Skip to main content
Top
Published in:

30-01-2025 | Neurological Therapy | Review

Vaccine Based Approaches for the Prevention and Treatment of Neurological Disease

Authors: Nicholas Aderinto, Israel Charles Abraham, Gbolahan Olatunji, Emmanuel Kokori, Patrick Ashinze, Emmanuel Adeoba Babawale, Badrudeen Olalekan Alabi, Olaewe David Opeyemi, Adetola Emmanuel Babalola, Ayoola Ikeoluwa Oluwapelumi, Chidinma Udojike, Okikiola Sobuur Fagbolade, Festus Oluseye Babarinde, Ololade Wiquoyat Oyesiji, Bonaventure Michael Ukoaka, Alexander Idu Entonu, Matthew Tolulope Olawoyin, Olayinka Fakorede

Published in: Current Treatment Options in Neurology | Issue 1/2025

Login to get access

Abstract

Purpose of Review

This review examines the potential of vaccine-based strategies in preventing and modifying the progression of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Creutzfeldt-Jakob Disease. It explores the pathophysiology of these diseases and highlights the challenges in developing effective vaccines, such as crossing the blood–brain barrier and achieving precise immune modulation.

Recent Findings

Advances in vaccine technologies, including messenger RNA (mRNA) platforms, novel delivery systems, plant-based vaccines, and gene-editing approaches, have shown promise in enhancing immunogenicity and specificity. These innovations address key obstacles in targeting neurodegenerative pathologies and present opportunities for preventive and therapeutic interventions. Ethical considerations and public health implications further show the importance of interdisciplinary research efforts.

Summary

Vaccine-based strategies hold significant promise in addressing the unmet needs of neurodegenerative disease prevention and treatment. However, translating these advancements into clinical applications requires sustained research, robust clinical trials, and a focus on ethical and regulatory frameworks. Interdisciplinary collaboration is critical to accelerate progress and improve outcomes for patients at risk of or affected by neurodegenerative disorders.
Literature
1.
go back to reference Thakur KT, Albanese E, Giannakopoulos P, et al. Neurological disorders. In: Patel V, Chisholm D, Dua T, et al., editors. Mental, neurological, and substance use disorders: disease control priorities, 3rd ed (vol 4). Washington (DC): The International Bank for Reconstruction and Development / The World Bank; 2016. Chapter 5. Available from: https://doi.org/10.1596/978-1-4648-0426-7_ch5 Thakur KT, Albanese E, Giannakopoulos P, et al. Neurological disorders. In: Patel V, Chisholm D, Dua T, et al., editors. Mental, neurological, and substance use disorders: disease control priorities, 3rd ed (vol 4). Washington (DC): The International Bank for Reconstruction and Development / The World Bank; 2016. Chapter 5. Available from: https://​doi.​org/​10.​1596/​978-1-4648-0426-7_​ch5
5.
go back to reference Farooqui AA. Neurochemical aspects of neurotraumatic and neurodegenerative diseases. New York: Springer; 2010.CrossRef Farooqui AA. Neurochemical aspects of neurotraumatic and neurodegenerative diseases. New York: Springer; 2010.CrossRef
13.
go back to reference Miller MA, Sentz JT. Vaccine-Preventable Diseases. In: Jamison DT, Feachem RG, Makgoba MW, et al., editors. Disease and mortality in Sub-Saharan Africa. 2nd edition. Washington (DC): The International Bank for Reconstruction and Development / The World Bank; 2006. Chapter 12. Available from: https://www.ncbi.nlm.nih.gov/books/NBK2284/. Accessed 2 Oct 2024. Miller MA, Sentz JT. Vaccine-Preventable Diseases. In: Jamison DT, Feachem RG, Makgoba MW, et al., editors. Disease and mortality in Sub-Saharan Africa. 2nd edition. Washington (DC): The International Bank for Reconstruction and Development / The World Bank; 2006. Chapter 12. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK2284/​. Accessed 2 Oct 2024.
19.
go back to reference Strafella C, Caputo V, Galota MR, Zampatti S, Marella G, Mauriello S, Cascella R, Giardina E. Application of precision medicine in neurodegenerative diseases. Front Neurol. 2018;9:701.PubMedPubMedCentralCrossRef Strafella C, Caputo V, Galota MR, Zampatti S, Marella G, Mauriello S, Cascella R, Giardina E. Application of precision medicine in neurodegenerative diseases. Front Neurol. 2018;9:701.PubMedPubMedCentralCrossRef
22.
go back to reference Wu T, Lin D, Cheng Y, Jiang S, Riaz MW, Fu N, Mou C, Ye M, Zheng Y. Amyloid cascade hypothesis for the treatment of Alzheimer’s disease: progress and challenges. Aging Dis. 2022;13:1745–58.PubMedPubMedCentralCrossRef Wu T, Lin D, Cheng Y, Jiang S, Riaz MW, Fu N, Mou C, Ye M, Zheng Y. Amyloid cascade hypothesis for the treatment of Alzheimer’s disease: progress and challenges. Aging Dis. 2022;13:1745–58.PubMedPubMedCentralCrossRef
23.
go back to reference Kwan P, Konno H, Chan KY, Baum L. Rationale for the development of an Alzheimer’s disease vaccine. Hum Vaccin Immunother. 2020;16:645–53.PubMedCrossRef Kwan P, Konno H, Chan KY, Baum L. Rationale for the development of an Alzheimer’s disease vaccine. Hum Vaccin Immunother. 2020;16:645–53.PubMedCrossRef
25.
go back to reference Oberman K, Gouweleeuw L, Hoogerhout P, Eisel ULM, van Riet E, Schoemaker RG. Vaccination prevented short-term memory loss, but deteriorated long-term spatial memory in Alzheimer’s disease mice, independent of amyloid-β pathology. J Alzheimer’s Dis Rep. 2020;4:261–80.CrossRef Oberman K, Gouweleeuw L, Hoogerhout P, Eisel ULM, van Riet E, Schoemaker RG. Vaccination prevented short-term memory loss, but deteriorated long-term spatial memory in Alzheimer’s disease mice, independent of amyloid-β pathology. J Alzheimer’s Dis Rep. 2020;4:261–80.CrossRef
26.
go back to reference Sun Y, Guo Y, Feng X, Fu L, Zheng Y, Dong Y, Zhang Y, Yu X, Kong W, Wu H. Norovirus P particle-based tau vaccine-generated phosphorylated tau antibodies markedly ameliorate tau pathology and improve behavioral deficits in mouse model of Alzheimer’s disease. Signal Transduct Target Ther. 2021;6:61.PubMedPubMedCentralCrossRef Sun Y, Guo Y, Feng X, Fu L, Zheng Y, Dong Y, Zhang Y, Yu X, Kong W, Wu H. Norovirus P particle-based tau vaccine-generated phosphorylated tau antibodies markedly ameliorate tau pathology and improve behavioral deficits in mouse model of Alzheimer’s disease. Signal Transduct Target Ther. 2021;6:61.PubMedPubMedCentralCrossRef
27.
go back to reference Davtyan H, Hovakimyan A, Kiani Shabestari S, et al. Testing a MultiTEP-based combination vaccine to reduce Aβ and tau pathology in Tau22/5xFAD bigenic mice. Alzheimers Res Ther. 2019;11:107.PubMedPubMedCentralCrossRef Davtyan H, Hovakimyan A, Kiani Shabestari S, et al. Testing a MultiTEP-based combination vaccine to reduce Aβ and tau pathology in Tau22/5xFAD bigenic mice. Alzheimers Res Ther. 2019;11:107.PubMedPubMedCentralCrossRef
28.
go back to reference Meissner WG, Traon AP-L, Foubert-Samier A, et al. A phase 1 randomized trial of specific active α-synuclein immunotherapies PD01A and PD03A in multiple system atrophy. Mov Disord. 2020;35:1957–65.PubMedPubMedCentralCrossRef Meissner WG, Traon AP-L, Foubert-Samier A, et al. A phase 1 randomized trial of specific active α-synuclein immunotherapies PD01A and PD03A in multiple system atrophy. Mov Disord. 2020;35:1957–65.PubMedPubMedCentralCrossRef
29.
go back to reference Novak P, Schmidt R, Kontsekova E, et al. FUNDAMANT: an interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against tau protein pathology in Alzheimer’s disease. Alzheimers Res Ther. 2018;10:108.PubMedPubMedCentralCrossRef Novak P, Schmidt R, Kontsekova E, et al. FUNDAMANT: an interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against tau protein pathology in Alzheimer’s disease. Alzheimers Res Ther. 2018;10:108.PubMedPubMedCentralCrossRef
32.
go back to reference Das R, Blázquez-Gamero D, Bernstein DI, et al. Safety, efficacy, and immunogenicity of a replication-defective human cytomegalovirus vaccine, V160, in cytomegalovirus-seronegative women: a double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Infect Dis. 2023;23:1383–94.PubMedCrossRef Das R, Blázquez-Gamero D, Bernstein DI, et al. Safety, efficacy, and immunogenicity of a replication-defective human cytomegalovirus vaccine, V160, in cytomegalovirus-seronegative women: a double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Infect Dis. 2023;23:1383–94.PubMedCrossRef
33.
go back to reference Novak P, Schmidt R, Kontsekova E, et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 2017;16:123–34.PubMedCrossRef Novak P, Schmidt R, Kontsekova E, et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 2017;16:123–34.PubMedCrossRef
34.
go back to reference Vashishtha VM, Kumar P. The durability of vaccine-induced protection: an overview. Expert Rev Vaccines. 2024;23:389–408.PubMedCrossRef Vashishtha VM, Kumar P. The durability of vaccine-induced protection: an overview. Expert Rev Vaccines. 2024;23:389–408.PubMedCrossRef
36.
go back to reference Poland GA, Ovsyannikova IG, Kennedy RB, Lambert ND, Kirkland JL. A systems biology approach to the effect of aging, immunosenescence and vaccine response. Curr Opin Immunol. 2014;9(29C):62–8.CrossRef Poland GA, Ovsyannikova IG, Kennedy RB, Lambert ND, Kirkland JL. A systems biology approach to the effect of aging, immunosenescence and vaccine response. Curr Opin Immunol. 2014;9(29C):62–8.CrossRef
37.
go back to reference Castiblanco J, Anaya JM. Genetics and vaccines in the era of personalized medicine. Curr Genom. 2015;16(1):47–59.CrossRef Castiblanco J, Anaya JM. Genetics and vaccines in the era of personalized medicine. Curr Genom. 2015;16(1):47–59.CrossRef
38.
go back to reference Fitzmaurice K, Hurst J, Dring M, Rauch A, McLaren PJ, Gunthard HF, et al. Additive effects of HLA alleles and innate immune genes determine viral outcome in HCV infection. Gut. 2014;64(5):813–9.PubMedCrossRef Fitzmaurice K, Hurst J, Dring M, Rauch A, McLaren PJ, Gunthard HF, et al. Additive effects of HLA alleles and innate immune genes determine viral outcome in HCV infection. Gut. 2014;64(5):813–9.PubMedCrossRef
39.
go back to reference Jarduli LR, Sell AM, Reis PG, Sippert EA, Ayo CM, Mazini PS, et al. Role of HLA, KIR, MICA, and cytokines genes in leprosy. Biomed Res Int. 2013;2013:989837.PubMedPubMedCentralCrossRef Jarduli LR, Sell AM, Reis PG, Sippert EA, Ayo CM, Mazini PS, et al. Role of HLA, KIR, MICA, and cytokines genes in leprosy. Biomed Res Int. 2013;2013:989837.PubMedPubMedCentralCrossRef
40.
go back to reference Ali S, Chopra R, Aggarwal S, Srivastava AK, Kalaiarasan P, Malhotra D, et al. Association of variants in BAT1-LTA-TNF-BTNL2 genes within 6p21.3 region show graded risk to leprosy in unrelated cohorts of Indian population. Human Genet. 2012;131(5):703–16.CrossRef Ali S, Chopra R, Aggarwal S, Srivastava AK, Kalaiarasan P, Malhotra D, et al. Association of variants in BAT1-LTA-TNF-BTNL2 genes within 6p21.3 region show graded risk to leprosy in unrelated cohorts of Indian population. Human Genet. 2012;131(5):703–16.CrossRef
42.
go back to reference Ovsyannikova IG, Haralambieva IH, Vierkant RA, O’Byrne MM, Jacobson RM, Poland GA. The association of CD46, SLAM, and CD209 cellular receptor gene SNPs with variations in measles vaccine-induced immune responses–a replication study and examination of novel polymorphisms. Human Hered. 2011;72(3):206–23.CrossRef Ovsyannikova IG, Haralambieva IH, Vierkant RA, O’Byrne MM, Jacobson RM, Poland GA. The association of CD46, SLAM, and CD209 cellular receptor gene SNPs with variations in measles vaccine-induced immune responses–a replication study and examination of novel polymorphisms. Human Hered. 2011;72(3):206–23.CrossRef
44.
go back to reference Klein SL, Poland GA. Personalized vaccinology: one size and dose might not fitboth sexes. Vaccine. 2013;31(23):2599–600.PubMedCrossRef Klein SL, Poland GA. Personalized vaccinology: one size and dose might not fitboth sexes. Vaccine. 2013;31(23):2599–600.PubMedCrossRef
45.
go back to reference Weber DJ, Rutala WA, Samsa GP, Santimaw JE, Lemon SM. Obesity as a predictor of poor antibody response to hepatitis B plasma vaccine. JAMA. 1985;254(22):3187–9.PubMedCrossRef Weber DJ, Rutala WA, Samsa GP, Santimaw JE, Lemon SM. Obesity as a predictor of poor antibody response to hepatitis B plasma vaccine. JAMA. 1985;254(22):3187–9.PubMedCrossRef
46.
47.
go back to reference Talbot HK, Coleman LA, Crimin K, Zhu Y, Rock MT, Meece J, et al. Association between obesity and vulnerability and serologic response to influenza vaccination in older adults. Vaccine. 2012;30(26):3937–43.PubMedPubMedCentralCrossRef Talbot HK, Coleman LA, Crimin K, Zhu Y, Rock MT, Meece J, et al. Association between obesity and vulnerability and serologic response to influenza vaccination in older adults. Vaccine. 2012;30(26):3937–43.PubMedPubMedCentralCrossRef
48.
go back to reference Karlsson EA, Sheridan PA, Beck MA. Diet-induced obesity impairs the T cell memory response to influenza virus infection. J Immunol. 2010;184(6):3127–33.PubMedCrossRef Karlsson EA, Sheridan PA, Beck MA. Diet-induced obesity impairs the T cell memory response to influenza virus infection. J Immunol. 2010;184(6):3127–33.PubMedCrossRef
49.
52.
go back to reference Vizirianakis IS. Nanomedicine and personalized medicine toward the application of pharmacotyping in clinical practice to improve drug-delivery outcomes. Nanomedicine. 2011;7:11–7.PubMedCrossRef Vizirianakis IS. Nanomedicine and personalized medicine toward the application of pharmacotyping in clinical practice to improve drug-delivery outcomes. Nanomedicine. 2011;7:11–7.PubMedCrossRef
54.
go back to reference Ruiz A, et al. Recent update in NanoCure of NeuroAIDS. Sci Lett J. 2015;4:172. Ruiz A, et al. Recent update in NanoCure of NeuroAIDS. Sci Lett J. 2015;4:172.
55.
go back to reference Yang Z, et al. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine. 2010;6:427–41.PubMedCrossRef Yang Z, et al. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine. 2010;6:427–41.PubMedCrossRef
56.
go back to reference Mathew A, et al. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS ONE. 2012;7: e32616.PubMedPubMedCentralCrossRef Mathew A, et al. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS ONE. 2012;7: e32616.PubMedPubMedCentralCrossRef
57.
58.
go back to reference Moon SU, et al. Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke. Int J Nanomedicine. 2012;7:2751.PubMedPubMedCentral Moon SU, et al. Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke. Int J Nanomedicine. 2012;7:2751.PubMedPubMedCentral
60.
go back to reference Kontsekova E, Zilka N, Kovacech B, Novak P, Novak M. First-in-man tau vaccine targeting structural determinants essential for pathological tau–tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model. Alz Res Ther. 2014;6:44. https://doi.org/10.1186/alzrt278.CrossRef Kontsekova E, Zilka N, Kovacech B, Novak P, Novak M. First-in-man tau vaccine targeting structural determinants essential for pathological tau–tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model. Alz Res Ther. 2014;6:44. https://​doi.​org/​10.​1186/​alzrt278.CrossRef
63.
go back to reference Correale J, Farez M, Gilmore W. Vaccines for multiple sclerosis: progress to date. CNS Drugs. 2008;22:175–98.PubMedCrossRef Correale J, Farez M, Gilmore W. Vaccines for multiple sclerosis: progress to date. CNS Drugs. 2008;22:175–98.PubMedCrossRef
64.
go back to reference Wilson DB, Golding AB, Smith RA, Dafashy T, Nelson J, Smith L, Carlo DJ, Brostoff SW, Gold DP. Results of a phase I clinical trial of a T-cell receptor peptide vaccine in patients with multiple sclerosis. I. Analysis of T-cell receptor utilization in CSF cell populations. J Neuroimmunol. 1997;76(1–2):15–28.PubMedCrossRef Wilson DB, Golding AB, Smith RA, Dafashy T, Nelson J, Smith L, Carlo DJ, Brostoff SW, Gold DP. Results of a phase I clinical trial of a T-cell receptor peptide vaccine in patients with multiple sclerosis. I. Analysis of T-cell receptor utilization in CSF cell populations. J Neuroimmunol. 1997;76(1–2):15–28.PubMedCrossRef
65.
go back to reference Alleva DG, Gaur A, Jin L, Wegmann D, Gottlieb PA, Pahuja A, Johnson EB, Motheral T, Putnam A, Crowe PD, Ling N. Immunological characterization and therapeutic activity of an altered-peptide ligand, NBI-6024, based on the immunodominant type 1 diabetes autoantigen insulin B-chain (9–23) peptide. Diabetes. 2002;51(7):2126–34.PubMedCrossRef Alleva DG, Gaur A, Jin L, Wegmann D, Gottlieb PA, Pahuja A, Johnson EB, Motheral T, Putnam A, Crowe PD, Ling N. Immunological characterization and therapeutic activity of an altered-peptide ligand, NBI-6024, based on the immunodominant type 1 diabetes autoantigen insulin B-chain (9–23) peptide. Diabetes. 2002;51(7):2126–34.PubMedCrossRef
66.
go back to reference Sloan-Lancaster J, Allen PM. Altered peptide ligand–induced partial T cell activation: molecular mechanisms and role in T cell biology. Annu Rev Immunol. 1996;14(1):1–27.PubMedCrossRef Sloan-Lancaster J, Allen PM. Altered peptide ligand–induced partial T cell activation: molecular mechanisms and role in T cell biology. Annu Rev Immunol. 1996;14(1):1–27.PubMedCrossRef
68.
go back to reference Reindl M, Khantane S, Ehling R, Schanda K, Lutterotti A, Brinkhoff C, Oertle T, Schwab ME, Deisenhammer F, Berger T, Bandtlow CE. Serum and cerebrospinal fluid antibodies to Nogo-A in patients with multiple sclerosis and acute neurological disorders. J Neuroimmunol. 2003;145(1–2):139–47.PubMedCrossRef Reindl M, Khantane S, Ehling R, Schanda K, Lutterotti A, Brinkhoff C, Oertle T, Schwab ME, Deisenhammer F, Berger T, Bandtlow CE. Serum and cerebrospinal fluid antibodies to Nogo-A in patients with multiple sclerosis and acute neurological disorders. J Neuroimmunol. 2003;145(1–2):139–47.PubMedCrossRef
69.
go back to reference Fontoura P, Ho PP, DeVoss J, Zheng B, Lee BJ, Kidd BA, Garren H, Sobel RA, Robinson WH, Tessier-Lavigne M, Steinman L. Immunity to the extracellular domain of Nogo-A modulates experimental autoimmune encephalomyelitis. J Immunol. 2004;173(11):6981–92.PubMedCrossRef Fontoura P, Ho PP, DeVoss J, Zheng B, Lee BJ, Kidd BA, Garren H, Sobel RA, Robinson WH, Tessier-Lavigne M, Steinman L. Immunity to the extracellular domain of Nogo-A modulates experimental autoimmune encephalomyelitis. J Immunol. 2004;173(11):6981–92.PubMedCrossRef
70.
go back to reference Hafler DA, Cohen I, Benjamin DS, Weiner HL. T cell vaccination in multiple sclerosis: a preliminary report. Clin Immunol Immunopathol. 1992;62(3):307–13.PubMedCrossRef Hafler DA, Cohen I, Benjamin DS, Weiner HL. T cell vaccination in multiple sclerosis: a preliminary report. Clin Immunol Immunopathol. 1992;62(3):307–13.PubMedCrossRef
71.
go back to reference Gold DP, Smith RA, Golding AB, Morgan EE, Dafashy T, Nelson J, Smith L, Diveley J, Laxer JA, Richieri SP, Carlo DJ. Results of a phase I clinical trial of a T-cell receptor vaccine in patients with multiple sclerosis II Comparative analysis of TCR utilization in CSF T-cell populations before and after vaccination with a TCRVβ6 CDR2 peptide. J Neuroimmunol. 1997;76(1–2):29–38.PubMedCrossRef Gold DP, Smith RA, Golding AB, Morgan EE, Dafashy T, Nelson J, Smith L, Diveley J, Laxer JA, Richieri SP, Carlo DJ. Results of a phase I clinical trial of a T-cell receptor vaccine in patients with multiple sclerosis II Comparative analysis of TCR utilization in CSF T-cell populations before and after vaccination with a TCRVβ6 CDR2 peptide. J Neuroimmunol. 1997;76(1–2):29–38.PubMedCrossRef
72.
go back to reference Zang YC, Hong J, Rivera VM, Killian J, Zhang JZ. Preferential recognition of TCR hypervariable regions by human anti-idiotypic T cells induced by T cell vaccination. J Immunol. 2000;164(8):4011–7.PubMedCrossRef Zang YC, Hong J, Rivera VM, Killian J, Zhang JZ. Preferential recognition of TCR hypervariable regions by human anti-idiotypic T cells induced by T cell vaccination. J Immunol. 2000;164(8):4011–7.PubMedCrossRef
73.
74.
go back to reference Hermans G, Denzer U, Lohse A, Raus J, Stinissen P. Cellular and humoral immune responses against autoreactive T cells in multiple sclerosis patients after T cell vaccination. J Autoimmun. 1999;13(2):233–46.PubMedCrossRef Hermans G, Denzer U, Lohse A, Raus J, Stinissen P. Cellular and humoral immune responses against autoreactive T cells in multiple sclerosis patients after T cell vaccination. J Autoimmun. 1999;13(2):233–46.PubMedCrossRef
75.
go back to reference Ben-Nun A, Wekerle H, Cohen IR. Vaccination against autoimmune encephalomyelitis with Tlymphocite line cells reactive against myelin basic protein. Nature. 1981;292(5818):60–1.PubMedCrossRef Ben-Nun A, Wekerle H, Cohen IR. Vaccination against autoimmune encephalomyelitis with Tlymphocite line cells reactive against myelin basic protein. Nature. 1981;292(5818):60–1.PubMedCrossRef
82.
go back to reference Audrain M, et al. Targeting amyotrophic lateral sclerosis by neutralizing seeding-competent TDP-43 species in cerebrospinal fluid. Brain Commun. 2023;5(6):fcad306.PubMedPubMedCentralCrossRef Audrain M, et al. Targeting amyotrophic lateral sclerosis by neutralizing seeding-competent TDP-43 species in cerebrospinal fluid. Brain Commun. 2023;5(6):fcad306.PubMedPubMedCentralCrossRef
84.
87.
go back to reference U.S. Food and Drug Administration. FDA approves Relyvrio for treatment of ALS [Internet]. 2022 [cited 2024 Sep 27]. Available from: https://www.fda.gov. Accessed 2 Oct 2024. U.S. Food and Drug Administration. FDA approves Relyvrio for treatment of ALS [Internet]. 2022 [cited 2024 Sep 27]. Available from: https://​www.​fda.​gov. Accessed 2 Oct 2024.
88.
go back to reference Mora JS, Genge A, Chio A, et al. Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomized clinical trial. Amyotroph Lateral Scler Frontotemporal Degener. 2020;21(1–2):5–14. https://doi.org/10.1080/21678421.2019.1632346. (Erratum in: Amyotroph Lateral Scler Frontotemporal Degener. 2024 Feb;25(1-2):223. 10.1080/21678421.2023.2273111.).CrossRefPubMed Mora JS, Genge A, Chio A, et al. Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomized clinical trial. Amyotroph Lateral Scler Frontotemporal Degener. 2020;21(1–2):5–14. https://​doi.​org/​10.​1080/​21678421.​2019.​1632346. (Erratum in: Amyotroph Lateral Scler Frontotemporal Degener. 2024 Feb;25(1-2):223. 10.1080/21678421.2023.2273111.).CrossRefPubMed
111.
113.
go back to reference Stanberry LR, Spruance SL, Cunningham AL, Bernstein DI, Mindel A, Sacks S, Tyring S, Aoki FY, Slaoui M, Denis M, Vandepapeliere P, Dubin G, GlaxoSmithKline Herpes Vaccine Efficacy Study Group. Glycoprotein-D-adjuvant vaccine to prevent genital herpes. N Engl J Med. 2002;347(21):1652–61. https://doi.org/10.1056/NEJMoa011915.CrossRefPubMed Stanberry LR, Spruance SL, Cunningham AL, Bernstein DI, Mindel A, Sacks S, Tyring S, Aoki FY, Slaoui M, Denis M, Vandepapeliere P, Dubin G, GlaxoSmithKline Herpes Vaccine Efficacy Study Group. Glycoprotein-D-adjuvant vaccine to prevent genital herpes. N Engl J Med. 2002;347(21):1652–61. https://​doi.​org/​10.​1056/​NEJMoa011915.CrossRefPubMed
117.
go back to reference National Institute of Allergy and Infectious Diseases (NIAID). Safety and immunogenicity of an Epstein-Barr Virus (EBV) gp350-ferritin nanoparticle vaccine in healthy adults with or without EBV infection [Internet]. ClinicalTrials.gov Identifier: NCT04645147. Available from: https://clinicaltrials.gov/ct2/show/NCT0464514 National Institute of Allergy and Infectious Diseases (NIAID). Safety and immunogenicity of an Epstein-Barr Virus (EBV) gp350-ferritin nanoparticle vaccine in healthy adults with or without EBV infection [Internet]. ClinicalTrials.gov Identifier: NCT04645147. Available from: https://​clinicaltrials.​gov/​ct2/​show/​NCT0464514
126.
go back to reference Lehrer S, Rheinstein PH. Vaccination reduces risk of Alzheimer’s Disease, Parkinson’s disease and other neurodegenerative disorders. Discov Med. 2022;34(172):97–101.PubMedPubMedCentral Lehrer S, Rheinstein PH. Vaccination reduces risk of Alzheimer’s Disease, Parkinson’s disease and other neurodegenerative disorders. Discov Med. 2022;34(172):97–101.PubMedPubMedCentral
128.
go back to reference Iqbal SM, Rosen AM, Edwards D, Bolio A, Larson HJ, Servin M, Rudowitz M, Carfi A, Ceddia F. Opportunities and challenges to implementing mRNA-based vaccines and medicines: lessons from COVID-19. Front Public Health. 2024;8(12):1429265.CrossRef Iqbal SM, Rosen AM, Edwards D, Bolio A, Larson HJ, Servin M, Rudowitz M, Carfi A, Ceddia F. Opportunities and challenges to implementing mRNA-based vaccines and medicines: lessons from COVID-19. Front Public Health. 2024;8(12):1429265.CrossRef
130.
go back to reference Kheirollahpour M, Mehrabi M, Dounighi NM, Mohammadi M, Masoudi A. Nanoparticles and vaccine development. Pharm Nanotechnol. 2020;8(1):6–21.PubMedCrossRef Kheirollahpour M, Mehrabi M, Dounighi NM, Mohammadi M, Masoudi A. Nanoparticles and vaccine development. Pharm Nanotechnol. 2020;8(1):6–21.PubMedCrossRef
135.
go back to reference Bhujbal S, Bhujbal R, Giram P. An overview: CRISPR/Cas-based gene editing for viral vaccine development. Expert Rev Vaccines. 2022;21(11):1581–93.PubMedCrossRef Bhujbal S, Bhujbal R, Giram P. An overview: CRISPR/Cas-based gene editing for viral vaccine development. Expert Rev Vaccines. 2022;21(11):1581–93.PubMedCrossRef
Metadata
Title
Vaccine Based Approaches for the Prevention and Treatment of Neurological Disease
Authors
Nicholas Aderinto
Israel Charles Abraham
Gbolahan Olatunji
Emmanuel Kokori
Patrick Ashinze
Emmanuel Adeoba Babawale
Badrudeen Olalekan Alabi
Olaewe David Opeyemi
Adetola Emmanuel Babalola
Ayoola Ikeoluwa Oluwapelumi
Chidinma Udojike
Okikiola Sobuur Fagbolade
Festus Oluseye Babarinde
Ololade Wiquoyat Oyesiji
Bonaventure Michael Ukoaka
Alexander Idu Entonu
Matthew Tolulope Olawoyin
Olayinka Fakorede
Publication date
30-01-2025

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now
Video

Advances in Alzheimer's

Alzheimer's research and care is changing rapidly. Keep up with the latest developments from key international conferences, together with expert insights on how to integrate these advances into practice.

This content is intended for healthcare professionals outside of the UK.

Supported by:
  • Lilly
Developed by: Springer Healthcare IME
Learn more