Skip to main content
Top
Published in:

Open Access 01-12-2023 | Neurodevelopmental Disorders | Research

Implementation of Nanopore sequencing as a pragmatic workflow for copy number variant confirmation in the clinic

Authors: Stephanie U. Greer, Jacquelin Botello, Donna Hongo, Brynn Levy, Premal Shah, Matthew Rabinowitz, Danny E. Miller, Kate Im, Akash Kumar

Published in: Journal of Translational Medicine | Issue 1/2023

Login to get access

Abstract

Background

Diagnosis of rare genetic diseases can be a long, expensive and complex process, involving an array of tests in the hope of obtaining an actionable result. Long-read sequencing platforms offer the opportunity to make definitive molecular diagnoses using a single assay capable of detecting variants, characterizing methylation patterns, resolving complex rearrangements, and assigning findings to long-range haplotypes. Here, we demonstrate the clinical utility of Nanopore long-read sequencing by validating a confirmatory test for copy number variants (CNVs) in neurodevelopmental disorders and illustrate the broader applications of this platform to assess genomic features with significant clinical implications.

Methods

We used adaptive sampling on the Oxford Nanopore platform to sequence 25 genomic DNA samples and 5 blood samples collected from patients with known or false-positive copy number changes originally detected using short-read sequencing. Across the 30 samples (a total of 50 with replicates), we assayed 35 known unique CNVs (a total of 55 with replicates) and one false-positive CNV, ranging in size from 40 kb to 155 Mb, and assessed the presence or absence of suspected CNVs using normalized read depth.

Results

Across 50 samples (including replicates) sequenced on individual MinION flow cells, we achieved an average on-target mean depth of 9.5X and an average on-target read length of 4805 bp. Using a custom read depth-based analysis, we successfully confirmed the presence of all 55 known CNVs (including replicates) and the absence of one false-positive CNV. Using the same CNV-targeted data, we compared genotypes of single nucleotide variant loci to verify that no sample mix-ups occurred between assays. For one case, we also used methylation detection and phasing to investigate the parental origin of a 15q11.2-q13 duplication with implications for clinical prognosis.

Conclusions

We present an assay that efficiently targets genomic regions to confirm clinically relevant CNVs with a concordance rate of 100%. Furthermore, we demonstrate how integration of genotype, methylation, and phasing data from the Nanopore sequencing platform can potentially simplify and shorten the diagnostic odyssey.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zarrei M, MacDonald JR, Merico D, Scherer SW. A copy number variation map of the human genome. Nat Rev Genet. 2015;16(3):172–83.CrossRefPubMed Zarrei M, MacDonald JR, Merico D, Scherer SW. A copy number variation map of the human genome. Nat Rev Genet. 2015;16(3):172–83.CrossRefPubMed
2.
go back to reference Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008;82(2):477–88.CrossRefPubMedPubMedCentral Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008;82(2):477–88.CrossRefPubMedPubMedCentral
3.
go back to reference Lee C, Scherer SW. The clinical context of copy number variation in the human genome. Expert Rev Mol Med. 2010;9(12):e8.CrossRef Lee C, Scherer SW. The clinical context of copy number variation in the human genome. Expert Rev Mol Med. 2010;9(12):e8.CrossRef
4.
go back to reference Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010;466(7304):368–72.CrossRefPubMedPubMedCentral Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010;466(7304):368–72.CrossRefPubMedPubMedCentral
5.
go back to reference Yuen C, Merico RK, Bookman D, Howe LM, Thiruvahindrapuram J, Patel B. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci. 2017;20(4):602–11.CrossRefPubMedCentral Yuen C, Merico RK, Bookman D, Howe LM, Thiruvahindrapuram J, Patel B. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci. 2017;20(4):602–11.CrossRefPubMedCentral
6.
go back to reference Zarrei M, Burton CL, Engchuan W, Young EJ, Higginbotham EJ, MacDonald JR, et al. A large data resource of genomic copy number variation across neurodevelopmental disorders. NPJ Genom Med. 2019;7(4):26.CrossRef Zarrei M, Burton CL, Engchuan W, Young EJ, Higginbotham EJ, MacDonald JR, et al. A large data resource of genomic copy number variation across neurodevelopmental disorders. NPJ Genom Med. 2019;7(4):26.CrossRef
7.
go back to reference Cao Y, Luk HM, Zhang Y, Chau MHK, Xue S, Cheng SSW, et al. Investigation of chromosomal structural abnormalities in patients with undiagnosed Neurodevelopmental Disorders. Front Genet. 2022;13:803088.CrossRefPubMedPubMedCentral Cao Y, Luk HM, Zhang Y, Chau MHK, Xue S, Cheng SSW, et al. Investigation of chromosomal structural abnormalities in patients with undiagnosed Neurodevelopmental Disorders. Front Genet. 2022;13:803088.CrossRefPubMedPubMedCentral
8.
go back to reference Marshall CR, Chowdhury S, Taft RJ, Lebo MS, Buchan JG, Harrison SM, et al. Best practices for the analytical validation of clinical whole-genome sequencing intended for the diagnosis of germline disease. NPJ Genom Med. 2020;5:47.CrossRefPubMedPubMedCentral Marshall CR, Chowdhury S, Taft RJ, Lebo MS, Buchan JG, Harrison SM, et al. Best practices for the analytical validation of clinical whole-genome sequencing intended for the diagnosis of germline disease. NPJ Genom Med. 2020;5:47.CrossRefPubMedPubMedCentral
9.
go back to reference Miller DE, Sulovari A, Wang T, Loucks H, Hoekzema K, Munson KM, et al. Targeted long-read sequencing identifies missing disease-causing variation. Am J Hum Genet. 2021;108(8):1436–49.CrossRefPubMedPubMedCentral Miller DE, Sulovari A, Wang T, Loucks H, Hoekzema K, Munson KM, et al. Targeted long-read sequencing identifies missing disease-causing variation. Am J Hum Genet. 2021;108(8):1436–49.CrossRefPubMedPubMedCentral
10.
go back to reference Payne A, Holmes N, Clarke T, Munro R, Debebe BJ, Loose M. Readfish enables targeted nanopore sequencing of gigabase-sized genomes. Nat Biotechnol. 2021;39(4):442–50.CrossRefPubMed Payne A, Holmes N, Clarke T, Munro R, Debebe BJ, Loose M. Readfish enables targeted nanopore sequencing of gigabase-sized genomes. Nat Biotechnol. 2021;39(4):442–50.CrossRefPubMed
11.
go back to reference Stevanovski I, Chintalaphani SR, Gamaarachchi H, Ferguson JM, Pineda SS, Scriba CK, et al. Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. Sci Adv. 2022;8(9):5386.CrossRef Stevanovski I, Chintalaphani SR, Gamaarachchi H, Ferguson JM, Pineda SS, Scriba CK, et al. Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. Sci Adv. 2022;8(9):5386.CrossRef
12.
go back to reference Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020;21(1):30.CrossRefPubMedPubMedCentral Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020;21(1):30.CrossRefPubMedPubMedCentral
13.
go back to reference Kumar A, Im K, Banjevic M, Ng PC, Tunstall T, Garcia G, et al. Whole-genome risk prediction of common diseases in human preimplantation embryos. Nat Med. 2022;28(3):513–6.CrossRefPubMedPubMedCentral Kumar A, Im K, Banjevic M, Ng PC, Tunstall T, Garcia G, et al. Whole-genome risk prediction of common diseases in human preimplantation embryos. Nat Med. 2022;28(3):513–6.CrossRefPubMedPubMedCentral
16.
17.
go back to reference Jiang T, Liu Y, Jiang Y, Li J, Gao Y, Cui Z, et al. Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 2020;21(1):189.CrossRefPubMedPubMedCentral Jiang T, Liu Y, Jiang Y, Li J, Gao Y, Cui Z, et al. Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 2020;21(1):189.CrossRefPubMedPubMedCentral
18.
go back to reference Tham CY, Tirado-Magallanes R, Goh Y, Fullwood MJ, Koh BTH, Wang W, et al. NanoVar: accurate characterization of patients’ genomic structural variants using low-depth nanopore sequencing. Genome Biol. 2020;21(1):56.CrossRefPubMedPubMedCentral Tham CY, Tirado-Magallanes R, Goh Y, Fullwood MJ, Koh BTH, Wang W, et al. NanoVar: accurate characterization of patients’ genomic structural variants using low-depth nanopore sequencing. Genome Biol. 2020;21(1):56.CrossRefPubMedPubMedCentral
20.
go back to reference Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler A, et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat Methods. 2018;15(6):461–8.CrossRefPubMedPubMedCentral Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler A, et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat Methods. 2018;15(6):461–8.CrossRefPubMedPubMedCentral
21.
go back to reference Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–43.CrossRefPubMedPubMedCentral Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–43.CrossRefPubMedPubMedCentral
24.
go back to reference Askree SH, Dharamrup S, Hjelm LN, Coffee B. Parent-of-origin testing for 15q11-q13 gains by quantitative DNA methylation analysis. J Mol Diagn. 2012;14(3):192–8.CrossRefPubMed Askree SH, Dharamrup S, Hjelm LN, Coffee B. Parent-of-origin testing for 15q11-q13 gains by quantitative DNA methylation analysis. J Mol Diagn. 2012;14(3):192–8.CrossRefPubMed
25.
go back to reference Miller DE, Lee L, Galey M, Kandhaya-Pillai R, Tischkowitz M, Amalnath D, et al. Targeted long-read sequencing identifies missing pathogenic variants in unsolved Werner syndrome cases. J Med Genet. 2022;9(11):1087–94.CrossRef Miller DE, Lee L, Galey M, Kandhaya-Pillai R, Tischkowitz M, Amalnath D, et al. Targeted long-read sequencing identifies missing pathogenic variants in unsolved Werner syndrome cases. J Med Genet. 2022;9(11):1087–94.CrossRef
26.
go back to reference Miyatake S, Koshimizu E, Fujita A, Doi H, Okubo M, Wada T, et al. Rapid and comprehensive diagnostic method for repeat expansion diseases using nanopore sequencing. NPJ Genom Med. 2022;26(1):62.CrossRef Miyatake S, Koshimizu E, Fujita A, Doi H, Okubo M, Wada T, et al. Rapid and comprehensive diagnostic method for repeat expansion diseases using nanopore sequencing. NPJ Genom Med. 2022;26(1):62.CrossRef
27.
go back to reference Sanchis-Juan A, Stephens J, French CE, Gleadall N, Mégy K, Penkett C, et al. Complex structural variants in mendelian disorders: identification and breakpoint resolution using short- and long-read genome sequencing. Genome Med. 2018;7(1):95.CrossRef Sanchis-Juan A, Stephens J, French CE, Gleadall N, Mégy K, Penkett C, et al. Complex structural variants in mendelian disorders: identification and breakpoint resolution using short- and long-read genome sequencing. Genome Med. 2018;7(1):95.CrossRef
28.
go back to reference Aref-Eshghi E, Bend EG, Colaiacovo S, Caudle M, Chakrabarti R, Napier M, et al. Diagnostic utility of genome-wide DNA methylation testing in genetically Unsolved individuals with suspected Hereditary Conditions. Am J Hum Genet. 2019;104(4):685–700.CrossRefPubMedPubMedCentral Aref-Eshghi E, Bend EG, Colaiacovo S, Caudle M, Chakrabarti R, Napier M, et al. Diagnostic utility of genome-wide DNA methylation testing in genetically Unsolved individuals with suspected Hereditary Conditions. Am J Hum Genet. 2019;104(4):685–700.CrossRefPubMedPubMedCentral
29.
go back to reference Miller DE, Hanna P, Galey M, Reyes M, Linglart A, Eichler EE, et al. Targeted long-read sequencing identifies a retrotransposon insertion as a cause of altered GNAS exon A/B methylation in a family with autosomal Dominant pseudohypoparathyroidism type 1b (PHP1B). J Bone Miner Res. 2022;37(9):1711–9.CrossRefPubMed Miller DE, Hanna P, Galey M, Reyes M, Linglart A, Eichler EE, et al. Targeted long-read sequencing identifies a retrotransposon insertion as a cause of altered GNAS exon A/B methylation in a family with autosomal Dominant pseudohypoparathyroidism type 1b (PHP1B). J Bone Miner Res. 2022;37(9):1711–9.CrossRefPubMed
Metadata
Title
Implementation of Nanopore sequencing as a pragmatic workflow for copy number variant confirmation in the clinic
Authors
Stephanie U. Greer
Jacquelin Botello
Donna Hongo
Brynn Levy
Premal Shah
Matthew Rabinowitz
Danny E. Miller
Kate Im
Akash Kumar
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2023
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-023-04243-y

Other articles of this Issue 1/2023

Journal of Translational Medicine 1/2023 Go to the issue

A quick guide to ECGs

Improve your ECG interpretation skills with this comprehensive, rapid, interactive course. Expert advice provides detailed feedback as you work through 50 ECGs covering the most common cardiac presentations to ensure your practice stays up to date. 

PD Dr. Carsten W. Israel
Developed by: Springer Medizin
Start the cases

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Read more