Skip to main content
Top
Published in:

Open Access 01-12-2023 | Mumps Orchitis | Research

Testis cell pyroptosis mediated by CASP1 and CASP4: possible sertoli cell-only syndrome pathogenesis

Authors: Wantao Liu, Xinan Li, Qiang Ma, Yongtong Zhu, Wenzhong Zhao, Yisheng Yang, Weiqiang Xiao, Daxiong Huang, Fengbo Cai, David Yiu Leung Chan, Shanchao Zhao, Qingjun Chu

Published in: Reproductive Biology and Endocrinology | Issue 1/2023

Login to get access

Abstract

Background

Sertoli cell-only syndrome (SCOS) is the most serious pathological type of non-obstructive azoospermia. Recently, several genes related to SCOS have been identified, including FANCM, TEX14, NR5A1, NANOS2, PLK4, WNK3, and FANCA, but they cannot fully explain the pathogenesis of SCOS. This study attempted to explain spermatogenesis dysfunction in SCOS through testicular tissue RNA sequencing and to provide new targets for SCOS diagnosis and therapy.

Methods

We analyzed differentially expressed genes (DEGs) based on RNA sequencing of nine patients with SCOS and three patients with obstructive azoospermia and normal spermatogenesis. We further explored the identified genes using ELISA and immunohistochemistry.

Results

In total, 9406 DEGs were expressed (Log2|FC|≥ 1; adjusted P value < 0.05) in SCOS samples, and 21 hub genes were identified. Three upregulated core genes were found, including CASP4, CASP1, and PLA2G4A. Thus, we hypothesized that testis cell pyroptosis mediated by CASP1 and CASP4 might be involved in SCOS occurrence and development. ELISA verified that CASP1 and CASP4 activities in the testes of patients with SCOS were significantly higher than those in patients with normal spermatogenesis. Immunohistochemical results showed that CASP1 and CASP4 in the normal spermatogenesis group were mainly expressed in the nuclei of spermatogenic, Sertoli, and interstitial cells. CASP1 and CASP4 in the SCOS group were mainly expressed in the nuclei of Sertoli and interstitial cells because of the loss of spermatogonia and spermatocytes. CASP1 and CASP4 expression levels in the testes of patients with SCOS were significantly higher than those in patients with normal spermatogenisis. Furthermore, the pyroptosis-related proteins GSDMD and GSDME in the testes of patients with SCOS were also significantly higher than those in control patients. ELISA also showed that inflammatory factors (IL-1 β, IL-18, LDH, and ROS) were significantly increased in the SCOS group.

Conclusions

For the first time, we found that cell pyroptosis-related genes and key markers were significantly increased in the testes of patients with SCOS. We also observed many inflammatory and oxidative stress reactions in SCOS. Thus, we propose that testis cell pyroptosis mediated by CASP1 and CASP4 could participate in SCOS occurrence and development.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tournaye H, Krausz C, Oates RD. Novel concepts in the etiology of male reproductive impairment. Lancet Diab Endocr. 2017;5(7):544–53.CrossRef Tournaye H, Krausz C, Oates RD. Novel concepts in the etiology of male reproductive impairment. Lancet Diab Endocr. 2017;5(7):544–53.CrossRef
2.
go back to reference Krausz C. Male infertility: pathogenesis and clinical diagnosis. Best Pract Res Cl En. 2011;25(2):271–85.CrossRef Krausz C. Male infertility: pathogenesis and clinical diagnosis. Best Pract Res Cl En. 2011;25(2):271–85.CrossRef
3.
go back to reference Niederberger C. Re: common variants in mismatch repair genes associated with increased risk of sperm DNA damage and male infertility. J Urol. 2013;189(1):255.PubMed Niederberger C. Re: common variants in mismatch repair genes associated with increased risk of sperm DNA damage and male infertility. J Urol. 2013;189(1):255.PubMed
4.
go back to reference Vogt PH. Molecular genetics of human male infertility: from genes to new therapeutic perspectives. Curr Pharm Des. 2004;10(5):471–500.CrossRefPubMed Vogt PH. Molecular genetics of human male infertility: from genes to new therapeutic perspectives. Curr Pharm Des. 2004;10(5):471–500.CrossRefPubMed
5.
go back to reference Ma M, Yang S, Zhang Z, Li P, Gong Y, Liu L, Zhu Y, Tian R, Liu Y, Wang X, Liu F, He L, Liu Y, Yang H, Li Z, He Z. Sertoli cells from non-obstructive azoospermia and obstructive azoospermia patients show distinct morphology, Raman spectrum and biochemical phenotype. Hum Reprod. 2013;28(7):1863–73.CrossRefPubMed Ma M, Yang S, Zhang Z, Li P, Gong Y, Liu L, Zhu Y, Tian R, Liu Y, Wang X, Liu F, He L, Liu Y, Yang H, Li Z, He Z. Sertoli cells from non-obstructive azoospermia and obstructive azoospermia patients show distinct morphology, Raman spectrum and biochemical phenotype. Hum Reprod. 2013;28(7):1863–73.CrossRefPubMed
6.
go back to reference Ishikawa T. Surgical recovery of sperm in non-obstructive azoospermia. Asian J Androl. 2012;14(1):109–15.CrossRefPubMed Ishikawa T. Surgical recovery of sperm in non-obstructive azoospermia. Asian J Androl. 2012;14(1):109–15.CrossRefPubMed
7.
go back to reference Abdel Raheem A, Garaffa G, Rushwan N, De Luca F, Zacharakis E, Abdel Raheem T, Freeman A, Serhal P, Harper JC, Ralph D. Testicular histopathology as a predictor of a positive sperm retrieval in men with non-obstructive azoospermia. BJU Int. 2013;111(3):492–9.CrossRefPubMed Abdel Raheem A, Garaffa G, Rushwan N, De Luca F, Zacharakis E, Abdel Raheem T, Freeman A, Serhal P, Harper JC, Ralph D. Testicular histopathology as a predictor of a positive sperm retrieval in men with non-obstructive azoospermia. BJU Int. 2013;111(3):492–9.CrossRefPubMed
8.
go back to reference Hussein A. Evaluation of diagnostic testis biopsy and the repetition of testicular sperm extraction surgeries in infertility patients. Fertil Steril. 2013;100(1):88–93.CrossRefPubMed Hussein A. Evaluation of diagnostic testis biopsy and the repetition of testicular sperm extraction surgeries in infertility patients. Fertil Steril. 2013;100(1):88–93.CrossRefPubMed
9.
go back to reference Chen SR, Tang JX, Cheng JM, Li J, Jin C, Li XY, Deng SL, Zhang Y, Wang XX, Liu YX. Loss of Gata4 in Sertoli cells impairs the spermatogonial stem cell niche and causes germ cell exhaustion by attenuating chemokine signaling. Oncotarget. 2015;6(35):37012–27.CrossRefPubMedPubMedCentral Chen SR, Tang JX, Cheng JM, Li J, Jin C, Li XY, Deng SL, Zhang Y, Wang XX, Liu YX. Loss of Gata4 in Sertoli cells impairs the spermatogonial stem cell niche and causes germ cell exhaustion by attenuating chemokine signaling. Oncotarget. 2015;6(35):37012–27.CrossRefPubMedPubMedCentral
10.
go back to reference Tian RH, Yang S, Zhu ZJ, Wang JL, Liu Y, Yao C, Ma M, Guo Y, Yuan Q, Hai Y, Huang YR, He Z, Li Z. NODAL secreted by male germ cells regulates the proliferation and function of human Sertoli cells from obstructive azoospermia and non-obstructive azoospermia patients. Asian J Androl. 2015;17(6):996–1005.CrossRefPubMedPubMedCentral Tian RH, Yang S, Zhu ZJ, Wang JL, Liu Y, Yao C, Ma M, Guo Y, Yuan Q, Hai Y, Huang YR, He Z, Li Z. NODAL secreted by male germ cells regulates the proliferation and function of human Sertoli cells from obstructive azoospermia and non-obstructive azoospermia patients. Asian J Androl. 2015;17(6):996–1005.CrossRefPubMedPubMedCentral
11.
go back to reference Kasak L, Laan M. Monogenic causes of non-obstructive azoospermia: challenges, established knowledge, limitations and perspectives. Hum Genet. 2020;140(1):135–54.CrossRefPubMed Kasak L, Laan M. Monogenic causes of non-obstructive azoospermia: challenges, established knowledge, limitations and perspectives. Hum Genet. 2020;140(1):135–54.CrossRefPubMed
13.
go back to reference Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods. 2008;5(7):621–8.CrossRefPubMed Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods. 2008;5(7):621–8.CrossRefPubMed
14.
go back to reference Agarwal A, Tvrda E, Sharma R. Relationship amongst teratozoospermia, seminal oxidative stress and male infertility. Reprod Biol Endocrinol. 2014;12:45.CrossRefPubMedPubMedCentral Agarwal A, Tvrda E, Sharma R. Relationship amongst teratozoospermia, seminal oxidative stress and male infertility. Reprod Biol Endocrinol. 2014;12:45.CrossRefPubMedPubMedCentral
15.
go back to reference Krausz C, Rosta V, Swerdloff RS, Wang C. Genetics of male infertility. In: Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics. Academic Press, 2022, p. 121–47. Krausz C, Rosta V, Swerdloff RS, Wang C. Genetics of male infertility. In: Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics. Academic Press, 2022, p. 121–47.
16.
go back to reference Wong CH, Cheng CY. The blood-testis barrier: its biology, regulation, and physiological role in spermatogenesis. Curr Top Dev Biol. 2005;71:263–96.CrossRefPubMed Wong CH, Cheng CY. The blood-testis barrier: its biology, regulation, and physiological role in spermatogenesis. Curr Top Dev Biol. 2005;71:263–96.CrossRefPubMed
18.
go back to reference Tian R, Yao C, Yang C, Zhu Z, Li C, Zhi E, Wang J, Li P, Chen H, Yuan Q, He Z, Li Z. Fibroblast growth factor-5 promotes spermatogonial stem cell proliferation via ERK and AKT activation. Stem Cell Res Ther. 2019;10(1):1–14.CrossRef Tian R, Yao C, Yang C, Zhu Z, Li C, Zhi E, Wang J, Li P, Chen H, Yuan Q, He Z, Li Z. Fibroblast growth factor-5 promotes spermatogonial stem cell proliferation via ERK and AKT activation. Stem Cell Res Ther. 2019;10(1):1–14.CrossRef
19.
go back to reference Chalmel F, Lardenois A, Evrard B, Mathieu R, Feig C, Demougin P, Gattiker A, Schulze W, Jégou B, Kirchhoff C, Primig M. Global human tissue profiling and protein network analysis reveals distinct levels of transcriptional germline-specificity and identifies target genes for male infertility. Hum Reprod. 2012;27(11):3233–48.CrossRefPubMed Chalmel F, Lardenois A, Evrard B, Mathieu R, Feig C, Demougin P, Gattiker A, Schulze W, Jégou B, Kirchhoff C, Primig M. Global human tissue profiling and protein network analysis reveals distinct levels of transcriptional germline-specificity and identifies target genes for male infertility. Hum Reprod. 2012;27(11):3233–48.CrossRefPubMed
20.
go back to reference Djureinovic D, Fagerberg L, Hallström B, Danielsson A, Lindskog C, Uhlén M, Pontén F. The human testis-specific proteome defined by transcriptomics and antibody-based profiling. MHR: Basic Sci Reprod Med. 2014;20(6):476–88.CrossRef Djureinovic D, Fagerberg L, Hallström B, Danielsson A, Lindskog C, Uhlén M, Pontén F. The human testis-specific proteome defined by transcriptomics and antibody-based profiling. MHR: Basic Sci Reprod Med. 2014;20(6):476–88.CrossRef
21.
go back to reference Chalmel F, Rolland AD, Niederhauser-Wiederkehr C, Chung SS, Demougin P, Gattiker A, Moore J, Patard JJ, Wolgemuth DJ, Jegou B, Primig M. The conserved transcriptome in human and rodent male gametogenesis. Proc Natl Acad Sci U S A. 2007;104(20):8346–51.CrossRefPubMedPubMedCentral Chalmel F, Rolland AD, Niederhauser-Wiederkehr C, Chung SS, Demougin P, Gattiker A, Moore J, Patard JJ, Wolgemuth DJ, Jegou B, Primig M. The conserved transcriptome in human and rodent male gametogenesis. Proc Natl Acad Sci U S A. 2007;104(20):8346–51.CrossRefPubMedPubMedCentral
22.
go back to reference Abu-Halima M, Backes C, Leidinger P, Keller A, Lubbad AM, Hammadeh M, Meese E. MicroRNA expression profiles in human testicular tissues of infertile men with different histopathologic patterns. Fertil Steril. 2014;101(1):78–86.CrossRefPubMed Abu-Halima M, Backes C, Leidinger P, Keller A, Lubbad AM, Hammadeh M, Meese E. MicroRNA expression profiles in human testicular tissues of infertile men with different histopathologic patterns. Fertil Steril. 2014;101(1):78–86.CrossRefPubMed
23.
go back to reference Gao J, Wang X, Zou Z, Jia X, Wang Y, Zhang Z. Transcriptome analysis of the differences in gene expression between testis and ovary in green mud crab (Scylla paramamosain). BMC Genomics. 2014;15(1):585.CrossRefPubMedPubMedCentral Gao J, Wang X, Zou Z, Jia X, Wang Y, Zhang Z. Transcriptome analysis of the differences in gene expression between testis and ovary in green mud crab (Scylla paramamosain). BMC Genomics. 2014;15(1):585.CrossRefPubMedPubMedCentral
24.
go back to reference Laiho A, Kotaja N, Gyenesei A, Sironen A. Transcriptome profiling of the murine testis during the first wave of spermatogenesis. PLoS ONE. 2013;8(4): e61558.CrossRefPubMedPubMedCentral Laiho A, Kotaja N, Gyenesei A, Sironen A. Transcriptome profiling of the murine testis during the first wave of spermatogenesis. PLoS ONE. 2013;8(4): e61558.CrossRefPubMedPubMedCentral
25.
go back to reference Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5.CrossRefPubMed Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5.CrossRefPubMed
26.
go back to reference Poli G, Brancorsini S, Cochetti G, Barillaro F, Egidi MG, Mearini E. Expression of inflammasome-related genes in bladder cancer and their association with cytokeratin 20 messenger RNA. Urol Oncol Semin Ori. 2015;33(12):501–5. Poli G, Brancorsini S, Cochetti G, Barillaro F, Egidi MG, Mearini E. Expression of inflammasome-related genes in bladder cancer and their association with cytokeratin 20 messenger RNA. Urol Oncol Semin Ori. 2015;33(12):501–5.
27.
go back to reference Feng S, Fox D, Man SM. Mechanisms of gasdermin family members in inflammasome signaling and cell death. J Mol Biol. 2018;430(18):3068–80.CrossRefPubMed Feng S, Fox D, Man SM. Mechanisms of gasdermin family members in inflammasome signaling and cell death. J Mol Biol. 2018;430(18):3068–80.CrossRefPubMed
28.
go back to reference Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535(7610):153–8.CrossRefPubMedPubMedCentral Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535(7610):153–8.CrossRefPubMedPubMedCentral
29.
go back to reference Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death.
30.
go back to reference Kayagaki N, Stowe IB, Lee BL, O Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, Liu PS, Lill JR, Li H, Wu J, Kummerfeld S, Zhang J, Lee WP, Snipas SJ, Salvesen GS, Morris LX, Fitzgerald L, Zhang Y, Bertram EM, Goodnow CC, Dixit VM. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015;526(7575):666–71. Kayagaki N, Stowe IB, Lee BL, O Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, Liu PS, Lill JR, Li H, Wu J, Kummerfeld S, Zhang J, Lee WP, Snipas SJ, Salvesen GS, Morris LX, Fitzgerald L, Zhang Y, Bertram EM, Goodnow CC, Dixit VM. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015;526(7575):666–71.
31.
go back to reference Guazzone VA, Jacobo P, Theas MS, Lustig L. Cytokines and chemokines in testicular inflammation: a brief review. Microsc Res Tech. 2009;72(8):620–8.CrossRefPubMed Guazzone VA, Jacobo P, Theas MS, Lustig L. Cytokines and chemokines in testicular inflammation: a brief review. Microsc Res Tech. 2009;72(8):620–8.CrossRefPubMed
Metadata
Title
Testis cell pyroptosis mediated by CASP1 and CASP4: possible sertoli cell-only syndrome pathogenesis
Authors
Wantao Liu
Xinan Li
Qiang Ma
Yongtong Zhu
Wenzhong Zhao
Yisheng Yang
Weiqiang Xiao
Daxiong Huang
Fengbo Cai
David Yiu Leung Chan
Shanchao Zhao
Qingjun Chu
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Mumps Orchitis
Published in
Reproductive Biology and Endocrinology / Issue 1/2023
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-023-01101-w

Other articles of this Issue 1/2023

Reproductive Biology and Endocrinology 1/2023 Go to the issue