Skip to main content
Top
Published in:

Open Access 01-03-2025 | Obesity | REVIEW

The Interplay of Genetic Predisposition, Circadian Misalignment, and Metabolic Regulation in Obesity

Authors: Sajal Kumar Halder, Girish C. Melkani

Published in: Current Obesity Reports | Issue 1/2025

Login to get access

Abstract

Purpose of Review

This review explores the complex interplay between genetic predispositions to obesity, circadian rhythms, metabolic regulation, and sleep. It highlights how genetic factors underlying obesity exacerbate metabolic dysfunction through circadian misalignment and examines promising interventions to mitigate these effects.

Recent Findings

Genome-wide association Studies (GWAS) have identified numerous Single Nucleotide Polymorphisms (SNPs) associated with obesity traits, attributing 40–75% heritability to body mass index (BMI). These findings illuminate critical links between genetic obesity, circadian clocks, and metabolic processes. SNPs in clock-related genes influence metabolic pathways, with disruptions in circadian rhythms—driven by poor sleep hygiene or erratic eating patterns—amplifying metabolic dysfunction. Circadian clocks, synchronized with the 24-h light–dark cycle, regulate key metabolic activities, including glucose metabolism, lipid storage, and energy utilization. Genetic mutations or external disruptions, such as irregular sleep or eating habits, can destabilize circadian rhythms, promoting weight gain and metabolic disorders.

Summary

Circadian misalignment in individuals with genetic predispositions to obesity disrupts the release of key metabolic hormones, such as leptin and insulin, impairing hunger regulation and fat storage. Interventions like time-restricted feeding (TRF) and structured physical activity offer promising strategies to restore circadian harmony, improve metabolic health, and mitigate obesity-related risks.
Literature
5.
go back to reference Malik VS, Willet WC, Hu FB. Nearly a decade on—trends, risk factors and policy implications in global obesity. Nat Rev Endocrinol. 2020;16(11):615–6.CrossRefPubMedPubMedCentral Malik VS, Willet WC, Hu FB. Nearly a decade on—trends, risk factors and policy implications in global obesity. Nat Rev Endocrinol. 2020;16(11):615–6.CrossRefPubMedPubMedCentral
6.
go back to reference Svensson EI. Phenotypic selection in natural populations: what have we learned in 40 years? Evolution. 2023;77(7):1493–504.CrossRefPubMed Svensson EI. Phenotypic selection in natural populations: what have we learned in 40 years? Evolution. 2023;77(7):1493–504.CrossRefPubMed
7.
go back to reference Herrera BM, Lindgren CM. The genetics of obesity. Curr DiabRep. 2010;10:498–505. Herrera BM, Lindgren CM. The genetics of obesity. Curr DiabRep. 2010;10:498–505.
9.
go back to reference Hyten DL. Genotyping Platforms for Genome-Wide Association Studies: Options and Practical Considerations. Edtion ed. In: Torkamaneh D, Belzile F, eds. Genome-Wide Association Studies. New York, NY: Springer US, 2022:29–42. Hyten DL. Genotyping Platforms for Genome-Wide Association Studies: Options and Practical Considerations. Edtion ed. In: Torkamaneh D, Belzile F, eds. Genome-Wide Association Studies. New York, NY: Springer US, 2022:29–42.
10.
go back to reference Jacob R, Bertrand C, Llewellyn C, Couture C, Labonté M-È, Tremblay A, Bouchard C, Drapeau V, Pérusse L. Dietary Mediators of the Genetic Susceptibility to Obesity—Results from the Quebec Family Study. J Nutr. 2022;152(1):49–58.CrossRefPubMed Jacob R, Bertrand C, Llewellyn C, Couture C, Labonté M-È, Tremblay A, Bouchard C, Drapeau V, Pérusse L. Dietary Mediators of the Genetic Susceptibility to Obesity—Results from the Quebec Family Study. J Nutr. 2022;152(1):49–58.CrossRefPubMed
12.
go back to reference Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, Frayling TM, Hirschhorn J, Yang J, Visscher PM. Meta-analysis of genome-wide association studies for height and body mass index in∼ 700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641–9.CrossRefPubMedPubMedCentral Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, Frayling TM, Hirschhorn J, Yang J, Visscher PM. Meta-analysis of genome-wide association studies for height and body mass index in∼ 700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641–9.CrossRefPubMedPubMedCentral
13.
go back to reference Loos RJ, Yeo GS. The bigger picture of FTO—the first GWAS-identified obesity gene. Nat Rev Endocrinol. 2014;10(1):51–61.CrossRefPubMed Loos RJ, Yeo GS. The bigger picture of FTO—the first GWAS-identified obesity gene. Nat Rev Endocrinol. 2014;10(1):51–61.CrossRefPubMed
15.
go back to reference Tam V, Turcotte M, Meyre D. Established and emerging strategies to crack the genetic code of obesity. Obes Rev. 2019;20(2):212–40.CrossRefPubMed Tam V, Turcotte M, Meyre D. Established and emerging strategies to crack the genetic code of obesity. Obes Rev. 2019;20(2):212–40.CrossRefPubMed
25.
go back to reference Popkin BM. Urbanization, lifestyle changes and the nutrition transition. World Dev. 1999;27(11):1905–16.CrossRef Popkin BM. Urbanization, lifestyle changes and the nutrition transition. World Dev. 1999;27(11):1905–16.CrossRef
28.
go back to reference Raisi-Estabragh Z, Kobo O, Mieres JH, Bullock-Palmer RP, Van Spall HGC, Breathett K, Mamas MA. Racial disparities in obesity-related cardiovascular mortality in the United States: temporal trends from 1999 to 2020. J Am Heart Assoc. 2023;12(18):e028409. https://doi.org/10.1161/jaha.122.028409. Raisi-Estabragh Z, Kobo O, Mieres JH, Bullock-Palmer RP, Van Spall HGC, Breathett K, Mamas MA. Racial disparities in obesity-related cardiovascular mortality in the United States: temporal trends from 1999 to 2020. J Am Heart Assoc. 2023;12(18):e028409. https://​doi.​org/​10.​1161/​jaha.​122.​028409.
42.
go back to reference Duis J, Butler MG. Monogenic and Syndromic Causes of Obesity. Edtion ed. In: Butler MG, Lee PDK, Whitman BY, eds. Management of Prader-Willi Syndrome. Cham: Springer International Publishing, 2022:93–120. Duis J, Butler MG. Monogenic and Syndromic Causes of Obesity. Edtion ed. In: Butler MG, Lee PDK, Whitman BY, eds. Management of Prader-Willi Syndrome. Cham: Springer International Publishing, 2022:93–120.
64.
go back to reference Folon L, Baron M, Scherrer V, Toussaint B, Vaillant E, Loiselle H, Dechaume A, De Pooter F, Boutry R, Boissel M, et al. Pathogenic, Total Loss-of-Function DYRK1B Variants Cause Monogenic Obesity Associated With Type 2 Diabetes. Diabetes Care. 2024;47(3):444–51. https://doi.org/10.2337/dc23-1851.CrossRefPubMed Folon L, Baron M, Scherrer V, Toussaint B, Vaillant E, Loiselle H, Dechaume A, De Pooter F, Boutry R, Boissel M, et al. Pathogenic, Total Loss-of-Function DYRK1B Variants Cause Monogenic Obesity Associated With Type 2 Diabetes. Diabetes Care. 2024;47(3):444–51. https://​doi.​org/​10.​2337/​dc23-1851.CrossRefPubMed
68.
go back to reference Li P, Tiwari HK, Lin W-Y, Allison DB, Chung WK, Leibel RL, Yi N, Liu N. Genetic association analysis of 30 genes related to obesity in a European American population. Int J Obes. 2014;38(5):724–9.CrossRef Li P, Tiwari HK, Lin W-Y, Allison DB, Chung WK, Leibel RL, Yi N, Liu N. Genetic association analysis of 30 genes related to obesity in a European American population. Int J Obes. 2014;38(5):724–9.CrossRef
69.
go back to reference Lai CQ, Parnell LD, Arnett DK, García-Bailo B, Tsai MY, Kabagambe EK, Straka RJ, Province MA, An P, Borecki IB. WDTC1, the ortholog of Drosophila adipose gene, associates with human obesity, modulated by MUFA intake. Obesity. 2009;17(3):593–600.CrossRefPubMed Lai CQ, Parnell LD, Arnett DK, García-Bailo B, Tsai MY, Kabagambe EK, Straka RJ, Province MA, An P, Borecki IB. WDTC1, the ortholog of Drosophila adipose gene, associates with human obesity, modulated by MUFA intake. Obesity. 2009;17(3):593–600.CrossRefPubMed
70.
go back to reference Hotta K, Nakamura M, Nakamura T, Matsuo T, Nakata Y, Kamohara S, Miyatake N, Kotani K, Komatsu R, Itoh N. Association between obesity and polymorphisms in SEC16B, TMEM18, GNPDA2, BDNF, FAIM2 and MC4R in a Japanese population. J Hum Genet. 2009;54(12):727–31.CrossRefPubMed Hotta K, Nakamura M, Nakamura T, Matsuo T, Nakata Y, Kamohara S, Miyatake N, Kotani K, Komatsu R, Itoh N. Association between obesity and polymorphisms in SEC16B, TMEM18, GNPDA2, BDNF, FAIM2 and MC4R in a Japanese population. J Hum Genet. 2009;54(12):727–31.CrossRefPubMed
71.
go back to reference León-Mimila P, Villamil-Ramirez H, Villalobos-Comparan M, Villarreal-Molina T, Romero-Hidalgo S, Lopez-Contreras B, Gutierrez-Vidal R, Vega-Badillo J, Jacobo-Albavera L, Posadas-Romeros C. Contribution of common genetic variants to obesity and obesity-related traits in mexican children and adults. PLoS ONE. 2013;8(8):e70640.CrossRefPubMedPubMedCentral León-Mimila P, Villamil-Ramirez H, Villalobos-Comparan M, Villarreal-Molina T, Romero-Hidalgo S, Lopez-Contreras B, Gutierrez-Vidal R, Vega-Badillo J, Jacobo-Albavera L, Posadas-Romeros C. Contribution of common genetic variants to obesity and obesity-related traits in mexican children and adults. PLoS ONE. 2013;8(8):e70640.CrossRefPubMedPubMedCentral
77.
go back to reference Kramer A. Peripheral Oscillator. Edtion ed. In: Binder MD, Hirokawa N, Windhorst U, eds. Encyclopedia of Neuroscience. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009:3128–30. Kramer A. Peripheral Oscillator. Edtion ed. In: Binder MD, Hirokawa N, Windhorst U, eds. Encyclopedia of Neuroscience. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009:3128–30.
99.
go back to reference Bray MS. Young ME (2007) Circadian rhythms in the development of obesity: potential role for the circadian clock within the adipocyte. Obes Rev. 2007;8(2):169–81.CrossRefPubMed Bray MS. Young ME (2007) Circadian rhythms in the development of obesity: potential role for the circadian clock within the adipocyte. Obes Rev. 2007;8(2):169–81.CrossRefPubMed
109.
go back to reference Metzger PJ, Zhang A, Carlson BA, Sun H, Cui Z, Li Y, Jahnke MT, Layton DR, Gupta MB, Liu N, et al. A human obesity-associated MC4R mutation with defective Gq/11α signaling leads to hyperphagia in mice. J Clin Invest 2024;134(4). https://doi.org/10.1172/jci165418. Metzger PJ, Zhang A, Carlson BA, Sun H, Cui Z, Li Y, Jahnke MT, Layton DR, Gupta MB, Liu N, et al. A human obesity-associated MC4R mutation with defective Gq/11α signaling leads to hyperphagia in mice. J Clin Invest 2024;134(4). https://​doi.​org/​10.​1172/​jci165418.
132.
go back to reference Dashti HS, Ordovás JM. Genetics of sleep and insights into its relationship with obesity. Annu Rev Nutr. 2021;41(1):223–52.CrossRefPubMed Dashti HS, Ordovás JM. Genetics of sleep and insights into its relationship with obesity. Annu Rev Nutr. 2021;41(1):223–52.CrossRefPubMed
133.
go back to reference Sahar S, Sassone-Corsi P. Regulation of metabolism: the circadian clock dictates the time. Trends Endocrinol Metab. 2012;23(1):1–8.CrossRefPubMed Sahar S, Sassone-Corsi P. Regulation of metabolism: the circadian clock dictates the time. Trends Endocrinol Metab. 2012;23(1):1–8.CrossRefPubMed
140.
go back to reference Rácz B, Dušková M, Stárka L, Hainer V, Kunešová M. Links between the circadian rhythm, obesity and the microbiome. Physiol Res. 2018;3:67. Rácz B, Dušková M, Stárka L, Hainer V, Kunešová M. Links between the circadian rhythm, obesity and the microbiome. Physiol Res. 2018;3:67.
141.
go back to reference Martins T, Castro-Ribeiro C, Lemos S, Ferreira T, Nascimento-Gonçalves E, Rosa E, Oliveira PA, Antunes LM. Murine Models of Obesity Obesities. 2022;2:127–47. Martins T, Castro-Ribeiro C, Lemos S, Ferreira T, Nascimento-Gonçalves E, Rosa E, Oliveira PA, Antunes LM. Murine Models of Obesity Obesities. 2022;2:127–47.
143.
go back to reference Suleiman JB, Mohamed M, Bakar ABA. A systematic review on different models of inducing obesity in animals: Advantages and limitations. J Adv Vet Anim Res. 2020;7(1):103.CrossRefPubMed Suleiman JB, Mohamed M, Bakar ABA. A systematic review on different models of inducing obesity in animals: Advantages and limitations. J Adv Vet Anim Res. 2020;7(1):103.CrossRefPubMed
144.
go back to reference Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, Huypens P, Beckers J, De Angelis MH, Schürmann A. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol. 2018;14(3):140–62.CrossRefPubMed Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, Huypens P, Beckers J, De Angelis MH, Schürmann A. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol. 2018;14(3):140–62.CrossRefPubMed
145.
go back to reference Lutz TA, Woods SC. Overview of animal models of obesity. Curr Protoc Pharmacol. 2012;58(1):5–61.CrossRef Lutz TA, Woods SC. Overview of animal models of obesity. Curr Protoc Pharmacol. 2012;58(1):5–61.CrossRef
147.
go back to reference Al-Suhaimi EA. Adipose Tissue as an Endocrine Organ and a Glance on Local Hormones. Edtion ed. In: Al-Suhaimi EA, ed. Emerging Concepts in Endocrine Structure and Functions. Singapore: Springer Nature Singapore, 2022:349–92. Al-Suhaimi EA. Adipose Tissue as an Endocrine Organ and a Glance on Local Hormones. Edtion ed. In: Al-Suhaimi EA, ed. Emerging Concepts in Endocrine Structure and Functions. Singapore: Springer Nature Singapore, 2022:349–92.
148.
149.
151.
go back to reference Speakman J, Hambly C, Mitchell S, Król E. The contribution of animal models to the study of obesity. Lab Anim. 2008;42(4):413–32.CrossRefPubMed Speakman J, Hambly C, Mitchell S, Król E. The contribution of animal models to the study of obesity. Lab Anim. 2008;42(4):413–32.CrossRefPubMed
152.
go back to reference Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AW, Wang Y, Banks AS, Lavery HJ, Haq AK, Maratos-Flier E. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature. 2003;421(6925):856–9.CrossRefPubMed Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AW, Wang Y, Banks AS, Lavery HJ, Haq AK, Maratos-Flier E. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature. 2003;421(6925):856–9.CrossRefPubMed
153.
go back to reference Kanasaki K, Koya D. Biology of obesity: lessons from animal models of obesity. Biomed Res Int. 2011;2011(1):197636.CrossRef Kanasaki K, Koya D. Biology of obesity: lessons from animal models of obesity. Biomed Res Int. 2011;2011(1):197636.CrossRef
156.
go back to reference Wang YW, Sun GD, Sun J, Liu SJ, Wang J, Xu XH, Miao LN. Spontaneous type 2 diabetic rodent models. J Diab Res. 2013;2013(1):401723. Wang YW, Sun GD, Sun J, Liu SJ, Wang J, Xu XH, Miao LN. Spontaneous type 2 diabetic rodent models. J Diab Res. 2013;2013(1):401723.
160.
go back to reference Huijbers IJ. Generating genetically modified mice: a decision guide. Site-Spec Recomb : Methods Protoc 2017:1–19. Huijbers IJ. Generating genetically modified mice: a decision guide. Site-Spec Recomb : Methods Protoc 2017:1–19.
161.
go back to reference Pereira-da-Silva M, De Souza CT, Gasparetti AL, Saad MJ, Velloso LA. Melanin-concentrating hormone induces insulin resistance through a mechanism independent of body weight gain. J Endocrinol. 2005;186(1):193–201.CrossRefPubMed Pereira-da-Silva M, De Souza CT, Gasparetti AL, Saad MJ, Velloso LA. Melanin-concentrating hormone induces insulin resistance through a mechanism independent of body weight gain. J Endocrinol. 2005;186(1):193–201.CrossRefPubMed
162.
go back to reference Ludwig DS, Tritos NA, Mastaitis JW, Kulkarni R, Kokkotou E, Elmquist J, Lowell B, Flier JS, Maratos-Flier E. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Investig. 2001;107(3):379–86.CrossRefPubMedPubMedCentral Ludwig DS, Tritos NA, Mastaitis JW, Kulkarni R, Kokkotou E, Elmquist J, Lowell B, Flier JS, Maratos-Flier E. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Investig. 2001;107(3):379–86.CrossRefPubMedPubMedCentral
163.
go back to reference Tschöp M, Heiman ML. Overview of rodent models for obesity research. Curr Protoc Neurosci. 2001;17(1):9–10.CrossRef Tschöp M, Heiman ML. Overview of rodent models for obesity research. Curr Protoc Neurosci. 2001;17(1):9–10.CrossRef
164.
go back to reference Song Y, Cone RD. Creation of a genetic model of obesity in a teleost. FASEB J. 2007;21(9):2042–9.CrossRefPubMed Song Y, Cone RD. Creation of a genetic model of obesity in a teleost. FASEB J. 2007;21(9):2042–9.CrossRefPubMed
165.
go back to reference Vickers KC, Shoucri BM, Levin MG, Wu H, Pearson DS, Osei-Hwedieh D, Collins FS, Remaley AT, Sethupathy P. MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology. 2013;57(2):533–42.CrossRefPubMed Vickers KC, Shoucri BM, Levin MG, Wu H, Pearson DS, Osei-Hwedieh D, Collins FS, Remaley AT, Sethupathy P. MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology. 2013;57(2):533–42.CrossRefPubMed
166.
go back to reference Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, Dani C, Amri E-Z, Scheideler M. microRNA miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochem Biophys Res Commun. 2009;390(2):247–51.CrossRefPubMed Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, Dani C, Amri E-Z, Scheideler M. microRNA miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochem Biophys Res Commun. 2009;390(2):247–51.CrossRefPubMed
168.
go back to reference Chu C-Y, Chen C-F, Rajendran RS, Shen C-N, Chen T-H, Yen C-C, Chuang C-K, Lin D-S, Hsiao C-D. Overexpression of Akt1 enhances adipogenesis and leads to lipoma formation in zebrafish. PLoS ONE. 2012;7(5):e36474.CrossRefPubMedPubMedCentral Chu C-Y, Chen C-F, Rajendran RS, Shen C-N, Chen T-H, Yen C-C, Chuang C-K, Lin D-S, Hsiao C-D. Overexpression of Akt1 enhances adipogenesis and leads to lipoma formation in zebrafish. PLoS ONE. 2012;7(5):e36474.CrossRefPubMedPubMedCentral
176.
go back to reference Thakur PC, Stuckenholz C, Rivera MR, Davison JM, Yao JK, Amsterdam A, Sadler KC, Bahary N. Lack of de novo phosphatidylinositol synthesis leads to endoplasmic reticulum stress and hepatic steatosis in cdipt-deficient zebrafish. Hepatology. 2011;54(2):452–62.CrossRefPubMed Thakur PC, Stuckenholz C, Rivera MR, Davison JM, Yao JK, Amsterdam A, Sadler KC, Bahary N. Lack of de novo phosphatidylinositol synthesis leads to endoplasmic reticulum stress and hepatic steatosis in cdipt-deficient zebrafish. Hepatology. 2011;54(2):452–62.CrossRefPubMed
177.
go back to reference Hugo SE, Cruz-Garcia L, Karanth S, Anderson RM, Stainier DY, Schlegel A. A monocarboxylate transporter required for hepatocyte secretion of ketone bodies during fasting. Genes Dev. 2012;26(3):282–93.CrossRefPubMedPubMedCentral Hugo SE, Cruz-Garcia L, Karanth S, Anderson RM, Stainier DY, Schlegel A. A monocarboxylate transporter required for hepatocyte secretion of ketone bodies during fasting. Genes Dev. 2012;26(3):282–93.CrossRefPubMedPubMedCentral
181.
go back to reference Sonnenfeld MJ. GAL4/UAS Expression System. Edtion ed. In: Binder MD, Hirokawa N, Windhorst U, eds. Encyclopedia of Neuroscience. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009:1662–6. Sonnenfeld MJ. GAL4/UAS Expression System. Edtion ed. In: Binder MD, Hirokawa N, Windhorst U, eds. Encyclopedia of Neuroscience. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009:1662–6.
195.
go back to reference Mirzoyan Z, Valenza A, Zola S, Bonfanti C, Arnaboldi L, Ferrari N, Pollard J, Lupi V, Cassinelli M, Frattaroli M, et al. A Drosophila model targets Eiger/TNFα to alleviate obesity-related insulin resistance and macrophage infiltration. Dis Model Mech 2023;16(11). https://doi.org/10.1242/dmm.050388. Mirzoyan Z, Valenza A, Zola S, Bonfanti C, Arnaboldi L, Ferrari N, Pollard J, Lupi V, Cassinelli M, Frattaroli M, et al. A Drosophila model targets Eiger/TNFα to alleviate obesity-related insulin resistance and macrophage infiltration. Dis Model Mech 2023;16(11). https://​doi.​org/​10.​1242/​dmm.​050388.
Metadata
Title
The Interplay of Genetic Predisposition, Circadian Misalignment, and Metabolic Regulation in Obesity
Authors
Sajal Kumar Halder
Girish C. Melkani
Publication date
01-03-2025
Publisher
Springer US
Published in
Current Obesity Reports / Issue 1/2025
Electronic ISSN: 2162-4968
DOI
https://doi.org/10.1007/s13679-025-00613-3

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more