Skip to main content
Top

20-09-2024 | Obesity | REVIEW

Natural Remedies and Health; A Review of Bee Pollen and Bee Bread Impact on Combating Diabetes and Obesity

Authors: Hesham R. El-Seedi, Aida A. Abd El-Wahed, Suzy Salama, Neveen Agamy, Hamud A. Altaleb, Ming Du, Aamer Saeed, Alessandro Di Minno, Daijie Wang, Maria Daglia, Zhiming Guo, Hongcheng Zhang, Shaden A. M. Khalifa

Published in: Current Nutrition Reports

Login to get access

Abstract

Purpose of the Review

Diabetes and obesity are complicated multifactorial conditions that have been highlighted as a significant global burden for both health care and national budgets and their complications are considered a substantial public health concern. This review focuses on the potential anti-diabetic and anti-obesity properties of bee pollen (BP) and bee bread (BB), two bee products with a long history of use in traditional medicine and supplemental nutrition.

Recent Findings

Recent studies, encompassing cellular models, experimental models, and clinical trials, have shed light on the therapeutic potential of these bee products. BP and BB are rich in phytochemical constituents like flavonoids and phenolic acids, which are believed to confer their anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, and anti-obesity properties. These bee products have shown promising results in the treatment of diabetes and obesity, underscoring their potential as natural therapeutic tools.

Summary

BP and BB possess properties that aid in decreasing blood glucose levels and body weight. BP and BB have been found to enhance insulin sensitivity, alleviate oxidative stress, regulate appetite, adjust levels of hormones linked to obesity, while bolstering anti-oxidant defense systems. BP and BB nutritional qualities and health benefits make them promising candidates for further research towards diabetes and obesity treatment strategies
Literature
2.
go back to reference Carracher AM, Marathe PH, Close KL. International diabetes federation 2017. J Diabetes. 2018;10:353–6.PubMedCrossRef Carracher AM, Marathe PH, Close KL. International diabetes federation 2017. J Diabetes. 2018;10:353–6.PubMedCrossRef
3.
go back to reference Papatheodorou K, Papanas N, Banach M, Papazoglou D, Edmonds M. Complications of diabetes 2016. J Diabetes Res. 2016;2016:1–3.CrossRef Papatheodorou K, Papanas N, Banach M, Papazoglou D, Edmonds M. Complications of diabetes 2016. J Diabetes Res. 2016;2016:1–3.CrossRef
4.
go back to reference Wu B, Fu Z, Wang X, Zhou P, Yang Q, Jiang Y, et al. A narrative review of diabetic bone disease: Characteristics, pathogenesis, and treatment. Front Endocrinol (Lausanne). 2022;13:1–9.CrossRef Wu B, Fu Z, Wang X, Zhou P, Yang Q, Jiang Y, et al. A narrative review of diabetic bone disease: Characteristics, pathogenesis, and treatment. Front Endocrinol (Lausanne). 2022;13:1–9.CrossRef
5.
go back to reference World Health Organization. WHO Discussion Paper: Draft recommendations for the prevention and management of obesity over the life course, including potential targets. Geneva, Switzerland: World Health Organization; 2021. World Health Organization. WHO Discussion Paper: Draft recommendations for the prevention and management of obesity over the life course, including potential targets. Geneva, Switzerland: World Health Organization; 2021.
6.
go back to reference Obesity, W. H. O. Other Hyperalimentation (E65–E68). International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-10). Geneva, Switzerland: World Health Organization; 2016. Obesity, W. H. O. Other Hyperalimentation (E65–E68). International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-10). Geneva, Switzerland: World Health Organization; 2016.
7.
go back to reference World Health Organization. WHO European regional obesity report 2022. Regional Office for Europe: World Health Organization; 2022. World Health Organization. WHO European regional obesity report 2022. Regional Office for Europe: World Health Organization; 2022.
9.
go back to reference Bathina S, Armamento-Villareal R. The complex pathophysiology of bone fragility in obesity and type 2 diabetes mellitus: therapeutic targets to promote osteogenesis. Front Endocrinol (Lausanne). 2023;14:1168687–96.PubMedCrossRef Bathina S, Armamento-Villareal R. The complex pathophysiology of bone fragility in obesity and type 2 diabetes mellitus: therapeutic targets to promote osteogenesis. Front Endocrinol (Lausanne). 2023;14:1168687–96.PubMedCrossRef
10.
go back to reference Martiniakova M, Biro R, Penzes N, Sarocka A, Kovacova V, Mondockova V, et al. Links among obesity, type 2 diabetes mellitus, and osteoporosis: Bone as a target. Int J Mol Sci. 2024;25:4827–66.PubMedPubMedCentralCrossRef Martiniakova M, Biro R, Penzes N, Sarocka A, Kovacova V, Mondockova V, et al. Links among obesity, type 2 diabetes mellitus, and osteoporosis: Bone as a target. Int J Mol Sci. 2024;25:4827–66.PubMedPubMedCentralCrossRef
11.
go back to reference El-Aarag B, Shehata SB, El-Garawani IM, El-Seedi HR, Nofal AE. Regulation of oxidative stress and apoptosis in streptozotocin-induced diabetic rats by Egyptian Sidr. Chem Biodivers. 2024;202400351:e202400351.CrossRef El-Aarag B, Shehata SB, El-Garawani IM, El-Seedi HR, Nofal AE. Regulation of oxidative stress and apoptosis in streptozotocin-induced diabetic rats by Egyptian Sidr. Chem Biodivers. 2024;202400351:e202400351.CrossRef
12.
go back to reference Emran TB, Haque MA, Guntaka PR, Singh LP, Khan MW, Unnisa A, et al. A renewed concept on diabetic retinopathy: Polyphenols as a choice of solution. Biointerface Res Appl Chem. 2023;13:588. Emran TB, Haque MA, Guntaka PR, Singh LP, Khan MW, Unnisa A, et al. A renewed concept on diabetic retinopathy: Polyphenols as a choice of solution. Biointerface Res Appl Chem. 2023;13:588.
13.
go back to reference Islam F, Khadija JF, Islam MR, Shohag S, Mitra S, Alghamdi S, et al. Investigating polyphenol nanoformulations for therapeutic targets against diabetes mellitus. Evid-Based Complement Altern Med. 2022;2022. Islam F, Khadija JF, Islam MR, Shohag S, Mitra S, Alghamdi S, et al. Investigating polyphenol nanoformulations for therapeutic targets against diabetes mellitus. Evid-Based Complement Altern Med. 2022;2022.
14.
go back to reference Mitra S, Islam F, Das R, Urmee H, Akter A, Idris AM, et al. Pharmacological potential of avicennia alba leaf extract: an experimental analysis focusing on antidiabetic, anti-inflammatory, analgesic, and antidiarrheal activity. Biomed Res Int. 2022;2022. Mitra S, Islam F, Das R, Urmee H, Akter A, Idris AM, et al. Pharmacological potential of avicennia alba leaf extract: an experimental analysis focusing on antidiabetic, anti-inflammatory, analgesic, and antidiarrheal activity. Biomed Res Int. 2022;2022.
16.
go back to reference Emran TB, Dutta M, Uddin MMN, Nath AK, Uddin MZ. Antidiabetic potential of the leaf extract of Centella asiatica in alloxaninduced diabetic rats. Jahangirnagar Univ J Biol Sci. 2016;4:51–9.CrossRef Emran TB, Dutta M, Uddin MMN, Nath AK, Uddin MZ. Antidiabetic potential of the leaf extract of Centella asiatica in alloxaninduced diabetic rats. Jahangirnagar Univ J Biol Sci. 2016;4:51–9.CrossRef
17.
go back to reference Shah MS, Talukder MSH, Uddin AMK, Hasan MN, Sayem SAJ, Mostafa-Hedeab G, et al. Comparative assessment of three medicinal plants against diabetes and oxidative stress using experimental and computational approaches. Evid-Based Complement Altern Med. 2023;2023. Shah MS, Talukder MSH, Uddin AMK, Hasan MN, Sayem SAJ, Mostafa-Hedeab G, et al. Comparative assessment of three medicinal plants against diabetes and oxidative stress using experimental and computational approaches. Evid-Based Complement Altern Med. 2023;2023.
18.
go back to reference Muzammil S, Wang Y, Siddique MH, Zubair E, Hayat S, Zubair M, et al. Polyphenolic composition, antioxidant, antiproliferative and antidiabetic activities of coronopus didymus leaf extracts. Molecules. 2022;27:6263.PubMedPubMedCentralCrossRef Muzammil S, Wang Y, Siddique MH, Zubair E, Hayat S, Zubair M, et al. Polyphenolic composition, antioxidant, antiproliferative and antidiabetic activities of coronopus didymus leaf extracts. Molecules. 2022;27:6263.PubMedPubMedCentralCrossRef
20.
go back to reference Lin N, Chen S, Zhang H, Li J, Fu L. Quantification of major royal jelly protein 1 in fresh royal jelly by ultraperformance liquid chromatography-tandem mass spectrometry. J Agric Food Chem. 2018;66:1270–8.PubMedCrossRef Lin N, Chen S, Zhang H, Li J, Fu L. Quantification of major royal jelly protein 1 in fresh royal jelly by ultraperformance liquid chromatography-tandem mass spectrometry. J Agric Food Chem. 2018;66:1270–8.PubMedCrossRef
21.
go back to reference Komosinska-vassev K, Olczyk P, Ka J, Mencner L, Olczyk K. Bee pollen: Chemical composition and therapeutic application. Evid-Based Complement Altern Med. 2015;2015:1–7.CrossRef Komosinska-vassev K, Olczyk P, Ka J, Mencner L, Olczyk K. Bee pollen: Chemical composition and therapeutic application. Evid-Based Complement Altern Med. 2015;2015:1–7.CrossRef
22.
go back to reference Mărgăoan R, Stranț M, Varadi A, Topal E, Yücel B, Cornea-Cipcigan M, et al. Bee collected pollen and bee bread: Bioactive constituents and health benefits. Antioxidants. 2019;8:568–600.PubMedPubMedCentralCrossRef Mărgăoan R, Stranț M, Varadi A, Topal E, Yücel B, Cornea-Cipcigan M, et al. Bee collected pollen and bee bread: Bioactive constituents and health benefits. Antioxidants. 2019;8:568–600.PubMedPubMedCentralCrossRef
23.
go back to reference Kieliszek M, Piwowarek K, Kot AM, Błażejak S, Chlebowska-Śmigiel A, Wolska I. Pollen and bee bread as new health-oriented products: A review. Trends Food Sci Technol. 2018;71:170–80.CrossRef Kieliszek M, Piwowarek K, Kot AM, Błażejak S, Chlebowska-Śmigiel A, Wolska I. Pollen and bee bread as new health-oriented products: A review. Trends Food Sci Technol. 2018;71:170–80.CrossRef
24.
go back to reference Barene I, Daberte I, Siksna S. Investigation of bee bread and development of its dosage forms. Med Teor ir Prakt. 2014;21:16–22.CrossRef Barene I, Daberte I, Siksna S. Investigation of bee bread and development of its dosage forms. Med Teor ir Prakt. 2014;21:16–22.CrossRef
25.
go back to reference Doğanyiğit Z, Yakan B, Soylu M, Kaymak E, Silici S. The effects of feeding obese rats with bee bread on leptin and ghrelin expres. Turkish J Zool. 2020;44:114–25.CrossRef Doğanyiğit Z, Yakan B, Soylu M, Kaymak E, Silici S. The effects of feeding obese rats with bee bread on leptin and ghrelin expres. Turkish J Zool. 2020;44:114–25.CrossRef
27.
go back to reference Amr A, Abd El-Wahed A, El-Seedi HR, Khalifa SAM, Augustyniak M, El-Samad LM, et al. UPLC-MS/MS analysis of naturally derived Apis mellifera products and their promising effects against cadmium-induced adverse effects in female rats. Nutrients. 2023;15:119–36.CrossRef Amr A, Abd El-Wahed A, El-Seedi HR, Khalifa SAM, Augustyniak M, El-Samad LM, et al. UPLC-MS/MS analysis of naturally derived Apis mellifera products and their promising effects against cadmium-induced adverse effects in female rats. Nutrients. 2023;15:119–36.CrossRef
28.
go back to reference Darwish AMG, Abd El-Wahed AA, Shehata MG, El-Seedi HR, Masry SHD, Khalifa SAM, et al. Chemical profiling and nutritional evaluation of bee pollen, bee bread, and royal jelly and their role in functional fermented dairy products. Molecules. 2023;28:227. Darwish AMG, Abd El-Wahed AA, Shehata MG, El-Seedi HR, Masry SHD, Khalifa SAM, et al. Chemical profiling and nutritional evaluation of bee pollen, bee bread, and royal jelly and their role in functional fermented dairy products. Molecules. 2023;28:227.
29.
go back to reference Matteucci E, Giampietro O. Oxidative stress in families of type 1. Diabetes Care. 2000;23:1182–6.PubMedCrossRef Matteucci E, Giampietro O. Oxidative stress in families of type 1. Diabetes Care. 2000;23:1182–6.PubMedCrossRef
30.
go back to reference Bakour M, El Menyiy N, El Ghouizi A, Lyoussi B. Hypoglycemic, hypolipidemic and hepato-protective effect of bee bread in streptozotocin-induced diabetic rats. Avicenna J Phytomedicine. 2021;11:343–52. Bakour M, El Menyiy N, El Ghouizi A, Lyoussi B. Hypoglycemic, hypolipidemic and hepato-protective effect of bee bread in streptozotocin-induced diabetic rats. Avicenna J Phytomedicine. 2021;11:343–52.
31.
go back to reference Algethami JS, El-Wahed AAA, Elashal MH, Ahmed HR, Elshafiey EH, Omar EM, et al. Bee pollen: Clinical trials and patent applications. Nutrients. 2022;14:2858–83.PubMedPubMedCentralCrossRef Algethami JS, El-Wahed AAA, Elashal MH, Ahmed HR, Elshafiey EH, Omar EM, et al. Bee pollen: Clinical trials and patent applications. Nutrients. 2022;14:2858–83.PubMedPubMedCentralCrossRef
32.
go back to reference Capcarova M, Kalafova A, Schwarzova M, Schneidgenova M, Prnova MS, Svik K, et al. Consumption of bee bread influences glycaemia and development of diabetes in obese spontaneous diabetic rats. Biologia (Bratisl). 2020;75:705–11.CrossRef Capcarova M, Kalafova A, Schwarzova M, Schneidgenova M, Prnova MS, Svik K, et al. Consumption of bee bread influences glycaemia and development of diabetes in obese spontaneous diabetic rats. Biologia (Bratisl). 2020;75:705–11.CrossRef
33.
go back to reference Bakour M, Laaroussi H, Ousaaid D, El GA, Es-safi I, Mechchate H, et al. Bee bread as a promising source of bioactive molecules and functional properties : An up-to-date review. Molecules. 2022;11:203–41. Bakour M, Laaroussi H, Ousaaid D, El GA, Es-safi I, Mechchate H, et al. Bee bread as a promising source of bioactive molecules and functional properties : An up-to-date review. Molecules. 2022;11:203–41.
34.
go back to reference Martiniakova M, Blahova J, Kovacova V, Babikova M, Mondockova V, Kalafova A, et al. Bee bread can alleviate lipid abnormalities and impaired bone morphology in obese zucker diabetic rats. Molecules. 2021;26:2616–31.PubMedPubMedCentralCrossRef Martiniakova M, Blahova J, Kovacova V, Babikova M, Mondockova V, Kalafova A, et al. Bee bread can alleviate lipid abnormalities and impaired bone morphology in obese zucker diabetic rats. Molecules. 2021;26:2616–31.PubMedPubMedCentralCrossRef
35.
go back to reference Cheng N, Chen S, Liu X, Zhao H, Cao W. Impact of schisandrachinensis bee pollen on nonalcoholic fatty liver disease and gut microbiota in highfat diet induced obese mice. Nutrients [Internet]. 2019;11:346–60 (file:///C:/Users/ascom/AppData/Local/Mendeley Ltd./Mendeley Desktop/Downloaded/Cheng et al. - 2019 - Impact of schisandrachinensis bee pollen on nonalcoholic fatty liver disease and gut microbiota in highfat diet in.pdf).PubMedCrossRef Cheng N, Chen S, Liu X, Zhao H, Cao W. Impact of schisandrachinensis bee pollen on nonalcoholic fatty liver disease and gut microbiota in highfat diet induced obese mice. Nutrients [Internet]. 2019;11:346–60 (file:///C:/Users/ascom/AppData/Local/Mendeley Ltd./Mendeley Desktop/Downloaded/Cheng et al. - 2019 - Impact of schisandrachinensis bee pollen on nonalcoholic fatty liver disease and gut microbiota in highfat diet in.pdf).PubMedCrossRef
36.
go back to reference Yang S, Qu Y, Chen J, Chen S, Sun L, Zhou Y, et al. Bee pollen polysaccharide From Rosa rugosa Thunb. (Rosaceae) promotes pancreatic β-cell proliferation and insulin secretion. Front Pharmacol. 2021;12:688073–81.PubMedPubMedCentralCrossRef Yang S, Qu Y, Chen J, Chen S, Sun L, Zhou Y, et al. Bee pollen polysaccharide From Rosa rugosa Thunb. (Rosaceae) promotes pancreatic β-cell proliferation and insulin secretion. Front Pharmacol. 2021;12:688073–81.PubMedPubMedCentralCrossRef
37.
go back to reference Denisow B, Denisow-Pietrzyk M. Biological and therapeutic properties of bee pollen: A review. J Sci Food Agric. 2016;43:4303–9.CrossRef Denisow B, Denisow-Pietrzyk M. Biological and therapeutic properties of bee pollen: A review. J Sci Food Agric. 2016;43:4303–9.CrossRef
38.
go back to reference Zhang J, Cao W, Zhao H, Guo S, Wang Q, Cheng N, et al. Protective mechanism of Fagopyrum esculentum Moench. Bee pollen EtOH extract against type II Diabetes in a high-fat diet/streptozocin-induced C57BL/6J mice. Front Nutr. 2022;9:925351.PubMedPubMedCentralCrossRef Zhang J, Cao W, Zhao H, Guo S, Wang Q, Cheng N, et al. Protective mechanism of Fagopyrum esculentum Moench. Bee pollen EtOH extract against type II Diabetes in a high-fat diet/streptozocin-induced C57BL/6J mice. Front Nutr. 2022;9:925351.PubMedPubMedCentralCrossRef
39.
go back to reference Doganyigit Z, Yakan B, Soylu M, Kaymak E, Okan ASS. Histological, immunohistochemical and biochemical effects of bee bread on stomach tissue of obese rats. Bratisl Med J. 2020;121:504–11.CrossRef Doganyigit Z, Yakan B, Soylu M, Kaymak E, Okan ASS. Histological, immunohistochemical and biochemical effects of bee bread on stomach tissue of obese rats. Bratisl Med J. 2020;121:504–11.CrossRef
40.
go back to reference Mohamed NA, Ahmed OM, Hozayen WG, Ahmed MA. Ameliorative effects of bee pollen and date palm pollen on the glycemic state and male sexual dysfunctions in streptozotocin-Induced diabetic wistar rats. Biomed Pharmacother. 2018;97:9–18.PubMedCrossRef Mohamed NA, Ahmed OM, Hozayen WG, Ahmed MA. Ameliorative effects of bee pollen and date palm pollen on the glycemic state and male sexual dysfunctions in streptozotocin-Induced diabetic wistar rats. Biomed Pharmacother. 2018;97:9–18.PubMedCrossRef
42.
go back to reference Budi SA. Antidiabetic properties of stingless bee pollen in high-fat diet FED-low dose STZ induced experimental T2DM rats. Asian J Med Biomed. 2024;8:86–97.CrossRef Budi SA. Antidiabetic properties of stingless bee pollen in high-fat diet FED-low dose STZ induced experimental T2DM rats. Asian J Med Biomed. 2024;8:86–97.CrossRef
43.
go back to reference Othman ZA, Syaheedah W, Ghazali W, Noordin L, Aiman N, Yusof M, et al. Phenolic compounds and the anti-atherogenic effect of bee bread in high-fat diet-induced obese rats. Antioxid Redox Signal. 2020;9:33–44. Othman ZA, Syaheedah W, Ghazali W, Noordin L, Aiman N, Yusof M, et al. Phenolic compounds and the anti-atherogenic effect of bee bread in high-fat diet-induced obese rats. Antioxid Redox Signal. 2020;9:33–44.
44.
go back to reference Zhen L, Qiang H, Yibo L, Chengtao P, Zhijiang Z. Natural bee bread positively regulates lipid metabolism in rats. Int J Agric Sci Food Technol. 2021;7:266–71.CrossRef Zhen L, Qiang H, Yibo L, Chengtao P, Zhijiang Z. Natural bee bread positively regulates lipid metabolism in rats. Int J Agric Sci Food Technol. 2021;7:266–71.CrossRef
45.
go back to reference Suleiman JB, Mohamed M, Bahiyah A, Bakar A, Zakaria Z, Akmal Z. Therapeutic effects of bee bread on obesity-induced decline in testicular-derived oxidative stress, inflammation, and apoptosis in high-fat diet obese rat model. Antioxidants. 2022;11:255–72.PubMedPubMedCentralCrossRef Suleiman JB, Mohamed M, Bahiyah A, Bakar A, Zakaria Z, Akmal Z. Therapeutic effects of bee bread on obesity-induced decline in testicular-derived oxidative stress, inflammation, and apoptosis in high-fat diet obese rat model. Antioxidants. 2022;11:255–72.PubMedPubMedCentralCrossRef
46.
go back to reference Eleazu C, Suleiman JB, A. Othman Z, Zakaria Z, Nna VU, Mohamed M. Effect of bee bread on some biochemical parameters and skeletal muscle histology of high-fat diet-induced obese Sprague-Dawley rats. J Food Biochem. 2021;45:1–12.CrossRef Eleazu C, Suleiman JB, A. Othman Z, Zakaria Z, Nna VU, Mohamed M. Effect of bee bread on some biochemical parameters and skeletal muscle histology of high-fat diet-induced obese Sprague-Dawley rats. J Food Biochem. 2021;45:1–12.CrossRef
48.
go back to reference Li Q, Ren C, Yan S, Wang K, Hrynets Y, Xiang L, et al. Extract of unifloral Camellia sinensis . pollen collected by Apis mellifera L. honeybees exerted inhibitory effects on glucose uptake and transport by interacting with glucose transporters in human intestinal cells. J Agric Food Chem. 2021;69:1877–87.PubMedCrossRef Li Q, Ren C, Yan S, Wang K, Hrynets Y, Xiang L, et al. Extract of unifloral Camellia sinensis . pollen collected by Apis mellifera L. honeybees exerted inhibitory effects on glucose uptake and transport by interacting with glucose transporters in human intestinal cells. J Agric Food Chem. 2021;69:1877–87.PubMedCrossRef
49.
go back to reference Kazeem MI, Ashafa AOT. In-vitro antioxidant and antidiabetic potentials of Dianthus basuticus Burtt Davy whole plant extracts. J Herb Med. 2015;5:158–64.CrossRef Kazeem MI, Ashafa AOT. In-vitro antioxidant and antidiabetic potentials of Dianthus basuticus Burtt Davy whole plant extracts. J Herb Med. 2015;5:158–64.CrossRef
50.
go back to reference Daudu OM. Bee pollen extracts as potential antioxidants and inhibitors of α-amylase and α-glucosidase enzymes-in vitro assessment. J Apic Sci. 2019;63:315–25. Daudu OM. Bee pollen extracts as potential antioxidants and inhibitors of α-amylase and α-glucosidase enzymes-in vitro assessment. J Apic Sci. 2019;63:315–25.
51.
go back to reference Denisow B, Denisow-Pietrzyk M. Biological and therapeutic properties of bee pollen: a review. J Sci Food Agric. 2016;96:4303–9.PubMedCrossRef Denisow B, Denisow-Pietrzyk M. Biological and therapeutic properties of bee pollen: a review. J Sci Food Agric. 2016;96:4303–9.PubMedCrossRef
53.
go back to reference Khalid A, Naseem I. Antidiabetic and antiglycating potential of chrysin is enhanced after nano formulation: An in vitro approach. J Mol Struct. 2022;1261. Khalid A, Naseem I. Antidiabetic and antiglycating potential of chrysin is enhanced after nano formulation: An in vitro approach. J Mol Struct. 2022;1261.
54.
go back to reference Kostić A, Milinčić DD, Špirović Trifunović B, Nedić N, Gašić UM, Tešić ŽL, et al. Monofloral corn poppy bee-collected pollen—A detailed insight into its phytochemical composition and antioxidant properties. Antioxidants. 2023;12:1424–50.PubMedPubMedCentralCrossRef Kostić A, Milinčić DD, Špirović Trifunović B, Nedić N, Gašić UM, Tešić ŽL, et al. Monofloral corn poppy bee-collected pollen—A detailed insight into its phytochemical composition and antioxidant properties. Antioxidants. 2023;12:1424–50.PubMedPubMedCentralCrossRef
55.
go back to reference Kostić A, Milinčić DD, Nedić N, Gašić UM, Trifunović BŠ, Vojt D, et al. Phytochemical profile and antioxidant properties of bee-collected artichoke (Cynara scolymus) pollen. Antioxidants. 2021;10:1091–105.PubMedPubMedCentralCrossRef Kostić A, Milinčić DD, Nedić N, Gašić UM, Trifunović BŠ, Vojt D, et al. Phytochemical profile and antioxidant properties of bee-collected artichoke (Cynara scolymus) pollen. Antioxidants. 2021;10:1091–105.PubMedPubMedCentralCrossRef
56.
go back to reference Fu Y, Jia Y, Sun Y, Liu X, Yi J, Cai S. Dietary flavonoids alleviate inflammation and vascular endothelial barrier dysfunction induced by advanced glycation end products in vitro. Nutrients. 2022;14:1026–40.PubMedPubMedCentralCrossRef Fu Y, Jia Y, Sun Y, Liu X, Yi J, Cai S. Dietary flavonoids alleviate inflammation and vascular endothelial barrier dysfunction induced by advanced glycation end products in vitro. Nutrients. 2022;14:1026–40.PubMedPubMedCentralCrossRef
57.
go back to reference Khalifa SAM, Elashal MH, Yosri N, Du M, Musharraf SG, Nahar L, et al. Bee pollen: Current status and therapeutic potential. Nutrients. 2021;13:1876–90.PubMedPubMedCentralCrossRef Khalifa SAM, Elashal MH, Yosri N, Du M, Musharraf SG, Nahar L, et al. Bee pollen: Current status and therapeutic potential. Nutrients. 2021;13:1876–90.PubMedPubMedCentralCrossRef
58.
go back to reference Keskin M, Özkök A. α-Amylase inhibition properties of bee pollen and bee bread (Perga). Hacettepe J Biol Chem. 2020;48:389–93.CrossRef Keskin M, Özkök A. α-Amylase inhibition properties of bee pollen and bee bread (Perga). Hacettepe J Biol Chem. 2020;48:389–93.CrossRef
59.
go back to reference Ilie C, Oprea E, Geana E, Spoiala A, Buleandra M, Pircalabioru GG, et al. Bee pollen extracts: Chemical composition, antioxidant properties, and effect on the growth of selected probiotic and pathogenic bacteria. Antioxidants. 2022;11:959–87.PubMedPubMedCentralCrossRef Ilie C, Oprea E, Geana E, Spoiala A, Buleandra M, Pircalabioru GG, et al. Bee pollen extracts: Chemical composition, antioxidant properties, and effect on the growth of selected probiotic and pathogenic bacteria. Antioxidants. 2022;11:959–87.PubMedPubMedCentralCrossRef
60.
go back to reference Toutiaee S, Mojgani N, Harzandi N, Moharrami M, Mokhberosafa L. In vitro probiotic and safety attributes of Bacillus spp. isolated from beebread, honey samples and digestive tract of honeybees Apis mellifera. Lett Appl Microbiol. 2022;74:656–65.PubMedCrossRef Toutiaee S, Mojgani N, Harzandi N, Moharrami M, Mokhberosafa L. In vitro probiotic and safety attributes of Bacillus spp. isolated from beebread, honey samples and digestive tract of honeybees Apis mellifera. Lett Appl Microbiol. 2022;74:656–65.PubMedCrossRef
62.
go back to reference El-Seedi H, Eid N, Abd El-Wahed AA, Rateb ME, Afifi HS, Algethami AF, et al. Honey bee products: Preclinical and clinical studies of their anti-inflammatory and immunomodulatory properties. Front Nutr. 2022;8:761267–85.PubMedPubMedCentralCrossRef El-Seedi H, Eid N, Abd El-Wahed AA, Rateb ME, Afifi HS, Algethami AF, et al. Honey bee products: Preclinical and clinical studies of their anti-inflammatory and immunomodulatory properties. Front Nutr. 2022;8:761267–85.PubMedPubMedCentralCrossRef
63.
64.
go back to reference Akhondzadeh S. The importance of clinical trials in drug development. Avicenna J Med Biotechnol. 2016;8:2016. Akhondzadeh S. The importance of clinical trials in drug development. Avicenna J Med Biotechnol. 2016;8:2016.
65.
go back to reference Liu X, Liu H, Liu H, Liu S, Liu J, Zhu Y. A blood sugar-reducing propolis pollen and preparation method thereof. CN 113080408 A. 2021. Liu X, Liu H, Liu H, Liu S, Liu J, Zhu Y. A blood sugar-reducing propolis pollen and preparation method thereof. CN 113080408 A. 2021.
66.
go back to reference Pang Y. One kind of pharmaceutical composition with bee product and flemingia. CN 104398566 A. 2015. Pang Y. One kind of pharmaceutical composition with bee product and flemingia. CN 104398566 A. 2015.
67.
go back to reference Bin Y. One kind of se-rich rehmannia glutinosa bee pollen lipid-lowering herbal tea. CN 104336233 A. 2015. Bin Y. One kind of se-rich rehmannia glutinosa bee pollen lipid-lowering herbal tea. CN 104336233 A. 2015.
68.
go back to reference Cheng S, Cheng Li H, Zhang F, Cheng Y, Zhu Y, Cheng SC X, Dai Y. A hypotensive and hypoglycemic fructus trichosanthis powder and processing method thereof. CN 105963566 A. 2016. Cheng S, Cheng Li H, Zhang F, Cheng Y, Zhu Y, Cheng SC X, Dai Y. A hypotensive and hypoglycemic fructus trichosanthis powder and processing method thereof. CN 105963566 A. 2016.
69.
go back to reference Zhang K. Medicine composition containing radix trichosanthis and bee product. CN 103893254 A. 2014. Zhang K. Medicine composition containing radix trichosanthis and bee product. CN 103893254 A. 2014.
70.
go back to reference Ma N, Chai H. External composition for treating diabetes mellitus and preparation method thereof. CN 106237315 A. 2016. Ma N, Chai H. External composition for treating diabetes mellitus and preparation method thereof. CN 106237315 A. 2016.
71.
go back to reference Wu G, Fan J, Wang F. One kind of fine white ginger compound health buccal tablet and its preparation method. CN 106539022 A. 2017. Wu G, Fan J, Wang F. One kind of fine white ginger compound health buccal tablet and its preparation method. CN 106539022 A. 2017.
72.
go back to reference Yao Z. With prebiotics composition milk tea and its preparation method. CN 107114507 A. 2017. Yao Z. With prebiotics composition milk tea and its preparation method. CN 107114507 A. 2017.
73.
go back to reference Setyawan AB, Satria AP, Arung ET, Paramita S. Effect of bee pollen Kelulut bees on HBA1C in type 2 diabetes mellitus patients. Malaysian J Fundam Appl Sci. 2023;19:56–60.CrossRef Setyawan AB, Satria AP, Arung ET, Paramita S. Effect of bee pollen Kelulut bees on HBA1C in type 2 diabetes mellitus patients. Malaysian J Fundam Appl Sci. 2023;19:56–60.CrossRef
74.
go back to reference Aylanc V, Falcão SI, Ertosun S, Vilas-Boas M. From the hive to the table: Nutrition value, digestibility and bioavailability of the dietary phytochemicals present in the bee pollen and bee bread. Trends Food Sci Technol. 2021;109:464–81.CrossRef Aylanc V, Falcão SI, Ertosun S, Vilas-Boas M. From the hive to the table: Nutrition value, digestibility and bioavailability of the dietary phytochemicals present in the bee pollen and bee bread. Trends Food Sci Technol. 2021;109:464–81.CrossRef
75.
go back to reference Caro-Ordieres T, Marín-Royo G, Opazo-Ríos L, Jiménez-Castilla L, Moreno JA, Gómez-Guerrero C, et al. The coming age of flavonoids in the treatment of diabetic complications. J Clin Med. 2020;9:345–474.CrossRef Caro-Ordieres T, Marín-Royo G, Opazo-Ríos L, Jiménez-Castilla L, Moreno JA, Gómez-Guerrero C, et al. The coming age of flavonoids in the treatment of diabetic complications. J Clin Med. 2020;9:345–474.CrossRef
77.
go back to reference Wang X, Cai H, Shui S, Lin Y, Wang F, Wang L, et al. Chrysin stimulates subcutaneous fat thermogenesis in mice by regulating PDGFRα and microRNA expressions. J Agric Food Chem. 2021;69:5897–906.PubMedCrossRef Wang X, Cai H, Shui S, Lin Y, Wang F, Wang L, et al. Chrysin stimulates subcutaneous fat thermogenesis in mice by regulating PDGFRα and microRNA expressions. J Agric Food Chem. 2021;69:5897–906.PubMedCrossRef
78.
go back to reference Sousa JN, Paraíso AF, Andrade JMO, Lelis DF, Santos EM, Lima JP, et al. Oral gallic acid improve liver steatosis and metabolism modulating hepatic lipogenic markers in obese mice. Exp Gerontol. 2020;134:110881.PubMedCrossRef Sousa JN, Paraíso AF, Andrade JMO, Lelis DF, Santos EM, Lima JP, et al. Oral gallic acid improve liver steatosis and metabolism modulating hepatic lipogenic markers in obese mice. Exp Gerontol. 2020;134:110881.PubMedCrossRef
79.
go back to reference Fernandes AAH, Novelli ELB, Okoshi K, Okoshi MP, Di MBP, Guimarães JFC, et al. Influence of rutin treatment on biochemical alterations in experimental diabetes. Biomed Pharmacother. 2010;64:214–9.PubMedCrossRef Fernandes AAH, Novelli ELB, Okoshi K, Okoshi MP, Di MBP, Guimarães JFC, et al. Influence of rutin treatment on biochemical alterations in experimental diabetes. Biomed Pharmacother. 2010;64:214–9.PubMedCrossRef
81.
go back to reference Khalifa SAM, Elashal M, Kieliszek M, Ghazala NE, Farag MA, Saeed A, et al. Recent insights into chemical and pharmacological studies of bee bread. Trends Food Sci Technol. 2020;97:300–16.CrossRef Khalifa SAM, Elashal M, Kieliszek M, Ghazala NE, Farag MA, Saeed A, et al. Recent insights into chemical and pharmacological studies of bee bread. Trends Food Sci Technol. 2020;97:300–16.CrossRef
82.
go back to reference Kušic B, Balog T, Soboc S, Šverko V, Rusak G, Šaric A, et al. Antioxidant effects of flavonoid from Croatian Cystus incanus L . rich bee pollen. Food Chem Toxicol. 2009;47:547–54.PubMedCrossRef Kušic B, Balog T, Soboc S, Šverko V, Rusak G, Šaric A, et al. Antioxidant effects of flavonoid from Croatian Cystus incanus L . rich bee pollen. Food Chem Toxicol. 2009;47:547–54.PubMedCrossRef
83.
go back to reference Feng X, Qin H, Shi Q, Zhang Y, Zhou F, Wu H, et al. Chrysin attenuates inflammation by regulating M1/M2 status via activating PPARγ. Biochem Pharmacol. 2014;89:503–14.PubMedCrossRef Feng X, Qin H, Shi Q, Zhang Y, Zhou F, Wu H, et al. Chrysin attenuates inflammation by regulating M1/M2 status via activating PPARγ. Biochem Pharmacol. 2014;89:503–14.PubMedCrossRef
85.
go back to reference Bayram NE, Gercek YC, Çelik S, Mayda N, Kostić A, Dramićanin AM, et al. Phenolic and free amino acid profiles of bee bread and bee pollen with the same botanical origin – similarities and differences. Arab J Chem. 2021;14:103004. Bayram NE, Gercek YC, Çelik S, Mayda N, Kostić A, Dramićanin AM, et al. Phenolic and free amino acid profiles of bee bread and bee pollen with the same botanical origin – similarities and differences. Arab J Chem. 2021;14:103004.
86.
go back to reference Chu Q, Tian X, Jiang L, Ye J. Application of capillary electrophoresis to study phenolic profiles of honeybee-collected pollen. J Agric Food Chem. 2007;55:8864–9.PubMedCrossRef Chu Q, Tian X, Jiang L, Ye J. Application of capillary electrophoresis to study phenolic profiles of honeybee-collected pollen. J Agric Food Chem. 2007;55:8864–9.PubMedCrossRef
87.
go back to reference Punithavathi VR, Prince PSM, Kumar R, Selvakumari J. Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats. Eur J Pharmacol. 2011;650:465–71.PubMedCrossRef Punithavathi VR, Prince PSM, Kumar R, Selvakumari J. Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats. Eur J Pharmacol. 2011;650:465–71.PubMedCrossRef
89.
go back to reference Silva TMS, Camara CA, da Silva Lins AC, Maria Barbosa-Filho J, da Silva EMS, Freitas BM, et al. Chemical composition and free radical scavenging activity of pollen loads from stingless bee Melipona subnitida Ducke. J Food Compos Anal. 2006;19:507–11.CrossRef Silva TMS, Camara CA, da Silva Lins AC, Maria Barbosa-Filho J, da Silva EMS, Freitas BM, et al. Chemical composition and free radical scavenging activity of pollen loads from stingless bee Melipona subnitida Ducke. J Food Compos Anal. 2006;19:507–11.CrossRef
90.
go back to reference Naeini F, Namkhah Z, Tutunchi H, Rezayat SM, Mansouri S, Jazayeri-Tehrani SA, et al. Effects of naringenin supplementation in overweight/obese patients with non-alcoholic fatty liver disease: Study protocol for a randomized double-blind clinical trial. Trials. 2021;22:801–9.PubMedPubMedCentralCrossRef Naeini F, Namkhah Z, Tutunchi H, Rezayat SM, Mansouri S, Jazayeri-Tehrani SA, et al. Effects of naringenin supplementation in overweight/obese patients with non-alcoholic fatty liver disease: Study protocol for a randomized double-blind clinical trial. Trials. 2021;22:801–9.PubMedPubMedCentralCrossRef
91.
go back to reference Hsu CL, Wu CH, Huang SL, Yen GC. Phenolic compounds rutin and o-coumaric acid ameliorate obesity induced by high-fat Diet in rats. J Agric Food Chem. 2009;57:425–31.PubMedCrossRef Hsu CL, Wu CH, Huang SL, Yen GC. Phenolic compounds rutin and o-coumaric acid ameliorate obesity induced by high-fat Diet in rats. J Agric Food Chem. 2009;57:425–31.PubMedCrossRef
92.
go back to reference Serra Bonvehi J, Soliva Torrentó M, Centelles LE. Evaluation of polyphenolic and flavonoid compounds in honeybee-collected pollen produced in Spain. J Agric Food Chem. 2001;49:1848–53.PubMedCrossRef Serra Bonvehi J, Soliva Torrentó M, Centelles LE. Evaluation of polyphenolic and flavonoid compounds in honeybee-collected pollen produced in Spain. J Agric Food Chem. 2001;49:1848–53.PubMedCrossRef
93.
go back to reference Yang H, Yang T, Heng C, Zhou Y, Jiang Z, Qian X, et al. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phyther Res. 2019;33:3140–52.CrossRef Yang H, Yang T, Heng C, Zhou Y, Jiang Z, Qian X, et al. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phyther Res. 2019;33:3140–52.CrossRef
94.
go back to reference Su L, Zeng Y, Li G, Chen J, Chen X. Quercetin improves high-fat diet-induced obesity by modulating gut microbiota and metabolites in C57BL/6J mice. Phyther Res. 2022;36:4558–72.CrossRef Su L, Zeng Y, Li G, Chen J, Chen X. Quercetin improves high-fat diet-induced obesity by modulating gut microbiota and metabolites in C57BL/6J mice. Phyther Res. 2022;36:4558–72.CrossRef
95.
go back to reference Wang W, Pan Y, Wang L, Zhou H, Song G, Wang Y, et al. Optimal dietary ferulic acid for suppressing the obesity-related disorders in leptin-deficient obese C57BL/6J -ob/ob mice. J Agric Food Chem. 2019;67:4250–8.PubMedCrossRef Wang W, Pan Y, Wang L, Zhou H, Song G, Wang Y, et al. Optimal dietary ferulic acid for suppressing the obesity-related disorders in leptin-deficient obese C57BL/6J -ob/ob mice. J Agric Food Chem. 2019;67:4250–8.PubMedCrossRef
97.
go back to reference Ramar M, Manikandan B, Raman T, Priyadarsini A, Palanisamy S, Velayudam M, et al. Protective effect of ferulic acid and resveratrol against alloxan-induced diabetes in mice. Eur J Pharmacol. 2012;690:226–35.PubMedCrossRef Ramar M, Manikandan B, Raman T, Priyadarsini A, Palanisamy S, Velayudam M, et al. Protective effect of ferulic acid and resveratrol against alloxan-induced diabetes in mice. Eur J Pharmacol. 2012;690:226–35.PubMedCrossRef
98.
go back to reference Oršolić N, Sirovina D, Odeh D, Gajski G, Balta V, Šver L, et al. Efficacy of caffeic acid on diabetes and its complications in the mouse. Molecules. 2021;26:3262–86.PubMedPubMedCentralCrossRef Oršolić N, Sirovina D, Odeh D, Gajski G, Balta V, Šver L, et al. Efficacy of caffeic acid on diabetes and its complications in the mouse. Molecules. 2021;26:3262–86.PubMedPubMedCentralCrossRef
100.
go back to reference Newman MEJ, Barkema GT. Isorhamnetin reduces glucose level, inflammation, and oxidative stress in high-fat diet/streptozotocin diabetic mice model. Monte Carlo Methods Stat Phys. 2023;28:502–15. Newman MEJ, Barkema GT. Isorhamnetin reduces glucose level, inflammation, and oxidative stress in high-fat diet/streptozotocin diabetic mice model. Monte Carlo Methods Stat Phys. 2023;28:502–15.
105.
go back to reference Magnone M, Spinelli S, Begani G, Guida L, Sturla L, Emionite L, et al. Abscisic acid improves insulin action on glycemia in insulin-deficient mouse models of type 1 diabetes. Metabolites. 2022;12:523–40.PubMedPubMedCentralCrossRef Magnone M, Spinelli S, Begani G, Guida L, Sturla L, Emionite L, et al. Abscisic acid improves insulin action on glycemia in insulin-deficient mouse models of type 1 diabetes. Metabolites. 2022;12:523–40.PubMedPubMedCentralCrossRef
106.
go back to reference Abo Alrob O, Al-Horani RA, Altaany Z, Nusair MB. Synergistic beneficial effects of resveratrol and diet on high-fat diet-induced obesity. Med. 2022;58:1301–10. Abo Alrob O, Al-Horani RA, Altaany Z, Nusair MB. Synergistic beneficial effects of resveratrol and diet on high-fat diet-induced obesity. Med. 2022;58:1301–10.
107.
go back to reference Lee SM, Yang H, Tartar DM, Gao B, Luo X, Ye SQ, et al. Prevention and treatment of diabetes with resveratrol in a non-obese mouse model of type 1 diabetes. Diabetologia. 2011;54:1136–46.PubMedPubMedCentralCrossRef Lee SM, Yang H, Tartar DM, Gao B, Luo X, Ye SQ, et al. Prevention and treatment of diabetes with resveratrol in a non-obese mouse model of type 1 diabetes. Diabetologia. 2011;54:1136–46.PubMedPubMedCentralCrossRef
108.
go back to reference Amir Siddiqui M, Badruddeen, Akhtar J, Uddin S, Chandrashekharan SM, Ahmad M, et al. Chrysin modulates protein kinase IKKε/TBK1, insulin sensitivity and hepatic fatty infiltration in diet-induced obese mice. Drug Dev Res. 2022;83:194–207.PubMedCrossRef Amir Siddiqui M, Badruddeen, Akhtar J, Uddin S, Chandrashekharan SM, Ahmad M, et al. Chrysin modulates protein kinase IKKε/TBK1, insulin sensitivity and hepatic fatty infiltration in diet-induced obese mice. Drug Dev Res. 2022;83:194–207.PubMedCrossRef
109.
go back to reference Kang MK, Park SH, Choi YJ, Shin D, Kang YH. Chrysin inhibits diabetic renal tubulointerstitial fibrosis through blocking epithelial to mesenchymal transition. J Mol Med. 2015;93:759–72.PubMedCrossRef Kang MK, Park SH, Choi YJ, Shin D, Kang YH. Chrysin inhibits diabetic renal tubulointerstitial fibrosis through blocking epithelial to mesenchymal transition. J Mol Med. 2015;93:759–72.PubMedCrossRef
111.
go back to reference Kang MK, Park SH, Kim YH, Lee EJ, Antika LD, Kim DY, et al. Chrysin ameliorates podocyte injury and slit diaphragm protein loss via inhibition of the PERK-eIF2α-ATF-CHOP pathway in diabetic mice. Acta Pharmacol Sin. 2017;38:1129–40.PubMedPubMedCentralCrossRef Kang MK, Park SH, Kim YH, Lee EJ, Antika LD, Kim DY, et al. Chrysin ameliorates podocyte injury and slit diaphragm protein loss via inhibition of the PERK-eIF2α-ATF-CHOP pathway in diabetic mice. Acta Pharmacol Sin. 2017;38:1129–40.PubMedPubMedCentralCrossRef
112.
go back to reference Lee EJ, Kang MK, Kim DY, Kim YH, Oh H, Kang YH. Chrysin inhibits advanced glycation end products-induced kidney fibrosis in renal mesangial cells and diabetic kidneys. Nutrients. 2018;10:882–92.PubMedPubMedCentralCrossRef Lee EJ, Kang MK, Kim DY, Kim YH, Oh H, Kang YH. Chrysin inhibits advanced glycation end products-induced kidney fibrosis in renal mesangial cells and diabetic kidneys. Nutrients. 2018;10:882–92.PubMedPubMedCentralCrossRef
113.
go back to reference Li X, Gong H, Yang S, Yang L, Fan Y, Zhou Y. Pectic bee pollen polysaccharide from Rosa rugosa alleviates diet-induced hepatic steatosis and insulin resistance via induction of AMPK/mTOR-mediated autophagy. Molecules. 2017;22:699–711.PubMedPubMedCentralCrossRef Li X, Gong H, Yang S, Yang L, Fan Y, Zhou Y. Pectic bee pollen polysaccharide from Rosa rugosa alleviates diet-induced hepatic steatosis and insulin resistance via induction of AMPK/mTOR-mediated autophagy. Molecules. 2017;22:699–711.PubMedPubMedCentralCrossRef
114.
Metadata
Title
Natural Remedies and Health; A Review of Bee Pollen and Bee Bread Impact on Combating Diabetes and Obesity
Authors
Hesham R. El-Seedi
Aida A. Abd El-Wahed
Suzy Salama
Neveen Agamy
Hamud A. Altaleb
Ming Du
Aamer Saeed
Alessandro Di Minno
Daijie Wang
Maria Daglia
Zhiming Guo
Hongcheng Zhang
Shaden A. M. Khalifa
Publication date
20-09-2024
Publisher
Springer US
Published in
Current Nutrition Reports
Electronic ISSN: 2161-3311
DOI
https://doi.org/10.1007/s13668-024-00567-3

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more