulating monocytes: a potential therapeutic mechanism in patients with rheumatoid arthritis. Arthritis Res Ther. 2022;24:194.PubMedPubMedCentralCrossRef
170.
go back to reference van Beek L, Vroegrijk IOCM, Katiraei S, Heemskerk MM, van Dam AD, Kooijman S, et al. FcRγ-chain deficiency reduces the development of diet-induced obesity. Obes (Silver Spring). 2015;23:2435–44.CrossRef van Beek L, Vroegrijk IOCM, Katiraei S, Heemskerk MM, van Dam AD, Kooijman S, et al. FcRγ-chain deficiency reduces the development of diet-induced obesity. Obes (Silver Spring). 2015;23:2435–44.CrossRef
171.
go back to reference Yu L, Wan Q, Liu Q, Fan Y, Zhou Q, Skowronski AA, et al. IgG is an aging factor that drives adipose tissue fibrosis and metabolic decline. Cell Metab. 2024;36:793–e8075.PubMedCrossRef Yu L, Wan Q, Liu Q, Fan Y, Zhou Q, Skowronski AA, et al. IgG is an aging factor that drives adipose tissue fibrosis and metabolic decline. Cell Metab. 2024;36:793–e8075.PubMedCrossRef
172.
go back to reference Pellerin K, Rubino SJ, Burns JC, Smith BA, McCarl C-A, Zhu J, et al. MOG autoantibodies trigger a tightly-controlled FcR and BTK-driven microglia proliferative response. Brain. 2021;144:2361–74.PubMedCrossRef Pellerin K, Rubino SJ, Burns JC, Smith BA, McCarl C-A, Zhu J, et al. MOG autoantibodies trigger a tightly-controlled FcR and BTK-driven microglia proliferative response. Brain. 2021;144:2361–74.PubMedCrossRef
173.
go back to reference King AM, Keating P, Prabhu A, Blomberg BB, Riley RL. NK cells in the CD19- B220 + bone marrow fraction are increased in senescence and reduce E2A and surrogate light chain proteins in B cell precursors. Mech Ageing Dev. 2009;130:384–92.PubMedPubMedCentralCrossRef King AM, Keating P, Prabhu A, Blomberg BB, Riley RL. NK cells in the CD19- B220 + bone marrow fraction are increased in senescence and reduce E2A and surrogate light chain proteins in B cell precursors. Mech Ageing Dev. 2009;130:384–92.PubMedPubMedCentralCrossRef
174.
go back to reference Ming B, Wu T, Cai S, Hu P, Tang J, Zheng F, et al. The increased ratio of blood CD56bright NK to CD56dim NK is a distinguishing feature of primary Sjögren’s syndrome. J Immunol Res. 2020;2020:7523914.PubMedPubMedCentralCrossRef Ming B, Wu T, Cai S, Hu P, Tang J, Zheng F, et al. The increased ratio of blood CD56bright NK to CD56dim NK is a distinguishing feature of primary Sjögren’s syndrome. J Immunol Res. 2020;2020:7523914.PubMedPubMedCentralCrossRef
175.
go back to reference Chalan P, Bijzet J, Kroesen B-J, Boots AMH, Brouwer E. Altered natural killer cell subsets in Seropositive Arthralgia and Early Rheumatoid Arthritis are Associated with Autoantibody Status. J Rheumatol. 2016;43:1008–16.PubMedCrossRef Chalan P, Bijzet J, Kroesen B-J, Boots AMH, Brouwer E. Altered natural killer cell subsets in Seropositive Arthralgia and Early Rheumatoid Arthritis are Associated with Autoantibody Status. J Rheumatol. 2016;43:1008–16.PubMedCrossRef
177.
go back to reference Lastwika KJ, Lampe PD. Breaking tolerance: autoantibodies can target protein posttranslational modifications. Curr Opin Biotechnol. 2024;85:103056.PubMedCrossRef Lastwika KJ, Lampe PD. Breaking tolerance: autoantibodies can target protein posttranslational modifications. Curr Opin Biotechnol. 2024;85:103056.PubMedCrossRef
178.
go back to reference van Eijkeren RJ, Krabbe O, Boes M, Schipper HS, Kalkhoven E. Endogenous lipid antigens for invariant natural killer T cells hold the reins in adipose tissue homeostasis. Immunology. 2018;153:179–89.PubMedCrossRef van Eijkeren RJ, Krabbe O, Boes M, Schipper HS, Kalkhoven E. Endogenous lipid antigens for invariant natural killer T cells hold the reins in adipose tissue homeostasis. Immunology. 2018;153:179–89.PubMedCrossRef
179.
go back to reference Corona-Sanchez EG, Martínez-García EA, Lujano-Benítez AV, Pizano-Martinez O, Guerra-Durán IA, Chavarria-Avila E, et al. Autoantibodies in the pathogenesis of idiopathic inflammatory myopathies: does the endoplasmic reticulum stress response have a role? Front Immunol. 2022;13:940122.PubMedPubMedCentralCrossRef Corona-Sanchez EG, Martínez-García EA, Lujano-Benítez AV, Pizano-Martinez O, Guerra-Durán IA, Chavarria-Avila E, et al. Autoantibodies in the pathogenesis of idiopathic inflammatory myopathies: does the endoplasmic reticulum stress response have a role? Front Immunol. 2022;13:940122.PubMedPubMedCentralCrossRef
180.
go back to reference Pang Z, Kushiyama A, Sun J, Kikuchi T, Yamazaki H, Iwamoto Y, et al. Glial fibrillary acidic protein (GFAP) is a novel biomarker for the prediction of autoimmune diabetes. FASEB J. 2017;31:4053–63.PubMedCrossRef Pang Z, Kushiyama A, Sun J, Kikuchi T, Yamazaki H, Iwamoto Y, et al. Glial fibrillary acidic protein (GFAP) is a novel biomarker for the prediction of autoimmune diabetes. FASEB J. 2017;31:4053–63.PubMedCrossRef
181.
go back to reference Mancardi GL, Cadoni A, Tabaton M, Schenone A, Zicca A, De Martini I, et al. Schwann cell GFAP expression increases in axonal neuropathies. J Neurol Sci. 1991;102:177–83.PubMedCrossRef Mancardi GL, Cadoni A, Tabaton M, Schenone A, Zicca A, De Martini I, et al. Schwann cell GFAP expression increases in axonal neuropathies. J Neurol Sci. 1991;102:177–83.PubMedCrossRef
182.
go back to reference Yang Z, Wang KKW. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015;38:364–74.PubMedPubMedCentralCrossRef Yang Z, Wang KKW. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015;38:364–74.PubMedPubMedCentralCrossRef
183.
go back to reference Buckman LB, Thompson MM, Moreno HN, Ellacott KLJ. Regional astrogliosis in the mouse hypothalamus in response to obesity. J Comp Neurol. 2013;521:1322–33.PubMedPubMedCentralCrossRef Buckman LB, Thompson MM, Moreno HN, Ellacott KLJ. Regional astrogliosis in the mouse hypothalamus in response to obesity. J Comp Neurol. 2013;521:1322–33.PubMedPubMedCentralCrossRef
184.
go back to reference Yi C-X, Tschöp MH, Woods SC, Hofmann SM. High-fat-diet exposure induces IgG accumulation in hypothalamic microglia. Dis Model Mech. 2012;5:686–90.PubMedPubMedCentral Yi C-X, Tschöp MH, Woods SC, Hofmann SM. High-fat-diet exposure induces IgG accumulation in hypothalamic microglia. Dis Model Mech. 2012;5:686–90.PubMedPubMedCentral
185.
go back to reference Bhat S, Jagadeeshaprasad MG, Patil YR, Shaikh ML, Regin BS, Mohan V, et al. Proteomic insight reveals elevated levels of Albumin in circulating Immune complexes in Diabetic plasma. Mol Cell Proteom. 2016;15:2011–20.CrossRef Bhat S, Jagadeeshaprasad MG, Patil YR, Shaikh ML, Regin BS, Mohan V, et al. Proteomic insight reveals elevated levels of Albumin in circulating Immune complexes in Diabetic plasma. Mol Cell Proteom. 2016;15:2011–20.CrossRef
186.
go back to reference Korça E, Piskovatska V, Börgermann J, Navarrete Santos A, Simm A. Circulating antibodies against age-modified proteins in patients with coronary atherosclerosis. Sci Rep. 2020;10:17105.PubMedPubMedCentralCrossRef Korça E, Piskovatska V, Börgermann J, Navarrete Santos A, Simm A. Circulating antibodies against age-modified proteins in patients with coronary atherosclerosis. Sci Rep. 2020;10:17105.PubMedPubMedCentralCrossRef
188.
go back to reference Wong-Baeza C, Reséndiz-Mora A, Donis-Maturano L, Wong-Baeza I, Zárate-Neira L, Yam-Puc JC, et al. Anti-lipid IgG antibodies are produced via Germinal centers in a murine model resembling human lupus. Front Immunol. 2016;7:396.PubMedPubMedCentralCrossRef Wong-Baeza C, Reséndiz-Mora A, Donis-Maturano L, Wong-Baeza I, Zárate-Neira L, Yam-Puc JC, et al. Anti-lipid IgG antibodies are produced via Germinal centers in a murine model resembling human lupus. Front Immunol. 2016;7:396.PubMedPubMedCentralCrossRef
189.
go back to reference Zhang X, Meng J, Shi X, Quinet RJ, Davis W, Zakem J, et al. Lupus pathogenesis and autoimmunity are exacerbated by high fat diet-induced obesity in MRL/lpr mice. Lupus Sci Med. 2023;10:e000898.PubMedPubMedCentralCrossRef Zhang X, Meng J, Shi X, Quinet RJ, Davis W, Zakem J, et al. Lupus pathogenesis and autoimmunity are exacerbated by high fat diet-induced obesity in MRL/lpr mice. Lupus Sci Med. 2023;10:e000898.PubMedPubMedCentralCrossRef
190.
go back to reference López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023;186:243–78.PubMedCrossRef López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023;186:243–78.PubMedCrossRef
191.
go back to reference Moqri M, Herzog C, Poganik JR, Biomarkers of Aging Consortium, Justice J, Belsky DW, et al. Biomarkers of aging for the identification and evaluation of longevity interventions. Cell. 2023;186:3758–75.PubMedPubMedCentralCrossRef Moqri M, Herzog C, Poganik JR, Biomarkers of Aging Consortium, Justice J, Belsky DW, et al. Biomarkers of aging for the identification and evaluation of longevity interventions. Cell. 2023;186:3758–75.PubMedPubMedCentralCrossRef
192.
go back to reference Guo L, Ren H, Fan S, Chao X, Liu M, Guan H, et al. Autoantibodies against eukaryotic translation elongation factor 1 delta in two patients with autoimmune cerebellar ataxia. Front Immunol. 2023;14:1289175.PubMedCrossRef Guo L, Ren H, Fan S, Chao X, Liu M, Guan H, et al. Autoantibodies against eukaryotic translation elongation factor 1 delta in two patients with autoimmune cerebellar ataxia. Front Immunol. 2023;14:1289175.PubMedCrossRef
193.
go back to reference Moadab F, Wang X, Najjar R, Ukadike KC, Hu S, Hulett T, et al. Argonaute, Vault, and ribosomal proteins targeted by autoantibodies in systemic Lupus Erythematosus. J Rheumatol. 2023;50:1136–44.PubMedPubMedCentralCrossRef Moadab F, Wang X, Najjar R, Ukadike KC, Hu S, Hulett T, et al. Argonaute, Vault, and ribosomal proteins targeted by autoantibodies in systemic Lupus Erythematosus. J Rheumatol. 2023;50:1136–44.PubMedPubMedCentralCrossRef
194.
go back to reference Stein KC, Morales-Polanco F, van der Lienden J, Rainbolt TK, Frydman J. Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis. Nature. 2022;601:637–42.PubMedPubMedCentralCrossRef Stein KC, Morales-Polanco F, van der Lienden J, Rainbolt TK, Frydman J. Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis. Nature. 2022;601:637–42.PubMedPubMedCentralCrossRef
195.
196.
go back to reference Lyu J, Zhang H, Wang C, Pan M. New insight in treating autoimmune diseases by targeting autophagy. Autoimmunity. 2024;57:2351872.PubMedCrossRef Lyu J, Zhang H, Wang C, Pan M. New insight in treating autoimmune diseases by targeting autophagy. Autoimmunity. 2024;57:2351872.PubMedCrossRef
197.
go back to reference Iannaccone A, Giorgianni F, New DD, Hollingsworth TJ, Umfress A, Alhatem AH, et al. Circulating autoantibodies in Age-Related Macular Degeneration Recognize Human Macular Tissue Antigens Implicated in Autophagy, Immunomodulation, and Protection from oxidative stress and apoptosis. PLoS ONE. 2015;10:e0145323.PubMedPubMedCentralCrossRef Iannaccone A, Giorgianni F, New DD, Hollingsworth TJ, Umfress A, Alhatem AH, et al. Circulating autoantibodies in Age-Related Macular Degeneration Recognize Human Macular Tissue Antigens Implicated in Autophagy, Immunomodulation, and Protection from oxidative stress and apoptosis. PLoS ONE. 2015;10:e0145323.PubMedPubMedCentralCrossRef
198.
go back to reference Korb CA, Beck S, Wolters D, Lorenz K, Pfeiffer N, Grus FH. Serum autoantibodies in patients with dry and wet age-related Macular Degeneration. J Clin Med. 2023;12:1590.PubMedPubMedCentralCrossRef Korb CA, Beck S, Wolters D, Lorenz K, Pfeiffer N, Grus FH. Serum autoantibodies in patients with dry and wet age-related Macular Degeneration. J Clin Med. 2023;12:1590.PubMedPubMedCentralCrossRef
199.
go back to reference Rai P, Janardhan KS, Meacham J, Madenspacher JH, Lin W-C, Karmaus PWF, et al. IRGM1 links mitochondrial quality control to autoimmunity. Nat Immunol. 2021;22:312–21.PubMedPubMedCentralCrossRef Rai P, Janardhan KS, Meacham J, Madenspacher JH, Lin W-C, Karmaus PWF, et al. IRGM1 links mitochondrial quality control to autoimmunity. Nat Immunol. 2021;22:312–21.PubMedPubMedCentralCrossRef
200.
go back to reference Selman M, Pardo A, Fibroageing. An ageing pathological feature driven by dysregulated extracellular matrix-cell mechanobiology. Ageing Res Rev. 2021;70:101393.PubMedCrossRef Selman M, Pardo A, Fibroageing. An ageing pathological feature driven by dysregulated extracellular matrix-cell mechanobiology. Ageing Res Rev. 2021;70:101393.PubMedCrossRef
201.
go back to reference Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G, Atkinson EJ, et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun. 2017;8:14532.PubMedPubMedCentralCrossRef Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G, Atkinson EJ, et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun. 2017;8:14532.PubMedPubMedCentralCrossRef
202.
go back to reference Adegunsoye A, Newton CA, Oldham JM, Ley B, Lee CT, Linderholm AL, et al. Telomere length associates with chronological age and mortality across racially diverse pulmonary fibrosis cohorts. Nat Commun. 2023;14:1489.PubMedPubMedCentralCrossRef Adegunsoye A, Newton CA, Oldham JM, Ley B, Lee CT, Linderholm AL, et al. Telomere length associates with chronological age and mortality across racially diverse pulmonary fibrosis cohorts. Nat Commun. 2023;14:1489.PubMedPubMedCentralCrossRef
204.
go back to reference Shen C-Y, Lu C-H, Wu C-H, Li K-J, Kuo Y-M, Hsieh S-C, et al. Molecular basis of Accelerated Aging with Immune dysfunction-mediated inflammation (Inflamm-Aging) in patients with systemic sclerosis. Cells. 2021;10:3402.PubMedPubMedCentralCrossRef Shen C-Y, Lu C-H, Wu C-H, Li K-J, Kuo Y-M, Hsieh S-C, et al. Molecular basis of Accelerated Aging with Immune dysfunction-mediated inflammation (Inflamm-Aging) in patients with systemic sclerosis. Cells. 2021;10:3402.PubMedPubMedCentralCrossRef
205.
go back to reference Adler BL, Boin F, Wolters PJ, Bingham CO, Shah AA, Greider C, et al. Autoantibodies targeting telomere-associated proteins in systemic sclerosis. Ann Rheum Dis. 2021;80:912–9.PubMedCrossRef Adler BL, Boin F, Wolters PJ, Bingham CO, Shah AA, Greider C, et al. Autoantibodies targeting telomere-associated proteins in systemic sclerosis. Ann Rheum Dis. 2021;80:912–9.PubMedCrossRef
206.
go back to reference Vulsteke J-B, Smith V, Bonroy C, Derua R, Blockmans D, De Haes P, et al. Identification of new telomere- and telomerase-associated autoantigens in systemic sclerosis. J Autoimmun. 2023;135:102988.PubMedCrossRef Vulsteke J-B, Smith V, Bonroy C, Derua R, Blockmans D, De Haes P, et al. Identification of new telomere- and telomerase-associated autoantigens in systemic sclerosis. J Autoimmun. 2023;135:102988.PubMedCrossRef
207.
go back to reference Derevyanko A, Whittemore K, Schneider RP, Jiménez V, Bosch F, Blasco MA. Gene therapy with the TRF1 telomere gene rescues decreased TRF1 levels with aging and prolongs mouse health span. Aging Cell. 2017;16:1353–68.PubMedPubMedCentralCrossRef Derevyanko A, Whittemore K, Schneider RP, Jiménez V, Bosch F, Blasco MA. Gene therapy with the TRF1 telomere gene rescues decreased TRF1 levels with aging and prolongs mouse health span. Aging Cell. 2017;16:1353–68.PubMedPubMedCentralCrossRef
208.
go back to reference Hohensinner PJ, Kaun C, Buchberger E, Ebenbauer B, Demyanets S, Huk I, et al. Age intrinsic loss of telomere protection via TRF1 reduction in endothelial cells. Biochim Biophys Acta. 2016;1863:360–7.PubMedCrossRef Hohensinner PJ, Kaun C, Buchberger E, Ebenbauer B, Demyanets S, Huk I, et al. Age intrinsic loss of telomere protection via TRF1 reduction in endothelial cells. Biochim Biophys Acta. 2016;1863:360–7.PubMedCrossRef
209.
go back to reference Toivola DM, Habtezion A, Misiorek JO, Zhang L, Nyström JH, Sharpe O, et al. Absence of keratin 8 or 18 promotes antimitochondrial autoantibody formation in aging male mice. FASEB J. 2015;29:5081–9.PubMedPubMedCentralCrossRef Toivola DM, Habtezion A, Misiorek JO, Zhang L, Nyström JH, Sharpe O, et al. Absence of keratin 8 or 18 promotes antimitochondrial autoantibody formation in aging male mice. FASEB J. 2015;29:5081–9.PubMedPubMedCentralCrossRef
210.
go back to reference Du H, Bartleson JM, Butenko S, Alonso V, Liu WF, Winer DA, et al. Tuning immunity through tissue mechanotransduction. Nat Rev Immunol. 2023;23:174–88.PubMedCrossRef Du H, Bartleson JM, Butenko S, Alonso V, Liu WF, Winer DA, et al. Tuning immunity through tissue mechanotransduction. Nat Rev Immunol. 2023;23:174–88.PubMedCrossRef
211.
go back to reference Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int. 2015;96:183–95.PubMedCrossRef Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int. 2015;96:183–95.PubMedCrossRef
212.
go back to reference Heo J-W, Yoo S-Z, No M-H, Park D-H, Kang J-H, Kim T-W, et al. Exercise Training attenuates obesity-Induced skeletal muscle remodeling and mitochondria-mediated apoptosis in the skeletal muscle. Int J Environ Res Public Health. 2018;15:2301.PubMedPubMedCentralCrossRef Heo J-W, Yoo S-Z, No M-H, Park D-H, Kang J-H, Kim T-W, et al. Exercise Training attenuates obesity-Induced skeletal muscle remodeling and mitochondria-mediated apoptosis in the skeletal muscle. Int J Environ Res Public Health. 2018;15:2301.PubMedPubMedCentralCrossRef
214.
go back to reference Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, et al. Impaired skeletal muscle regeneration in diabetes: from cellular and molecular mechanisms to novel treatments. Cell Metab. 2024;36:1204–36.PubMedCrossRef Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, et al. Impaired skeletal muscle regeneration in diabetes: from cellular and molecular mechanisms to novel treatments. Cell Metab. 2024;36:1204–36.PubMedCrossRef
216.
go back to reference Perez K, Ciotlos S, McGirr J, Limbad C, Doi R, Nederveen JP, et al. Single nuclei profiling identifies cell specific markers of skeletal muscle aging, frailty, and senescence. Aging. 2022;14:9393–422.PubMedPubMedCentral Perez K, Ciotlos S, McGirr J, Limbad C, Doi R, Nederveen JP, et al. Single nuclei profiling identifies cell specific markers of skeletal muscle aging, frailty, and senescence. Aging. 2022;14:9393–422.PubMedPubMedCentral
217.
go back to reference Dungan CM, Figueiredo VC, Wen Y, VonLehmden GL, Zdunek CJ, Thomas NT, et al. Senolytic treatment rescues blunted muscle hypertrophy in old mice. Geroscience. 2022;44:1925–40.PubMedPubMedCentralCrossRef Dungan CM, Figueiredo VC, Wen Y, VonLehmden GL, Zdunek CJ, Thomas NT, et al. Senolytic treatment rescues blunted muscle hypertrophy in old mice. Geroscience. 2022;44:1925–40.PubMedPubMedCentralCrossRef
218.
219.
go back to reference Wada K, Ueno S, Hazama T, Ogasahara S, Kang J, Takahashi M, et al. Radioimmunoassay for antibodies to human skeletal muscle myosin in serum from patients with polymyositis. Clin Exp Immunol. 1983;52:297–304.PubMedPubMedCentral Wada K, Ueno S, Hazama T, Ogasahara S, Kang J, Takahashi M, et al. Radioimmunoassay for antibodies to human skeletal muscle myosin in serum from patients with polymyositis. Clin Exp Immunol. 1983;52:297–304.PubMedPubMedCentral
220.
go back to reference Nemoto H, Bhopale MK, Constantinescu CS, Schotland D, Rostami A. Skeletal muscle myosin is the autoantigen for experimental autoimmune myositis. Exp Mol Pathol. 2003;74:238–43.PubMedCrossRef Nemoto H, Bhopale MK, Constantinescu CS, Schotland D, Rostami A. Skeletal muscle myosin is the autoantigen for experimental autoimmune myositis. Exp Mol Pathol. 2003;74:238–43.PubMedCrossRef
221.
go back to reference Casciola-Rosen L, Nagaraju K, Plotz P, Wang K, Levine S, Gabrielson E, et al. Enhanced autoantigen expression in regenerating muscle cells in idiopathic inflammatory myopathy. J Exp Med. 2005;201:591–601.PubMedPubMedCentralCrossRef Casciola-Rosen L, Nagaraju K, Plotz P, Wang K, Levine S, Gabrielson E, et al. Enhanced autoantigen expression in regenerating muscle cells in idiopathic inflammatory myopathy. J Exp Med. 2005;201:591–601.PubMedPubMedCentralCrossRef
224.
go back to reference Şahin B, İlgün G. Risk factors of deaths related to cardiovascular diseases in World Health Organization (WHO) member countries. Health Soc Care Community. 2022;30:73–80.PubMedCrossRef Şahin B, İlgün G. Risk factors of deaths related to cardiovascular diseases in World Health Organization (WHO) member countries. Health Soc Care Community. 2022;30:73–80.PubMedCrossRef
225.
go back to reference Sharma H, Mossman K, Austin RC. Fatal attractions that trigger inflammation and drive atherosclerotic disease. Eur J Clin Invest. 2024;54:e14169.PubMedCrossRef Sharma H, Mossman K, Austin RC. Fatal attractions that trigger inflammation and drive atherosclerotic disease. Eur J Clin Invest. 2024;54:e14169.PubMedCrossRef
226.
go back to reference Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science. 2016;354:472–7.PubMedPubMedCentralCrossRef Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science. 2016;354:472–7.PubMedPubMedCentralCrossRef
227.
go back to reference Crane ED, Al-Hashimi AA, Chen J, Lynn EG, Won KD, Lhoták Š, et al. Anti-GRP78 autoantibodies induce endothelial cell activation and accelerate the development of atherosclerotic lesions. JCI Insight. 2018;3:e99363.PubMedPubMedCentralCrossRef Crane ED, Al-Hashimi AA, Chen J, Lynn EG, Won KD, Lhoták Š, et al. Anti-GRP78 autoantibodies induce endothelial cell activation and accelerate the development of atherosclerotic lesions. JCI Insight. 2018;3:e99363.PubMedPubMedCentralCrossRef
228.
go back to reference Foteinos G, Afzal AR, Mandal K, Jahangiri M, Xu Q. Anti-heat shock protein 60 autoantibodies induce atherosclerosis in apolipoprotein E-deficient mice via endothelial damage. Circulation. 2005;112:1206–13.PubMedCrossRef Foteinos G, Afzal AR, Mandal K, Jahangiri M, Xu Q. Anti-heat shock protein 60 autoantibodies induce atherosclerosis in apolipoprotein E-deficient mice via endothelial damage. Circulation. 2005;112:1206–13.PubMedCrossRef
229.
go back to reference Lorenzo C, Delgado P, Busse CE, Sanz-Bravo A, Martos-Folgado I, Bonzon-Kulichenko E, et al. ALDH4A1 is an atherosclerosis auto-antigen targeted by protective antibodies. Nature. 2021;589:287–92.PubMedCrossRef Lorenzo C, Delgado P, Busse CE, Sanz-Bravo A, Martos-Folgado I, Bonzon-Kulichenko E, et al. ALDH4A1 is an atherosclerosis auto-antigen targeted by protective antibodies. Nature. 2021;589:287–92.PubMedCrossRef
230.
go back to reference Harrison J, Newland SA, Jiang W, Giakomidi D, Zhao X, Clement M, et al. Marginal zone B cells produce natural atheroprotective IgM antibodies in a T cell-dependent manner. Cardiovasc Res. 2024;120:318–28.PubMedPubMedCentralCrossRef Harrison J, Newland SA, Jiang W, Giakomidi D, Zhao X, Clement M, et al. Marginal zone B cells produce natural atheroprotective IgM antibodies in a T cell-dependent manner. Cardiovasc Res. 2024;120:318–28.PubMedPubMedCentralCrossRef
231.
go back to reference Khan A, Roy P, Ley K. Breaking tolerance: the autoimmune aspect of atherosclerosis. Nat Rev Immunol. 2024;24:670–9.PubMedCrossRef Khan A, Roy P, Ley K. Breaking tolerance: the autoimmune aspect of atherosclerosis. Nat Rev Immunol. 2024;24:670–9.PubMedCrossRef
233.
go back to reference Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol. 2019;15:507–24.PubMedCrossRef Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol. 2019;15:507–24.PubMedCrossRef
234.
go back to reference Nguyen TT, Corvera S. Adipose tissue as a linchpin of organismal ageing. Nat Metab. 2024;6:793–807.PubMedCrossRef Nguyen TT, Corvera S. Adipose tissue as a linchpin of organismal ageing. Nat Metab. 2024;6:793–807.PubMedCrossRef
235.
go back to reference Man K, Kallies A, Vasanthakumar A. Resident and migratory adipose immune cells control systemic metabolism and thermogenesis. Cell Mol Immunol. 2022;19:421–31.PubMedCrossRef Man K, Kallies A, Vasanthakumar A. Resident and migratory adipose immune cells control systemic metabolism and thermogenesis. Cell Mol Immunol. 2022;19:421–31.PubMedCrossRef
236.
go back to reference Xu M, Tchkonia T, Ding H, Ogrodnik M, Lubbers ER, Pirtskhalava T, et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci U S A. 2015;112:E6301–6310.PubMedPubMedCentralCrossRef Xu M, Tchkonia T, Ding H, Ogrodnik M, Lubbers ER, Pirtskhalava T, et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci U S A. 2015;112:E6301–6310.PubMedPubMedCentralCrossRef
237.
go back to reference Frasca D, Diaz A, Romero M, Thaller S, Blomberg BB. Secretion of autoimmune antibodies in the human subcutaneous adipose tissue. PLoS ONE. 2018;13:e0197472.PubMedPubMedCentralCrossRef Frasca D, Diaz A, Romero M, Thaller S, Blomberg BB. Secretion of autoimmune antibodies in the human subcutaneous adipose tissue. PLoS ONE. 2018;13:e0197472.PubMedPubMedCentralCrossRef
238.
go back to reference Corvillo F, Aparicio V, López-Lera A, Garrido S, Araújo-Vilar D, de Miguel MP, et al. Autoantibodies against Perilipin 1 as a cause of Acquired Generalized Lipodystrophy. Front Immunol. 2018;9:2142.PubMedPubMedCentralCrossRef Corvillo F, Aparicio V, López-Lera A, Garrido S, Araújo-Vilar D, de Miguel MP, et al. Autoantibodies against Perilipin 1 as a cause of Acquired Generalized Lipodystrophy. Front Immunol. 2018;9:2142.PubMedPubMedCentralCrossRef
239.
go back to reference Arias-de la Rosa I, Escudero-Contreras A, Ruiz-Ponce M, Cuesta-López L, Román-Rodríguez C, Pérez-Sánchez C, et al. Pathogenic mechanisms involving the interplay between adipose tissue and auto-antibodies in rheumatoid arthritis. iScience. 2022;25:104893.PubMedPubMedCentralCrossRef Arias-de la Rosa I, Escudero-Contreras A, Ruiz-Ponce M, Cuesta-López L, Román-Rodríguez C, Pérez-Sánchez C, et al. Pathogenic mechanisms involving the interplay between adipose tissue and auto-antibodies in rheumatoid arthritis. iScience. 2022;25:104893.PubMedPubMedCentralCrossRef
240.
go back to reference Barrow F, Khan S, Fredrickson G, Wang H, Dietsche K, Parthiban P, et al. Microbiota-Driven activation of Intrahepatic B cells aggravates NASH through Innate and Adaptive Signaling. Hepatology. 2021;74:704–22.PubMedCrossRef Barrow F, Khan S, Fredrickson G, Wang H, Dietsche K, Parthiban P, et al. Microbiota-Driven activation of Intrahepatic B cells aggravates NASH through Innate and Adaptive Signaling. Hepatology. 2021;74:704–22.PubMedCrossRef
241.
go back to reference Ghazarian M, Revelo XS, Nøhr MK, Luck H, Zeng K, Lei H, et al. Type I Interferon responses drive intrahepatic T cells to promote metabolic syndrome. Sci Immunol. 2017;2:eaai7616.PubMedPubMedCentralCrossRef Ghazarian M, Revelo XS, Nøhr MK, Luck H, Zeng K, Lei H, et al. Type I Interferon responses drive intrahepatic T cells to promote metabolic syndrome. Sci Immunol. 2017;2:eaai7616.PubMedPubMedCentralCrossRef
242.
go back to reference Huby T, Gautier EL. Immune cell-mediated features of non-alcoholic steatohepatitis. Nat Rev Immunol. 2022;22:429–43.PubMedCrossRef Huby T, Gautier EL. Immune cell-mediated features of non-alcoholic steatohepatitis. Nat Rev Immunol. 2022;22:429–43.PubMedCrossRef
243.
go back to reference Luo J-H, Wang F-X, Zhao J-W, Yang C-L, Rong S-J, Lu W-Y et al. PDIA3 defines a novel subset of adipose macrophages to exacerbate the development of obesity and metabolic disorders. Cell Metab. 2024;S1550-4131(24)00361-9. Luo J-H, Wang F-X, Zhao J-W, Yang C-L, Rong S-J, Lu W-Y et al. PDIA3 defines a novel subset of adipose macrophages to exacerbate the development of obesity and metabolic disorders. Cell Metab. 2024;S1550-4131(24)00361-9.
244.
go back to reference Lee M, Du H, Winer DA, Clemente-Casares X, Tsai S. Mechanosensing in macrophages and dendritic cells in steady-state and disease. Front Cell Dev Biol. 2022;10:1044729.PubMedPubMedCentralCrossRef Lee M, Du H, Winer DA, Clemente-Casares X, Tsai S. Mechanosensing in macrophages and dendritic cells in steady-state and disease. Front Cell Dev Biol. 2022;10:1044729.PubMedPubMedCentralCrossRef
245.
go back to reference Naftaly A, Kislev N, Izgilov R, Adler R, Silber M, Shalgi R, et al. Nutrition alters the stiffness of adipose tissue and cell signaling. Int J Mol Sci. 2022;23:15237.PubMedPubMedCentralCrossRef Naftaly A, Kislev N, Izgilov R, Adler R, Silber M, Shalgi R, et al. Nutrition alters the stiffness of adipose tissue and cell signaling. Int J Mol Sci. 2022;23:15237.PubMedPubMedCentralCrossRef
246.
go back to reference Abdennour M, Reggio S, Le Naour G, Liu Y, Poitou C, Aron-Wisnewsky J, et al. Association of adipose tissue and liver fibrosis with tissue stiffness in morbid obesity: links with diabetes and BMI loss after gastric bypass. J Clin Endocrinol Metab. 2014;99:898–907.PubMedCrossRef Abdennour M, Reggio S, Le Naour G, Liu Y, Poitou C, Aron-Wisnewsky J, et al. Association of adipose tissue and liver fibrosis with tissue stiffness in morbid obesity: links with diabetes and BMI loss after gastric bypass. J Clin Endocrinol Metab. 2014;99:898–907.PubMedCrossRef
247.
go back to reference Abuhattum S, Kotzbeck P, Schlüßler R, Harger A, Ariza de Schellenberger A, Kim K, et al. Adipose cells and tissues soften with lipid accumulation while in diabetes adipose tissue stiffens. Sci Rep. 2022;12:10325.PubMedPubMedCentralCrossRef Abuhattum S, Kotzbeck P, Schlüßler R, Harger A, Ariza de Schellenberger A, Kim K, et al. Adipose cells and tissues soften with lipid accumulation while in diabetes adipose tissue stiffens. Sci Rep. 2022;12:10325.PubMedPubMedCentralCrossRef
248.
249.
251.
go back to reference Lin W, Jin L, Chen H, Wu Q, Fei Y, Zheng W, et al. B cell subsets and dysfunction of regulatory B cells in IgG4-related diseases and primary Sjögren’s syndrome: the similarities and differences. Arthritis Res Ther. 2014;16:R118.PubMedPubMedCentralCrossRef Lin W, Jin L, Chen H, Wu Q, Fei Y, Zheng W, et al. B cell subsets and dysfunction of regulatory B cells in IgG4-related diseases and primary Sjögren’s syndrome: the similarities and differences. Arthritis Res Ther. 2014;16:R118.PubMedPubMedCentralCrossRef
252.
go back to reference Lin X, Wang X, Xiao F, Ma K, Liu L, Wang X, et al. IL-10-producing regulatory B cells restrain the T follicular helper cell response in primary Sjögren’s syndrome. Cell Mol Immunol. 2019;16:921–31.PubMedPubMedCentralCrossRef Lin X, Wang X, Xiao F, Ma K, Liu L, Wang X, et al. IL-10-producing regulatory B cells restrain the T follicular helper cell response in primary Sjögren’s syndrome. Cell Mol Immunol. 2019;16:921–31.PubMedPubMedCentralCrossRef
254.
go back to reference Zhu DY-D, Maurer DP, Castrillon C, Deng Y, Mohamed FAN, Ma M et al. Lupus-associated innate receptors drive extrafollicular evolution of autoreactive B cells. bioRxiv. 2024;2024.01.09.574739. Zhu DY-D, Maurer DP, Castrillon C, Deng Y, Mohamed FAN, Ma M et al. Lupus-associated innate receptors drive extrafollicular evolution of autoreactive B cells. bioRxiv. 2024;2024.01.09.574739.
255.
go back to reference Oleinika K, Slisere B, Catalán D, Rosser EC. B cell contribution to immunometabolic dysfunction and impaired immune responses in obesity. Clin Exp Immunol. 2022;210:263–72.PubMedPubMedCentralCrossRef Oleinika K, Slisere B, Catalán D, Rosser EC. B cell contribution to immunometabolic dysfunction and impaired immune responses in obesity. Clin Exp Immunol. 2022;210:263–72.PubMedPubMedCentralCrossRef
256.
go back to reference Lee JL, Fra-Bido SC, Burton AR, Innocentin S, Hill DL, Linterman MA. B cell-intrinsic changes with age do not impact antibody-secreting cell formation but delay B cell participation in the germinal centre reaction. Aging Cell. 2022;21:e13692.PubMedPubMedCentralCrossRef Lee JL, Fra-Bido SC, Burton AR, Innocentin S, Hill DL, Linterman MA. B cell-intrinsic changes with age do not impact antibody-secreting cell formation but delay B cell participation in the germinal centre reaction. Aging Cell. 2022;21:e13692.PubMedPubMedCentralCrossRef
257.
go back to reference Miyauchi E, Shimokawa C, Steimle A, Desai MS, Ohno H. The impact of the gut microbiome on extra-intestinal autoimmune diseases. Nat Rev Immunol. 2023;23:9–23.PubMedCrossRef Miyauchi E, Shimokawa C, Steimle A, Desai MS, Ohno H. The impact of the gut microbiome on extra-intestinal autoimmune diseases. Nat Rev Immunol. 2023;23:9–23.PubMedCrossRef
258.
go back to reference Molinero N, Antón-Fernández A, Hernández F, Ávila J, Bartolomé B, Moreno-Arribas MV. Gut microbiota, an additional Hallmark of Human Aging and Neurodegeneration. Neuroscience. 2023;518:141–61.PubMedCrossRef Molinero N, Antón-Fernández A, Hernández F, Ávila J, Bartolomé B, Moreno-Arribas MV. Gut microbiota, an additional Hallmark of Human Aging and Neurodegeneration. Neuroscience. 2023;518:141–61.PubMedCrossRef
259.
260.
go back to reference Greiling TM, Dehner C, Chen X, Hughes K, Iñiguez AJ, Boccitto M, et al. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Sci Transl Med. 2018;10:eaan2306.PubMedPubMedCentralCrossRef Greiling TM, Dehner C, Chen X, Hughes K, Iñiguez AJ, Boccitto M, et al. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Sci Transl Med. 2018;10:eaan2306.PubMedPubMedCentralCrossRef
261.
go back to reference Shemtov SJ, Emani R, Bielska O, Covarrubias AJ, Verdin E, Andersen JK, et al. The intestinal immune system and gut barrier function in obesity and ageing. FEBS J. 2023;290:4163–86.PubMedCrossRef Shemtov SJ, Emani R, Bielska O, Covarrubias AJ, Verdin E, Andersen JK, et al. The intestinal immune system and gut barrier function in obesity and ageing. FEBS J. 2023;290:4163–86.PubMedCrossRef
262.
go back to reference Luck H, Tsai S, Chung J, Clemente-Casares X, Ghazarian M, Revelo XS, et al. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab. 2015;21:527–42.PubMedCrossRef Luck H, Tsai S, Chung J, Clemente-Casares X, Ghazarian M, Revelo XS, et al. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab. 2015;21:527–42.PubMedCrossRef
263.
go back to reference Hohman LS, Osborne LC. A gut-centric view of aging: do intestinal epithelial cells contribute to age-associated microbiota changes, inflammaging, and immunosenescence? Aging Cell. 2022;21:e13700.PubMedPubMedCentralCrossRef Hohman LS, Osborne LC. A gut-centric view of aging: do intestinal epithelial cells contribute to age-associated microbiota changes, inflammaging, and immunosenescence? Aging Cell. 2022;21:e13700.PubMedPubMedCentralCrossRef
264.
go back to reference Rojas OL, Pröbstel A-K, Porfilio EA, Wang AA, Charabati M, Sun T, et al. Recirculating intestinal IgA-Producing cells regulate Neuroinflammation via IL-10. Cell. 2019;176:610–e62418.PubMedPubMedCentralCrossRef Rojas OL, Pröbstel A-K, Porfilio EA, Wang AA, Charabati M, Sun T, et al. Recirculating intestinal IgA-Producing cells regulate Neuroinflammation via IL-10. Cell. 2019;176:610–e62418.PubMedPubMedCentralCrossRef
265.
go back to reference Cohavy O, Bruckner D, Gordon LK, Misra R, Wei B, Eggena ME, et al. Colonic bacteria express an ulcerative colitis pANCA-related protein epitope. Infect Immun. 2000;68:1542–8.PubMedPubMedCentralCrossRef Cohavy O, Bruckner D, Gordon LK, Misra R, Wei B, Eggena ME, et al. Colonic bacteria express an ulcerative colitis pANCA-related protein epitope. Infect Immun. 2000;68:1542–8.PubMedPubMedCentralCrossRef
267.
go back to reference Kawamoto S, Hara E. Crosstalk between gut microbiota and cellular senescence: a vicious cycle leading to aging gut. Trends Cell Biol. 2024;34:626–35.PubMedCrossRef Kawamoto S, Hara E. Crosstalk between gut microbiota and cellular senescence: a vicious cycle leading to aging gut. Trends Cell Biol. 2024;34:626–35.PubMedCrossRef
268.
go back to reference Moll JM, Myers PN, Zhang C, Eriksen C, Wolf J, Appelberg KS, et al. Gut microbiota perturbation in IgA Deficiency is influenced by IgA-Autoantibody status. Gastroenterology. 2021;160:2423–e24345.PubMedCrossRef Moll JM, Myers PN, Zhang C, Eriksen C, Wolf J, Appelberg KS, et al. Gut microbiota perturbation in IgA Deficiency is influenced by IgA-Autoantibody status. Gastroenterology. 2021;160:2423–e24345.PubMedCrossRef
269.
go back to reference Luck H, Khan S, Kim JH, Copeland JK, Revelo XS, Tsai S, et al. Gut-associated IgA + immune cells regulate obesity-related insulin resistance. Nat Commun. 2019;10:3650.PubMedPubMedCentralCrossRef Luck H, Khan S, Kim JH, Copeland JK, Revelo XS, Tsai S, et al. Gut-associated IgA + immune cells regulate obesity-related insulin resistance. Nat Commun. 2019;10:3650.PubMedPubMedCentralCrossRef
270.
go back to reference Lin Y-H, Luck H, Khan S, Schneeberger PHH, Tsai S, Clemente-Casares X, et al. Aryl hydrocarbon receptor agonist indigo protects against obesity-related insulin resistance through modulation of intestinal and metabolic tissue immunity. Int J Obes (Lond). 2019;43:2407–21.PubMedCrossRef Lin Y-H, Luck H, Khan S, Schneeberger PHH, Tsai S, Clemente-Casares X, et al. Aryl hydrocarbon receptor agonist indigo protects against obesity-related insulin resistance through modulation of intestinal and metabolic tissue immunity. Int J Obes (Lond). 2019;43:2407–21.PubMedCrossRef
271.
go back to reference Gschmack E, Monoranu C-M, Marouf H, Meyer S, Lessel L, Idris R, et al. Plasma autoantibodies to glial fibrillary acidic protein (GFAP) react with brain areas according to Braak staging of Parkinson’s disease. J Neural Transm (Vienna). 2022;129:545–55.PubMedCrossRef Gschmack E, Monoranu C-M, Marouf H, Meyer S, Lessel L, Idris R, et al. Plasma autoantibodies to glial fibrillary acidic protein (GFAP) react with brain areas according to Braak staging of Parkinson’s disease. J Neural Transm (Vienna). 2022;129:545–55.PubMedCrossRef
273.
go back to reference Carmona-Iragui M, Fernández-Arcos A, Alcolea D, Piazza F, Morenas-Rodriguez E, Antón-Aguirre S, et al. Cerebrospinal fluid Anti-Amyloid-β autoantibodies and amyloid PET in cerebral amyloid angiopathy-related inflammation. J Alzheimers Dis. 2016;50:1–7.PubMedCrossRef Carmona-Iragui M, Fernández-Arcos A, Alcolea D, Piazza F, Morenas-Rodriguez E, Antón-Aguirre S, et al. Cerebrospinal fluid Anti-Amyloid-β autoantibodies and amyloid PET in cerebral amyloid angiopathy-related inflammation. J Alzheimers Dis. 2016;50:1–7.PubMedCrossRef
274.
go back to reference Kellner A, Matschke J, Bernreuther C, Moch H, Ferrer I, Glatzel M. Autoantibodies against beta-amyloid are common in Alzheimer’s disease and help control plaque burden. Ann Neurol. 2009;65:24–31.PubMedCrossRef Kellner A, Matschke J, Bernreuther C, Moch H, Ferrer I, Glatzel M. Autoantibodies against beta-amyloid are common in Alzheimer’s disease and help control plaque burden. Ann Neurol. 2009;65:24–31.PubMedCrossRef
275.
go back to reference Mullard A. FDA approves third anti-amyloid antibody for Alzheimer disease. Nat Rev Drug Discov. 2024;23:571.PubMedCrossRef Mullard A. FDA approves third anti-amyloid antibody for Alzheimer disease. Nat Rev Drug Discov. 2024;23:571.PubMedCrossRef
276.
go back to reference Ohgita T, Sakai K, Fukui N, Namba N, Nakano M, Kiguchi Y, et al. Generation of novel anti-apoe monoclonal antibodies that selectively recognize apoE isoforms. FEBS Lett. 2024;598:902–14.PubMedCrossRef Ohgita T, Sakai K, Fukui N, Namba N, Nakano M, Kiguchi Y, et al. Generation of novel anti-apoe monoclonal antibodies that selectively recognize apoE isoforms. FEBS Lett. 2024;598:902–14.PubMedCrossRef
277.
go back to reference Pocevičiūtė D, Roth B, Schultz N, Nuñez-Diaz C, Janelidze S et al. The Netherlands Brain Bank null,. Plasma IAPP-Autoantibody Levels in Alzheimer’s Disease Patients Are Affected by APOE4 Status. Int J Mol Sci. 2023;24:3776. Pocevičiūtė D, Roth B, Schultz N, Nuñez-Diaz C, Janelidze S et al. The Netherlands Brain Bank null,. Plasma IAPP-Autoantibody Levels in Alzheimer’s Disease Patients Are Affected by APOE4 Status. Int J Mol Sci. 2023;24:3776.
279.
go back to reference Shim S-M, Koh YH, Kim J-H, Jeon J-P. A combination of multiple autoantibodies is associated with the risk of Alzheimer’s disease and cognitive impairment. Sci Rep. 2022;12:1312.PubMedPubMedCentralCrossRef Shim S-M, Koh YH, Kim J-H, Jeon J-P. A combination of multiple autoantibodies is associated with the risk of Alzheimer’s disease and cognitive impairment. Sci Rep. 2022;12:1312.PubMedPubMedCentralCrossRef
280.
go back to reference de la Monte SM. Insulin Resistance and neurodegeneration: Progress towards the development of new therapeutics for Alzheimer’s Disease. Drugs. 2017;77:47–65.PubMedPubMedCentralCrossRef de la Monte SM. Insulin Resistance and neurodegeneration: Progress towards the development of new therapeutics for Alzheimer’s Disease. Drugs. 2017;77:47–65.PubMedPubMedCentralCrossRef
281.
go back to reference Akhtar RS, Licata JP, Luk KC, Shaw LM, Trojanowski JQ, Lee VM-Y. Measurements of auto-antibodies to α-synuclein in the serum and cerebral spinal fluids of patients with Parkinson’s disease. J Neurochem. 2018;145:489–503.PubMedPubMedCentralCrossRef Akhtar RS, Licata JP, Luk KC, Shaw LM, Trojanowski JQ, Lee VM-Y. Measurements of auto-antibodies to α-synuclein in the serum and cerebral spinal fluids of patients with Parkinson’s disease. J Neurochem. 2018;145:489–503.PubMedPubMedCentralCrossRef
282.
go back to reference Bach J-P, Falkenburger BH. What autoantibodies tell us about the pathogenesis of Parkinson’s disease: an Editorial for measurements of auto-antibodies to α-synuclein in the serum and cerebral spinal fluids of patients with Parkinson’s disease on page 489. J Neurochem. 2018;145:433–5.PubMedCrossRef Bach J-P, Falkenburger BH. What autoantibodies tell us about the pathogenesis of Parkinson’s disease: an Editorial for measurements of auto-antibodies to α-synuclein in the serum and cerebral spinal fluids of patients with Parkinson’s disease on page 489. J Neurochem. 2018;145:433–5.PubMedCrossRef
283.
go back to reference Labandeira CM, Pedrosa MA, Quijano A, Valenzuela R, Garrido-Gil P, Sanchez-Andrade M, et al. Angiotensin type-1 receptor and ACE2 autoantibodies in Parkinson´s disease. NPJ Parkinsons Dis. 2022;8:76.PubMedPubMedCentralCrossRef Labandeira CM, Pedrosa MA, Quijano A, Valenzuela R, Garrido-Gil P, Sanchez-Andrade M, et al. Angiotensin type-1 receptor and ACE2 autoantibodies in Parkinson´s disease. NPJ Parkinsons Dis. 2022;8:76.PubMedPubMedCentralCrossRef
284.
go back to reference Wang EY, Dai Y, Rosen CE, Schmitt MM, Dong MX, Ferré EMN, et al. High-throughput identification of autoantibodies that target the human exoproteome. Cell Rep Methods. 2022;2:100172.PubMedPubMedCentralCrossRef Wang EY, Dai Y, Rosen CE, Schmitt MM, Dong MX, Ferré EMN, et al. High-throughput identification of autoantibodies that target the human exoproteome. Cell Rep Methods. 2022;2:100172.PubMedPubMedCentralCrossRef
285.
go back to reference Larman HB, Zhao Z, Laserson U, Li MZ, Ciccia A, Gakidis MAM, et al. Autoantigen discovery with a synthetic human peptidome. Nat Biotechnol. 2011;29:535–41.PubMedPubMedCentralCrossRef Larman HB, Zhao Z, Laserson U, Li MZ, Ciccia A, Gakidis MAM, et al. Autoantigen discovery with a synthetic human peptidome. Nat Biotechnol. 2011;29:535–41.PubMedPubMedCentralCrossRef
286.
go back to reference Bodansky A, Yu DJ, Rallistan A, Kalaycioglu M, Boonyaratanakornkit J, Green DJ, et al. Unveiling the proteome-wide autoreactome enables enhanced evaluation of emerging CAR T cell therapies in autoimmunity. J Clin Invest. 2024;134:e180012.PubMedPubMedCentralCrossRef Bodansky A, Yu DJ, Rallistan A, Kalaycioglu M, Boonyaratanakornkit J, Green DJ, et al. Unveiling the proteome-wide autoreactome enables enhanced evaluation of emerging CAR T cell therapies in autoimmunity. J Clin Invest. 2024;134:e180012.PubMedPubMedCentralCrossRef
287.
go back to reference Ramírez-Valle F, Maranville JC, Roy S, Plenge RM. Sequential immunotherapy: towards cures for autoimmunity. Nat Rev Drug Discov. 2024;23:501–24.PubMedCrossRef Ramírez-Valle F, Maranville JC, Roy S, Plenge RM. Sequential immunotherapy: towards cures for autoimmunity. Nat Rev Drug Discov. 2024;23:501–24.PubMedCrossRef
288.
go back to reference Wang X, Wu X, Tan B, Zhu L, Zhang Y, Lin L, et al. Allogeneic CD19-targeted CAR-T therapy in patients with severe myositis and systemic sclerosis. Cell. 2024;187:4890–e49049.PubMedCrossRef Wang X, Wu X, Tan B, Zhu L, Zhang Y, Lin L, et al. Allogeneic CD19-targeted CAR-T therapy in patients with severe myositis and systemic sclerosis. Cell. 2024;187:4890–e49049.PubMedCrossRef
289.
go back to reference Haghikia A, Hegelmaier T, Wolleschak D, Böttcher M, Desel C, Borie D, et al. Anti-CD19 CAR T cells for refractory myasthenia gravis. Lancet Neurol. 2023;22:1104–5.PubMedCrossRef Haghikia A, Hegelmaier T, Wolleschak D, Böttcher M, Desel C, Borie D, et al. Anti-CD19 CAR T cells for refractory myasthenia gravis. Lancet Neurol. 2023;22:1104–5.PubMedCrossRef
290.
go back to reference Reincke SM, von Wardenburg N, Homeyer MA, Kornau H-C, Spagni G, Li LY, et al. Chimeric autoantibody receptor T cells deplete NMDA receptor-specific B cells. Cell. 2023;186:5084–e509718.PubMedCrossRef Reincke SM, von Wardenburg N, Homeyer MA, Kornau H-C, Spagni G, Li LY, et al. Chimeric autoantibody receptor T cells deplete NMDA receptor-specific B cells. Cell. 2023;186:5084–e509718.PubMedCrossRef
291.
go back to reference Ellebrecht CT, Bhoj VG, Nace A, Choi EJ, Mao X, Cho MJ, et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science. 2016;353:179–84.PubMedPubMedCentralCrossRef Ellebrecht CT, Bhoj VG, Nace A, Choi EJ, Mao X, Cho MJ, et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science. 2016;353:179–84.PubMedPubMedCentralCrossRef
292.
go back to reference Amor C, Feucht J, Leibold J, Ho Y-J, Zhu C, Alonso-Curbelo D, et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature. 2020;583:127–32.PubMedPubMedCentralCrossRef Amor C, Feucht J, Leibold J, Ho Y-J, Zhu C, Alonso-Curbelo D, et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature. 2020;583:127–32.PubMedPubMedCentralCrossRef
293.
go back to reference Amor C, Fernández-Maestre I, Chowdhury S, Ho Y-J, Nadella S, Graham C, et al. Prophylactic and long-lasting efficacy of senolytic CAR T cells against age-related metabolic dysfunction. Nat Aging. 2024;4:336–49.PubMedPubMedCentralCrossRef Amor C, Fernández-Maestre I, Chowdhury S, Ho Y-J, Nadella S, Graham C, et al. Prophylactic and long-lasting efficacy of senolytic CAR T cells against age-related metabolic dysfunction. Nat Aging. 2024;4:336–49.PubMedPubMedCentralCrossRef
294.
go back to reference Wang B, Wang L, Gasek NS, Kuo C-L, Nie J, Kim T, et al. Intermittent clearance of p21-highly-expressing cells extends lifespan and confers sustained benefits to health and physical function. Cell Metab. 2024;36:1795–e18056.PubMedCrossRef Wang B, Wang L, Gasek NS, Kuo C-L, Nie J, Kim T, et al. Intermittent clearance of p21-highly-expressing cells extends lifespan and confers sustained benefits to health and physical function. Cell Metab. 2024;36:1795–e18056.PubMedCrossRef
295.
go back to reference Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24:1246–56.PubMedPubMedCentralCrossRef Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24:1246–56.PubMedPubMedCentralCrossRef
296.
go back to reference Calabrò A, Accardi G, Aiello A, Caruso C, Galimberti D, Candore G. Senotherapeutics to counteract senescent cells are prominent topics in the context of anti-ageing strategies. Int J Mol Sci. 2024;25:1792.PubMedPubMedCentralCrossRef Calabrò A, Accardi G, Aiello A, Caruso C, Galimberti D, Candore G. Senotherapeutics to counteract senescent cells are prominent topics in the context of anti-ageing strategies. Int J Mol Sci. 2024;25:1792.PubMedPubMedCentralCrossRef
297.
go back to reference Marin I, Boix O, Garcia-Garijo A, Sirois I, Caballe A, Zarzuela E, et al. Cellular Senescence is immunogenic and promotes Antitumor Immunity. Cancer Discov. 2023;13:410–31.PubMedCrossRef Marin I, Boix O, Garcia-Garijo A, Sirois I, Caballe A, Zarzuela E, et al. Cellular Senescence is immunogenic and promotes Antitumor Immunity. Cancer Discov. 2023;13:410–31.PubMedCrossRef
298.
go back to reference Rakhshandehroo T, Mantri SR, Moravej H, Louis BBV, Salehi Farid A, Munaretto L et al. A CAR enhancer increases the activity and persistence of CAR T cells. Nat Biotechnol. 2024. Rakhshandehroo T, Mantri SR, Moravej H, Louis BBV, Salehi Farid A, Munaretto L et al. A CAR enhancer increases the activity and persistence of CAR T cells. Nat Biotechnol. 2024.
299.
go back to reference Kagoya Y, Tanaka S, Guo T, Anczurowski M, Wang C-H, Saso K, et al. A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nat Med. 2018;24:352–9.PubMedPubMedCentralCrossRef Kagoya Y, Tanaka S, Guo T, Anczurowski M, Wang C-H, Saso K, et al. A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nat Med. 2018;24:352–9.PubMedPubMedCentralCrossRef
300.
go back to reference Bucci L, Hagen M, Rothe T, Raimondo MG, Fagni F, Tur C, et al. Bispecific T cell engager therapy for refractory rheumatoid arthritis. Nat Med. 2024;30:1593–601.PubMedCrossRef Bucci L, Hagen M, Rothe T, Raimondo MG, Fagni F, Tur C, et al. Bispecific T cell engager therapy for refractory rheumatoid arthritis. Nat Med. 2024;30:1593–601.PubMedCrossRef
301.
go back to reference Lempicki MD, Gray JA, Abuna G, Murata RM, Divanovic S, McNamara CA, et al. BAFF neutralization impairs the autoantibody-mediated clearance of dead adipocytes and aggravates obesity-induced insulin resistance. Front Immunol. 2024;15:1436900.PubMedPubMedCentralCrossRef Lempicki MD, Gray JA, Abuna G, Murata RM, Divanovic S, McNamara CA, et al. BAFF neutralization impairs the autoantibody-mediated clearance of dead adipocytes and aggravates obesity-induced insulin resistance. Front Immunol. 2024;15:1436900.PubMedPubMedCentralCrossRef
303.
go back to reference Tabuchi Y, Shimoda M, Kagara N, Naoi Y, Tanei T, Shimomura A, et al. Protective effect of naturally occurring anti-HER2 autoantibodies on breast cancer. Breast Cancer Res Treat. 2016;157:55–63.PubMedCrossRef Tabuchi Y, Shimoda M, Kagara N, Naoi Y, Tanei T, Shimomura A, et al. Protective effect of naturally occurring anti-HER2 autoantibodies on breast cancer. Breast Cancer Res Treat. 2016;157:55–63.PubMedCrossRef
304.
go back to reference Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer’s disease: challenges, successes and future. Signal Transduct Target Ther. 2023;8:248.PubMedPubMedCentralCrossRef Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer’s disease: challenges, successes and future. Signal Transduct Target Ther. 2023;8:248.PubMedPubMedCentralCrossRef
305.
go back to reference Morand EF, Furie R, Tanaka Y, Bruce IN, Askanase AD, Richez C, et al. Trial of Anifrolumab in active systemic Lupus Erythematosus. N Engl J Med. 2020;382:211–21.PubMedCrossRef Morand EF, Furie R, Tanaka Y, Bruce IN, Askanase AD, Richez C, et al. Trial of Anifrolumab in active systemic Lupus Erythematosus. N Engl J Med. 2020;382:211–21.PubMedCrossRef
306.
go back to reference Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353:1659–72.PubMedCrossRef Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353:1659–72.PubMedCrossRef
307.
go back to reference Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537:50–6.PubMedCrossRef Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537:50–6.PubMedCrossRef
308.
go back to reference Arnold C. Inverse vaccines could treat autoimmune disease - from multiple sclerosis to celiac disease. Nat Med. 2024;30:1218–9.PubMedCrossRef Arnold C. Inverse vaccines could treat autoimmune disease - from multiple sclerosis to celiac disease. Nat Med. 2024;30:1218–9.PubMedCrossRef
309.
go back to reference Tremain AC, Wallace RP, Lorentz KM, Thornley TB, Antane JT, Raczy MR, et al. Synthetically glycosylated antigens for the antigen-specific suppression of established immune responses. Nat Biomed Eng. 2023;7:1142–55.PubMedCrossRef Tremain AC, Wallace RP, Lorentz KM, Thornley TB, Antane JT, Raczy MR, et al. Synthetically glycosylated antigens for the antigen-specific suppression of established immune responses. Nat Biomed Eng. 2023;7:1142–55.PubMedCrossRef
310.
312.
go back to reference Pan SY, Chia YC, Yee HR, Fang Cheng AY, Anjum CE, Kenisi Y, et al. Immunomodulatory potential of anti-idiotypic antibodies for the treatment of autoimmune diseases. Future Sci OA. 2020;7:FSO648.PubMedPubMedCentralCrossRef Pan SY, Chia YC, Yee HR, Fang Cheng AY, Anjum CE, Kenisi Y, et al. Immunomodulatory potential of anti-idiotypic antibodies for the treatment of autoimmune diseases. Future Sci OA. 2020;7:FSO648.PubMedPubMedCentralCrossRef
313.
go back to reference Ramani S, Pathak A, Dalal V, Paul A, Biswas S. Oxidative stress in Autoimmune diseases: an under dealt malice. Curr Protein Pept Sci. 2020;21:611–21.PubMedCrossRef Ramani S, Pathak A, Dalal V, Paul A, Biswas S. Oxidative stress in Autoimmune diseases: an under dealt malice. Curr Protein Pept Sci. 2020;21:611–21.PubMedCrossRef
314.
go back to reference Zeng L, Yu G, Yang K, Li J, Hao W, Chen H. The efficacy of Antioxidative Stress Therapy on oxidative stress levels in rheumatoid arthritis: a systematic review and Meta-analysis of Randomized controlled trials. Oxid Med Cell Longev. 2021;2021:3302886.PubMedPubMedCentralCrossRef Zeng L, Yu G, Yang K, Li J, Hao W, Chen H. The efficacy of Antioxidative Stress Therapy on oxidative stress levels in rheumatoid arthritis: a systematic review and Meta-analysis of Randomized controlled trials. Oxid Med Cell Longev. 2021;2021:3302886.PubMedPubMedCentralCrossRef
315.
go back to reference Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann H-H, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370:eabd4585.PubMedPubMedCentralCrossRef Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann H-H, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370:eabd4585.PubMedPubMedCentralCrossRef
316.
go back to reference Khan MWA, Al Otaibi A, Sherwani S, Khan WA, Alshammari EM, Al-Zahrani SA, et al. Glycation and oxidative stress increase autoantibodies in the Elderly. Molecules. 2020;25:3675.PubMedPubMedCentralCrossRef Khan MWA, Al Otaibi A, Sherwani S, Khan WA, Alshammari EM, Al-Zahrani SA, et al. Glycation and oxidative stress increase autoantibodies in the Elderly. Molecules. 2020;25:3675.PubMedPubMedCentralCrossRef
317.
go back to reference Manoussakis MN, Tzioufas AG, Silis MP, Pange PJ, Goudevenos J, Moutsopoulos HM. High prevalence of anti-cardiolipin and other autoantibodies in a healthy elderly population. Clin Exp Immunol. 1987;69:557–65.PubMedPubMedCentral Manoussakis MN, Tzioufas AG, Silis MP, Pange PJ, Goudevenos J, Moutsopoulos HM. High prevalence of anti-cardiolipin and other autoantibodies in a healthy elderly population. Clin Exp Immunol. 1987;69:557–65.PubMedPubMedCentral
318.
go back to reference Falorni A, Gambelunghe G, Forini F, Kassi G, Cosentino A, Candeloro P, et al. Autoantibody recognition of COOH-terminal epitopes of GAD65 marks the risk for insulin requirement in adult-onset diabetes mellitus. J Clin Endocrinol Metab. 2000;85:309–16.PubMed Falorni A, Gambelunghe G, Forini F, Kassi G, Cosentino A, Candeloro P, et al. Autoantibody recognition of COOH-terminal epitopes of GAD65 marks the risk for insulin requirement in adult-onset diabetes mellitus. J Clin Endocrinol Metab. 2000;85:309–16.PubMed
319.
go back to reference Zimering MB, Pan Z. Autoantibodies in type 2 diabetes induce stress fiber formation and apoptosis in endothelial cells. J Clin Endocrinol Metab. 2009;94:2171–7.PubMedCrossRef Zimering MB, Pan Z. Autoantibodies in type 2 diabetes induce stress fiber formation and apoptosis in endothelial cells. J Clin Endocrinol Metab. 2009;94:2171–7.PubMedCrossRef
320.
go back to reference Davydova TV, Voskresenskaya NI, Fomina VG, Vetrile LA, Doronina OA. Induction of autoantibodies to glutamate in patients with Alzheimer’s disease. Bull Exp Biol Med. 2007;143:182–3.PubMedCrossRef Davydova TV, Voskresenskaya NI, Fomina VG, Vetrile LA, Doronina OA. Induction of autoantibodies to glutamate in patients with Alzheimer’s disease. Bull Exp Biol Med. 2007;143:182–3.PubMedCrossRef
321.
go back to reference Britschgi M, Olin CE, Johns HT, Takeda-Uchimura Y, LeMieux MC, Rufibach K, et al. Neuroprotective natural antibodies to assemblies of amyloidogenic peptides decrease with normal aging and advancing Alzheimer’s disease. Proc Natl Acad Sci U S A. 2009;106:12145–50.PubMedPubMedCentralCrossRef Britschgi M, Olin CE, Johns HT, Takeda-Uchimura Y, LeMieux MC, Rufibach K, et al. Neuroprotective natural antibodies to assemblies of amyloidogenic peptides decrease with normal aging and advancing Alzheimer’s disease. Proc Natl Acad Sci U S A. 2009;106:12145–50.PubMedPubMedCentralCrossRef
322.
go back to reference Attanasio R, Brasky KM, Robbins SH, Jayashankar L, Nash RJ, Butler TM. Age-related autoantibody production in a nonhuman primate model. Clin Exp Immunol. 2001;123:361–5.PubMedPubMedCentralCrossRef Attanasio R, Brasky KM, Robbins SH, Jayashankar L, Nash RJ, Butler TM. Age-related autoantibody production in a nonhuman primate model. Clin Exp Immunol. 2001;123:361–5.PubMedPubMedCentralCrossRef
Metadata
Title
The role of autoantibodies in bridging obesity, aging, and immunosenescence
Authors
Taylor R. Valentino
Nan Chen
Priya Makhijani
Saad Khan
Shawn Winer
Xavier S. Revelo
Daniel A. Winer
Publication date
01-12-2024
Publisher
BioMed Central
Keywords
Obesity
Obesity
Published in
Immunity & Ageing / Issue 1/2024
Electronic ISSN: 1742-4933
DOI
https://doi.org/10.1186/s12979-024-00489-2

Keynote webinar | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the broader systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now

Keynote webinar | Spotlight on adolescent vaping

  • Live
  • Webinar | 29-01-2025 | 18:00 (CET)

Growing numbers of young people are using e-cigarettes, despite warnings of respiratory effects and addiction. How can doctors tackle the epidemic, and what health effects should you prepare to manage in your clinics?

Watch it live: Wednesday 29th January, 18:00-19:30 CET
 

Prof. Ann McNeill
Dr. Debbie Robson
Benji Horwell
Developed by: Springer Medicine
Join the webinar

Keynote webinar | Spotlight on modern management of frailty

Frailty has a significant impact on health and wellbeing, especially in older adults. Our experts explain the factors that contribute to the development of frailty and how you can manage the condition and reduce the risk of disability, dependency, and mortality in your patients.

Prof. Alfonso Cruz-Jentoft
Prof. Barbara C. van Munster
Prof. Mirko Petrovic
Developed by: Springer Medicine
Watch now

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more