Skip to main content
Top

20-11-2023 | Research article

Novel genetic association between obesity, colorectal cancer, and inflammatory bowel disease

Author: Morteza Gholami

Published in: Journal of Diabetes & Metabolic Disorders

Login to get access

Abstract

Purpose

Obesity/overweight is an important risk factor for CRC and IBD. The aim of this study was to investigate the role of common genetic factors and haplotypes associated with obesity, CRC and IBD.

Methods

Significant GWAS variants associated with CRC, IBD or obesity were extracted from the GWAS catalog. The common variants between CRC-IBD, CRC-obesity or IBD-obesity were identified. Finally, the haplotypic structure between these diseases was identified, and SNP function analysis, gene-gene expression, protein-protein interactions, gene survival analysis and pathway analysis were performed with the results.

Results

While the results showed several common variants between CRC and IBD, IBD and obesity, and CRC and obesity identified in previous GWAS, rs3184504 was the only common variant for CRC-IBD-obesity (P ≤ 5E-8). The result also identified a haplotypic block AGCAGT (r2 ≥ 0.8 and D’≥0.08) associated with the common variants of CRC-IBD-obesity. These variants are located on the SH2B3 gene, whose expression level decreases in both colon and rectal cancers (P ≤ 1E-3) and which has protein-protein interaction with inflammation- and cancer-associated genes.

Conclusion

The rs3184504 variant and the novel haplotype AGCAGT co-occurred in CRC, IBD, obesity, and inflammation. This novel haplotype could potentially be used in genetic panels to identify CRC/IBD susceptibility in obese patients.
Literature
1.
go back to reference Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. Cancer J Clin. 2023;73(3):233–54. CrossRef Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. Cancer J Clin. 2023;73(3):233–54. CrossRef
3.
go back to reference Sninsky JA, Shore BM, Lupu GV, Crockett SD. Risk factors for colorectal polyps and cancer. Gastrointest Endoscop Clin. 2022;32(2):195–213. CrossRef Sninsky JA, Shore BM, Lupu GV, Crockett SD. Risk factors for colorectal polyps and cancer. Gastrointest Endoscop Clin. 2022;32(2):195–213. CrossRef
5.
6.
go back to reference Keller D, Windsor A, Cohen R, Chand M. Colorectal cancer in inflammatory bowel disease: review of the evidence. Tech Coloproctol. 2019;23:3–13. CrossRefPubMed Keller D, Windsor A, Cohen R, Chand M. Colorectal cancer in inflammatory bowel disease: review of the evidence. Tech Coloproctol. 2019;23:3–13. CrossRefPubMed
7.
go back to reference Hudson JL, Barnes EL, Herfarth HH, Isaacs KL, Jain A. Bariatric Surgery is a safe and effective option for patients with inflammatory bowel Diseases: a case series and systematic review of the literature. Inflamm Intestinal Dis. 2019;3(4):173–9. CrossRef Hudson JL, Barnes EL, Herfarth HH, Isaacs KL, Jain A. Bariatric Surgery is a safe and effective option for patients with inflammatory bowel Diseases: a case series and systematic review of the literature. Inflamm Intestinal Dis. 2019;3(4):173–9. CrossRef
8.
go back to reference Sollis E, Mosaku A, Abid A, Buniello A, Cerezo M, Gil L, et al. The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res. 2023;51(D1):D977–85. CrossRefPubMed Sollis E, Mosaku A, Abid A, Buniello A, Cerezo M, Gil L, et al. The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res. 2023;51(D1):D977–85. CrossRefPubMed
9.
go back to reference Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40(D1):D930–4. CrossRefPubMed Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40(D1):D930–4. CrossRefPubMed
10.
go back to reference Sherry ST, Ward M, Sirotkin K. dbSNP—database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res. 1999;9(8):677–9. CrossRefPubMed Sherry ST, Ward M, Sirotkin K. dbSNP—database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res. 1999;9(8):677–9. CrossRefPubMed
11.
go back to reference Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, et al. Ensembl 2022. Nucleic Acids Res. 2022;50(D1):D988–95. CrossRefPubMed Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, et al. Ensembl 2022. Nucleic Acids Res. 2022;50(D1):D988–95. CrossRefPubMed
12.
go back to reference Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using regulomeDB. Genome Res. 2012;22(9):1790–7. CrossRefPubMedPubMedCentral Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using regulomeDB. Genome Res. 2012;22(9):1790–7. CrossRefPubMedPubMedCentral
13.
go back to reference Yang Y, Wang D, Miao Y-R, Wu X, Luo H, Cao W, et al. lncRNASNP v3: an updated database for functional variants in long non-coding RNAs. Nucleic Acids Res. 2023;51(D1):D192–8. CrossRefPubMed Yang Y, Wang D, Miao Y-R, Wu X, Luo H, Cao W, et al. lncRNASNP v3: an updated database for functional variants in long non-coding RNAs. Nucleic Acids Res. 2023;51(D1):D192–8. CrossRefPubMed
14.
go back to reference Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2. 0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48(W1):W509–14. CrossRefPubMedPubMedCentral Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2. 0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48(W1):W509–14. CrossRefPubMedPubMedCentral
15.
go back to reference Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards suite: from gene data mining to Disease genome sequence analyses. Curr Protocols Bioinf. 2016;54(1):1. 1–1. 3. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards suite: from gene data mining to Disease genome sequence analyses. Curr Protocols Bioinf. 2016;54(1):1. 1–1. 3.
16.
go back to reference Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(D1):D447–52. CrossRefPubMed Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(D1):D447–52. CrossRefPubMed
17.
go back to reference Tang G, Cho M, Wang X. OncoDB: an interactive online database for analysis of gene expression and viral Infection in cancer. Nucleic Acids Res. 2022;50(D1):D1334–9. CrossRefPubMed Tang G, Cho M, Wang X. OncoDB: an interactive online database for analysis of gene expression and viral Infection in cancer. Nucleic Acids Res. 2022;50(D1):D1334–9. CrossRefPubMed
18.
go back to reference Hoffmann TJ, Choquet H, Yin J, Banda Y, Kvale MN, Glymour M, et al. A large multiethnic genome-wide association study of adult body mass index identifies novel loci. Genetics. 2018;210(2):499–515. CrossRefPubMedPubMedCentral Hoffmann TJ, Choquet H, Yin J, Banda Y, Kvale MN, Glymour M, et al. A large multiethnic genome-wide association study of adult body mass index identifies novel loci. Genetics. 2018;210(2):499–515. CrossRefPubMedPubMedCentral
19.
go back to reference Turcot V, Lu Y, Highland HM, Schurmann C, Justice AE, Fine RS, et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet. 2018;50(1):26–41. CrossRefPubMed Turcot V, Lu Y, Highland HM, Schurmann C, Justice AE, Fine RS, et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet. 2018;50(1):26–41. CrossRefPubMed
20.
go back to reference Schumacher FR, Schmit SL, Jiao S, Edlund CK, Wang H, Zhang B, et al. Genome-wide association study of Colorectal cancer identifies six new susceptibility loci. Nat Commun. 2015;6(1):7138. CrossRefPubMed Schumacher FR, Schmit SL, Jiao S, Edlund CK, Wang H, Zhang B, et al. Genome-wide association study of Colorectal cancer identifies six new susceptibility loci. Nat Commun. 2015;6(1):7138. CrossRefPubMed
21.
go back to reference Schmit SL, Edlund CK, Schumacher FR, Gong J, Harrison TA, Huyghe JR, et al. Novel common genetic susceptibility loci for Colorectal cancer. JNCI: J Natl Cancer Inst. 2019;111(2):146–57. CrossRefPubMed Schmit SL, Edlund CK, Schumacher FR, Gong J, Harrison TA, Huyghe JR, et al. Novel common genetic susceptibility loci for Colorectal cancer. JNCI: J Natl Cancer Inst. 2019;111(2):146–57. CrossRefPubMed
22.
go back to reference Liu JZ, Van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47(9):979–86. CrossRefPubMedPubMedCentral Liu JZ, Van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47(9):979–86. CrossRefPubMedPubMedCentral
23.
go back to reference Folkersen L, Gustafsson S, Wang Q, Hansen DH, Hedman ÅK, Schork A, et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat Metabolism. 2020;2(10):1135–48. CrossRef Folkersen L, Gustafsson S, Wang Q, Hansen DH, Hedman ÅK, Schork A, et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat Metabolism. 2020;2(10):1135–48. CrossRef
25.
26.
go back to reference Helgeland Ø, Vaudel M, Sole-Navais P, Flatley C, Juodakis J, Bacelis J, et al. Characterization of the genetic architecture of infant and early childhood body mass index. Nat Metabolism. 2022;4(3):344–58. CrossRef Helgeland Ø, Vaudel M, Sole-Navais P, Flatley C, Juodakis J, Bacelis J, et al. Characterization of the genetic architecture of infant and early childhood body mass index. Nat Metabolism. 2022;4(3):344–58. CrossRef
27.
go back to reference Sakaue S, Kanai M, Tanigawa Y, Karjalainen J, Kurki M, Koshiba S, et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet. 2021;53(10):1415–24. CrossRefPubMed Sakaue S, Kanai M, Tanigawa Y, Karjalainen J, Kurki M, Koshiba S, et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet. 2021;53(10):1415–24. CrossRefPubMed
28.
go back to reference Kichaev G, Bhatia G, Loh P-R, Gazal S, Burch K, Freund MK, et al. Leveraging polygenic functional enrichment to improve GWAS power. Am J Hum Genet. 2019;104(1):65–75. CrossRefPubMed Kichaev G, Bhatia G, Loh P-R, Gazal S, Burch K, Freund MK, et al. Leveraging polygenic functional enrichment to improve GWAS power. Am J Hum Genet. 2019;104(1):65–75. CrossRefPubMed
29.
go back to reference Plotnikov D, Williams C, Guggenheim JA. Association between birth weight and refractive error in adulthood: a mendelian randomisation study. Br J Ophthalmol. 2020;104(2):214–9. CrossRefPubMed Plotnikov D, Williams C, Guggenheim JA. Association between birth weight and refractive error in adulthood: a mendelian randomisation study. Br J Ophthalmol. 2020;104(2):214–9. CrossRefPubMed
30.
go back to reference Jin Y, Birlea SA, Fain PR, Ferrara TM, Ben S, Riccardi SL, et al. Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat Genet. 2012;44(6):676–80. CrossRefPubMedPubMedCentral Jin Y, Birlea SA, Fain PR, Ferrara TM, Ben S, Riccardi SL, et al. Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat Genet. 2012;44(6):676–80. CrossRefPubMedPubMedCentral
31.
go back to reference Brandes N, Linial N, Linial M. Genetic association studies of alterations in protein function expose recessive effects on cancer predisposition. Sci Rep. 2021;11(1):1–16. CrossRef Brandes N, Linial N, Linial M. Genetic association studies of alterations in protein function expose recessive effects on cancer predisposition. Sci Rep. 2021;11(1):1–16. CrossRef
32.
go back to reference Huang LO, Rauch A, Mazzaferro E, Preuss M, Carobbio S, Bayrak CS, et al. Genome-wide discovery of genetic loci that uncouple excess adiposity from its comorbidities. Nat Metabolism. 2021;3(2):228–43. CrossRef Huang LO, Rauch A, Mazzaferro E, Preuss M, Carobbio S, Bayrak CS, et al. Genome-wide discovery of genetic loci that uncouple excess adiposity from its comorbidities. Nat Metabolism. 2021;3(2):228–43. CrossRef
33.
go back to reference Bentham J, Morris DL, Cunninghame Graham DS, Pinder CL, Tombleson P, Behrens TW, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic Lupus Erythematosus. Nat Genet. 2015;47(12):1457–64. CrossRefPubMedPubMedCentral Bentham J, Morris DL, Cunninghame Graham DS, Pinder CL, Tombleson P, Behrens TW, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic Lupus Erythematosus. Nat Genet. 2015;47(12):1457–64. CrossRefPubMedPubMedCentral
34.
go back to reference Pietzner M, Wheeler E, Carrasco-Zanini J, Cortes A, Koprulu M, Wörheide MA, et al. Mapping the proteo-genomic convergence of human Diseases. Science. 2021;374(6569): eabj1541. CrossRefPubMedPubMedCentral Pietzner M, Wheeler E, Carrasco-Zanini J, Cortes A, Koprulu M, Wörheide MA, et al. Mapping the proteo-genomic convergence of human Diseases. Science. 2021;374(6569): eabj1541. CrossRefPubMedPubMedCentral
35.
go back to reference Chen M-H, Raffield LM, Mousas A, Sakaue S, Huffman JE, Moscati A, et al. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell. 2020;182(5):1198–213 (e14). CrossRefPubMedPubMedCentral Chen M-H, Raffield LM, Mousas A, Sakaue S, Huffman JE, Moscati A, et al. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell. 2020;182(5):1198–213 (e14). CrossRefPubMedPubMedCentral
Metadata
Title
Novel genetic association between obesity, colorectal cancer, and inflammatory bowel disease
Author
Morteza Gholami
Publication date
20-11-2023
Publisher
Springer International Publishing
Published in
Journal of Diabetes & Metabolic Disorders
Electronic ISSN: 2251-6581
DOI
https://doi.org/10.1007/s40200-023-01343-w