Skip to main content
Top
Published in:

01-12-2022 | Neuroblastoma | Research

Clinical parameters combined with radiomics features of PET/CT can predict recurrence in patients with high-risk pediatric neuroblastoma

Authors: Lijuan Feng, Luodan Qian, Shen Yang, Qinghua Ren, Shuxin Zhang, Hong Qin, Wei Wang, Chao Wang, Hui Zhang, Jigang Yang

Published in: BMC Medical Imaging | Issue 1/2022

Login to get access

Abstract

Background

This retrospective study aimed to develop and validate a combined model based [18F]FDG PET/CT radiomics and clinical parameters for predicting recurrence in high-risk pediatric neuroblastoma patients.

Methods

Eighty-four high-risk neuroblastoma patients were retrospectively enrolled and divided into training and test sets according to the ratio of 3:2. [18F]FDG PET/CT images of the tumor were segmented by 3D Slicer software and the radiomics features were extracted. The effective features were selected by the least absolute shrinkage and selection operator to construct the radiomics score (Rad_score). And the radiomics model (R_model) was constructed based on Rad_score for prediction of recurrence. Then, univariate and multivariate analyses were used to screen out the independent clinical risk parameters and construct the clinical model (C_model). A combined model (RC_model) was developed based on the Rad_score and independent clinical risk parameters and presented as radiomics nomogram. The performance of the above three models was assessed by the area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA).

Results

Seven radiomics features were selected for building the R_model. The AUCs of the C_model in training and test sets were 0.744 (95% confidence interval [CI], 0.595–0.874) and 0.750 (95% CI, 0.577–0.904), respectively. The R_model yielded AUCs of 0.813 (95% CI, 0.685–0.916) and 0.869 (95% CI, 0.715–0.985) in the training and test sets, respectively. The RC_model demonstrated the largest AUCs of 0.889 (95% CI, 0.794–0.963) and 0.892 (95% CI, 0.758–0.992) in the training and test sets, respectively. DCA demonstrated that RC_model added more net benefits than either the C_model or the R_model for predicting recurrence in high-risk pediatric neuroblastoma.

Conclusions

The combined model performed well for predicting recurrence in high-risk pediatric neuroblastoma, which can facilitate disease follow-up and management in clinical practice.
Literature
1.
go back to reference Su Y, Wang L, Jiang C, Yue Z, Fan H, Hong H, Duan C, Jin M, Zhang D, Qiu L, et al. Increased plasma concentration of cell-free DNA precedes disease recurrence in children with high-risk neuroblastoma. BMC Cancer. 2020;20(1):102.CrossRef Su Y, Wang L, Jiang C, Yue Z, Fan H, Hong H, Duan C, Jin M, Zhang D, Qiu L, et al. Increased plasma concentration of cell-free DNA precedes disease recurrence in children with high-risk neuroblastoma. BMC Cancer. 2020;20(1):102.CrossRef
2.
go back to reference Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, Faldum A, Hero B, Iehara T, Machin D, et al. The international neuroblastoma risk group (INRG) classification system: an INRG task force report. J Clin Oncol. 2009;27(2):289–97.CrossRef Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, Faldum A, Hero B, Iehara T, Machin D, et al. The international neuroblastoma risk group (INRG) classification system: an INRG task force report. J Clin Oncol. 2009;27(2):289–97.CrossRef
3.
go back to reference Gains JE, Moroz V, Aldridge MD, Wan S, Wheatley K, Laidler J, Peet C, Bomanji JB, Gaze MN. A phase IIa trial of molecular radiotherapy with 177-lutetium DOTATATE in children with primary refractory or relapsed high-risk neuroblastoma. Eur J Nucl Med Mol Imaging. 2020;47(10):2348–57.CrossRef Gains JE, Moroz V, Aldridge MD, Wan S, Wheatley K, Laidler J, Peet C, Bomanji JB, Gaze MN. A phase IIa trial of molecular radiotherapy with 177-lutetium DOTATATE in children with primary refractory or relapsed high-risk neuroblastoma. Eur J Nucl Med Mol Imaging. 2020;47(10):2348–57.CrossRef
4.
go back to reference Sato T, Hara K, Ohba G, Yamamoto H, Iguchi A. Long-term survival of two patients with recurrent high-risk neuroblastoma. Pediatr Int. 2021;63(7):849–51.CrossRef Sato T, Hara K, Ohba G, Yamamoto H, Iguchi A. Long-term survival of two patients with recurrent high-risk neuroblastoma. Pediatr Int. 2021;63(7):849–51.CrossRef
5.
go back to reference Ishiguchi H, Ito S, Kato K, Sakurai Y, Kawai H, Fujita N, Abe S, Narita A, Nishio N, Muramatsu H, et al. Diagnostic performance of (18)F-FDG PET/CT and whole-body diffusion-weighted imaging with background body suppression (DWIBS) in detection of lymph node and bone metastases from pediatric neuroblastoma. Ann Nucl Med. 2018;32(5):348–62.CrossRef Ishiguchi H, Ito S, Kato K, Sakurai Y, Kawai H, Fujita N, Abe S, Narita A, Nishio N, Muramatsu H, et al. Diagnostic performance of (18)F-FDG PET/CT and whole-body diffusion-weighted imaging with background body suppression (DWIBS) in detection of lymph node and bone metastases from pediatric neuroblastoma. Ann Nucl Med. 2018;32(5):348–62.CrossRef
6.
go back to reference Sung AJ, Weiss BD, Sharp SE, Zhang B, Trout AT. Prognostic significance of pretreatment (18)F-FDG positron emission tomography/computed tomography in pediatric neuroblastoma. Pediatr Radiol. 2021;51(8):1400–5.CrossRef Sung AJ, Weiss BD, Sharp SE, Zhang B, Trout AT. Prognostic significance of pretreatment (18)F-FDG positron emission tomography/computed tomography in pediatric neuroblastoma. Pediatr Radiol. 2021;51(8):1400–5.CrossRef
7.
go back to reference Liu YL, Lu MY, Chang HH, Lu CC, Lin DT, Jou ST, Yang YL, Lee YL, Huang SF, Jeng YM, et al. Diagnostic FDG and FDOPA positron emission tomography scans distinguish the genomic type and treatment outcome of neuroblastoma. Oncotarget. 2016;7(14):18774–86.CrossRef Liu YL, Lu MY, Chang HH, Lu CC, Lin DT, Jou ST, Yang YL, Lee YL, Huang SF, Jeng YM, et al. Diagnostic FDG and FDOPA positron emission tomography scans distinguish the genomic type and treatment outcome of neuroblastoma. Oncotarget. 2016;7(14):18774–86.CrossRef
8.
go back to reference Papathanasiou ND, Gaze MN, Sullivan K, Aldridge M, Waddington W, Almuhaideb A, Bomanji JB. 18F-FDG PET/CT and 123I-metaiodobenzylguanidine imaging in high-risk neuroblastoma: diagnostic comparison and survival analysis. J Nucl Med. 2011;52(4):519–25.CrossRef Papathanasiou ND, Gaze MN, Sullivan K, Aldridge M, Waddington W, Almuhaideb A, Bomanji JB. 18F-FDG PET/CT and 123I-metaiodobenzylguanidine imaging in high-risk neuroblastoma: diagnostic comparison and survival analysis. J Nucl Med. 2011;52(4):519–25.CrossRef
9.
go back to reference Ao W, Cheng G, Lin B, Yang R, Liu X, Zhou S, Wang W, Fang Z, Tian F, Yang G, et al. A novel CT-based radiomic nomogram for predicting the recurrence and metastasis of gastric stromal tumors. Am J Cancer Res. 2021;11(6):3123–34.PubMedPubMedCentral Ao W, Cheng G, Lin B, Yang R, Liu X, Zhou S, Wang W, Fang Z, Tian F, Yang G, et al. A novel CT-based radiomic nomogram for predicting the recurrence and metastasis of gastric stromal tumors. Am J Cancer Res. 2021;11(6):3123–34.PubMedPubMedCentral
10.
go back to reference Liu S, Sun W, Yang S, Duan L, Huang C, Xu J, Hou F, Hao D, Yu T, Wang H. Deep learning radiomic nomogram to predict recurrence in soft tissue sarcoma: a multi-institutional study. Eur Radiol. 2022;32(2):793–805.CrossRef Liu S, Sun W, Yang S, Duan L, Huang C, Xu J, Hou F, Hao D, Yu T, Wang H. Deep learning radiomic nomogram to predict recurrence in soft tissue sarcoma: a multi-institutional study. Eur Radiol. 2022;32(2):793–805.CrossRef
11.
go back to reference Tan JW, Wang L, Chen Y, Xi W, Ji J, Wang L, Xu X, Zou LK, Feng JX, Zhang J, et al. Predicting chemotherapeutic response for far-advanced gastric cancer by radiomics with deep learning semi-automatic segmentation. J Cancer. 2020;11(24):7224–36.CrossRef Tan JW, Wang L, Chen Y, Xi W, Ji J, Wang L, Xu X, Zou LK, Feng JX, Zhang J, et al. Predicting chemotherapeutic response for far-advanced gastric cancer by radiomics with deep learning semi-automatic segmentation. J Cancer. 2020;11(24):7224–36.CrossRef
12.
go back to reference Xu X, Zhang HL, Liu QP, Sun SW, Zhang J, Zhu FP, Yang G, Yan X, Zhang YD, Liu XS. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol. 2019;70(6):1133–44.CrossRef Xu X, Zhang HL, Liu QP, Sun SW, Zhang J, Zhu FP, Yang G, Yan X, Zhang YD, Liu XS. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol. 2019;70(6):1133–44.CrossRef
13.
go back to reference Kirienko M, Sollini M, Corbetta M, Voulaz E, Gozzi N, Interlenghi M, Gallivanone F, Castiglioni I, Asselta R, Duga S, et al. Radiomics and gene expression profile to characterise the disease and predict outcome in patients with lung cancer. Eur J Nucl Med Mol Imaging. 2021;48(11):3643–55.CrossRef Kirienko M, Sollini M, Corbetta M, Voulaz E, Gozzi N, Interlenghi M, Gallivanone F, Castiglioni I, Asselta R, Duga S, et al. Radiomics and gene expression profile to characterise the disease and predict outcome in patients with lung cancer. Eur J Nucl Med Mol Imaging. 2021;48(11):3643–55.CrossRef
14.
go back to reference Nakajo M, Jinguji M, Tani A, Kikuno H, Hirahara D, Togami S, Kobayashi H, Yoshiura T. Application of a machine learning approach for the analysis of clinical and radiomic features of pretreatment [(18)F]-FDG PET/CT to predict prognosis of patients with endometrial cancer. Mol Imaging Biol. 2021;23(5):756–65.CrossRef Nakajo M, Jinguji M, Tani A, Kikuno H, Hirahara D, Togami S, Kobayashi H, Yoshiura T. Application of a machine learning approach for the analysis of clinical and radiomic features of pretreatment [(18)F]-FDG PET/CT to predict prognosis of patients with endometrial cancer. Mol Imaging Biol. 2021;23(5):756–65.CrossRef
15.
go back to reference Eertink JJ, van de Brug T, Wiegers SE, Zwezerijnen GJC, Pfaehler EAG, Lugtenburg PJ, van der Holt B, de Vet HCW, Hoekstra OS, Boellaard R, et al. 18F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma. Eur J Nucl Med Mol Imaging. 2022;49(3):932–42.CrossRef Eertink JJ, van de Brug T, Wiegers SE, Zwezerijnen GJC, Pfaehler EAG, Lugtenburg PJ, van der Holt B, de Vet HCW, Hoekstra OS, Boellaard R, et al. 18F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma. Eur J Nucl Med Mol Imaging. 2022;49(3):932–42.CrossRef
16.
go back to reference Stauss J, Franzius C, Pfluger T, Juergens KU, Biassoni L, Begent J, Kluge R, Amthauer H, Voelker T, Højgaard L, et al. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging. 2008;35(8):1581–8.CrossRef Stauss J, Franzius C, Pfluger T, Juergens KU, Biassoni L, Begent J, Kluge R, Amthauer H, Voelker T, Højgaard L, et al. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging. 2008;35(8):1581–8.CrossRef
17.
go back to reference Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, Townsend DW, Berland LL, Parker JA, Hubner K, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006;47(5):885–95.PubMed Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, Townsend DW, Berland LL, Parker JA, Hubner K, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006;47(5):885–95.PubMed
18.
go back to reference Kocak B, Durmaz ES, Ates E, Kaya OK, Kilickesmez O. Unenhanced CT texture analysis of clear cell renal cell carcinomas: a machine learning-based study for predicting histopathologic nuclear grade. AJR Am J Roentgenol. 2019;212:W1–8.CrossRef Kocak B, Durmaz ES, Ates E, Kaya OK, Kilickesmez O. Unenhanced CT texture analysis of clear cell renal cell carcinomas: a machine learning-based study for predicting histopathologic nuclear grade. AJR Am J Roentgenol. 2019;212:W1–8.CrossRef
19.
go back to reference van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts H. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77(21):e104–7.CrossRef van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts H. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77(21):e104–7.CrossRef
20.
go back to reference Xv Y, Lv F, Guo H, Zhou X, Tan H, Xiao M, Zheng Y. Machine learning-based CT radiomics approach for predicting WHO/ISUP nuclear grade of clear cell rena l cell carcinoma: an exploratory and comparative study. Insights Imaging. 2021;12(1):170.CrossRef Xv Y, Lv F, Guo H, Zhou X, Tan H, Xiao M, Zheng Y. Machine learning-based CT radiomics approach for predicting WHO/ISUP nuclear grade of clear cell rena l cell carcinoma: an exploratory and comparative study. Insights Imaging. 2021;12(1):170.CrossRef
21.
go back to reference Yip SSF, Parmar C, Kim J, Huynh E, Mak RH, Aerts H. Impact of experimental design on PET radiomics in predicting somatic mutation status. Eur J Radiol. 2017;97:8–15.CrossRef Yip SSF, Parmar C, Kim J, Huynh E, Mak RH, Aerts H. Impact of experimental design on PET radiomics in predicting somatic mutation status. Eur J Radiol. 2017;97:8–15.CrossRef
22.
go back to reference Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B, Stram DO, Gerbing RB, Lukens JN, Matthay KK, et al. The international neuroblastoma pathology classification (the Shimada system). Cancer. 1999;86(2):364–72.CrossRef Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B, Stram DO, Gerbing RB, Lukens JN, Matthay KK, et al. The international neuroblastoma pathology classification (the Shimada system). Cancer. 1999;86(2):364–72.CrossRef
23.
go back to reference Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet (London, England). 2007;369(9579):2106–20.CrossRef Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet (London, England). 2007;369(9579):2106–20.CrossRef
24.
go back to reference Simon T, Hero B, Hunneman DH, Berthold F. Tumour markers are poor predictors for relapse or progression in neuroblastoma. Eur J Cancer (Oxford, England: 1990). 2003;39(13):1899–903.CrossRef Simon T, Hero B, Hunneman DH, Berthold F. Tumour markers are poor predictors for relapse or progression in neuroblastoma. Eur J Cancer (Oxford, England: 1990). 2003;39(13):1899–903.CrossRef
25.
go back to reference Kushner BH, Yeung HW, Larson SM, Kramer K, Cheung NK. Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol Off J Am Soc Clin Oncol. 2001;19(14):3397–405.CrossRef Kushner BH, Yeung HW, Larson SM, Kramer K, Cheung NK. Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol Off J Am Soc Clin Oncol. 2001;19(14):3397–405.CrossRef
26.
go back to reference Samim A, Tytgat GAM, Bleeker G, Wenker STM, Chatalic KLS, Poot AJ, Tolboom N, van Noesel MM, Lam M, de Keizer B. Nuclear medicine imaging in neuroblastoma: current status and new developments. J Pers Med. 2021;11:270.CrossRef Samim A, Tytgat GAM, Bleeker G, Wenker STM, Chatalic KLS, Poot AJ, Tolboom N, van Noesel MM, Lam M, de Keizer B. Nuclear medicine imaging in neuroblastoma: current status and new developments. J Pers Med. 2021;11:270.CrossRef
27.
go back to reference Wang H, Sun Y, Ge Y, Wu PY, Lin J, Zhao J, Song B. A clinical-radiomics nomogram for functional outcome predictions in ischemic stroke. Neurol Ther. 2021;10(2):819–32.CrossRef Wang H, Sun Y, Ge Y, Wu PY, Lin J, Zhao J, Song B. A clinical-radiomics nomogram for functional outcome predictions in ischemic stroke. Neurol Ther. 2021;10(2):819–32.CrossRef
28.
go back to reference Yang P, Xu L, Cao Z, Wan Y, Xue Y, Jiang Y, Yen E, Luo C, Wang J, Rong Y, et al. Extracting and selecting robust radiomic features from PET/MR images in nasopharyngeal carcinoma. Mol Imaging Biol. 2020;22(6):1581–91.CrossRef Yang P, Xu L, Cao Z, Wan Y, Xue Y, Jiang Y, Yen E, Luo C, Wang J, Rong Y, et al. Extracting and selecting robust radiomic features from PET/MR images in nasopharyngeal carcinoma. Mol Imaging Biol. 2020;22(6):1581–91.CrossRef
29.
go back to reference Zhang L, Dong D, Li H, Tian J, Ouyang F, Mo X, Zhang B, Luo X, Lian Z, Pei S, et al. Development and validation of a magnetic resonance imaging-based model for the prediction of distant metastasis before initial treatment of nasopharyngeal carcinoma: a retrospective cohort study. EBioMedicine. 2019;40:327–35.CrossRef Zhang L, Dong D, Li H, Tian J, Ouyang F, Mo X, Zhang B, Luo X, Lian Z, Pei S, et al. Development and validation of a magnetic resonance imaging-based model for the prediction of distant metastasis before initial treatment of nasopharyngeal carcinoma: a retrospective cohort study. EBioMedicine. 2019;40:327–35.CrossRef
30.
go back to reference Wang Q, Zhang Y, Zhang E, Xing X, Chen Y, Su MY, Lang N. Prediction of the early recurrence in spinal giant cell tumor of bone using radiomics of preoperative CT: Long-term outcome of 62 consecutive patients. J Bone Oncol. 2021;27:100354.CrossRef Wang Q, Zhang Y, Zhang E, Xing X, Chen Y, Su MY, Lang N. Prediction of the early recurrence in spinal giant cell tumor of bone using radiomics of preoperative CT: Long-term outcome of 62 consecutive patients. J Bone Oncol. 2021;27:100354.CrossRef
Metadata
Title
Clinical parameters combined with radiomics features of PET/CT can predict recurrence in patients with high-risk pediatric neuroblastoma
Authors
Lijuan Feng
Luodan Qian
Shen Yang
Qinghua Ren
Shuxin Zhang
Hong Qin
Wei Wang
Chao Wang
Hui Zhang
Jigang Yang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2022
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-022-00828-z

Other articles of this Issue 1/2022

BMC Medical Imaging 1/2022 Go to the issue