Skip to main content
Top
Published in:

Open Access 01-12-2024 | Research

Modified multiscale Renyi distribution entropy for short-term heart rate variability analysis

Authors: Manhong Shi, Yinuo Shi, Yuxin Lin, Xue Qi

Published in: BMC Medical Informatics and Decision Making | Issue 1/2024

Login to get access

Abstract

Background

Multiscale sample entropy (MSE) is a prevalent complexity metric to characterize a time series and has been extensively applied to the physiological signal analysis. However, for a short-term time series, the likelihood of identifying comparable subsequences decreases, leading to higher variability in the Sample Entropy (SampEn) calculation. Additionally, as the scale factor increases in the MSE calculation, the coarse-graining process further shortens the time series. Consequently, each newly generated time series at a larger scale consists of fewer data points, potentially resulting in unreliable or undefined entropy values, particularly at higher scales. To overcome the shortcoming, a modified multiscale Renyi distribution entropy (MMRDis) was proposed in our present work.

Methods

The MMRDis method uses a moving-averaging procedure to acquire a family of time series, each of which quantify the dynamic behaviors of the short-term time series over the multiple temporal scales. Then, MMRDis is constructed for the original and the coarse-grained time series.

Results

The MMRDis method demonstrated superior computational stability on simulated Gaussian white and 1/f noise time series, effectively avoiding undefined measurements in short-term time series. Analysis of short-term heart rate variability (HRV) signals from healthy elderly individuals, healthy young people, and subjects with congestive heart failure and atrial fibrillation revealed that MMRDis complexity measurement values decreased with aging and disease. Additionally, MMRDis exhibited better distinction capability for short-term HRV physiological/pathological signals compared to several recently proposed complexity metrics.

Conclusions

MMRDis was a promising measurement for screening cardiovascular condition within a short time.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shi M, Zhan C, He H, Jin Y, Wu R, Sun Y, Shen B. Renyi Distribution Entropy Analysis of Short-Term Heart Rate Variability Signals and Its Application in Coronary Artery Disease Detection. Front Physiol. 2019;10:1–14.CrossRef Shi M, Zhan C, He H, Jin Y, Wu R, Sun Y, Shen B. Renyi Distribution Entropy Analysis of Short-Term Heart Rate Variability Signals and Its Application in Coronary Artery Disease Detection. Front Physiol. 2019;10:1–14.CrossRef
2.
go back to reference Flanagan R, Lacasa L. Irreversibility of financial time series: A graph-theoretical approach. Phys Lett A. 2016;380(20):1689–97.CrossRef Flanagan R, Lacasa L. Irreversibility of financial time series: A graph-theoretical approach. Phys Lett A. 2016;380(20):1689–97.CrossRef
3.
go back to reference Qiang T, Shang P, Feng G. The similarity analysis of financial stocks based on information clustering. Nonlinear Dyn. 2016;85(4):1–18. Qiang T, Shang P, Feng G. The similarity analysis of financial stocks based on information clustering. Nonlinear Dyn. 2016;85(4):1–18.
4.
go back to reference Ma J, Ren W, Zhan X. Complexity dynamics and Hopf bifurcation analysis based on the first Lyapunov coefficient about 3D IS-LM macroeconomics system. Commun Nonlinear Sci Numer Simul. 2017;45:129–39.CrossRef Ma J, Ren W, Zhan X. Complexity dynamics and Hopf bifurcation analysis based on the first Lyapunov coefficient about 3D IS-LM macroeconomics system. Commun Nonlinear Sci Numer Simul. 2017;45:129–39.CrossRef
5.
go back to reference Richman JS, Randall MJ. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278(6):H2039.CrossRefPubMed Richman JS, Randall MJ. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278(6):H2039.CrossRefPubMed
7.
go back to reference Christoph B, Bernd P. Permutation entropy: a natural complexity measure for time series. Phys Rev Lett. 2002;88(17).CrossRef Christoph B, Bernd P. Permutation entropy: a natural complexity measure for time series. Phys Rev Lett. 2002;88(17).CrossRef
8.
go back to reference Liu Y, Lin Y, Wang J, Shang P. Refined generalized multiscale entropy analysis for physiological signals. Physica A. 2018;490:975–85.CrossRef Liu Y, Lin Y, Wang J, Shang P. Refined generalized multiscale entropy analysis for physiological signals. Physica A. 2018;490:975–85.CrossRef
9.
go back to reference Fogedby HC. On the phase space approach to complexity. J Stat Phys. 1992;69(1):411–25.CrossRef Fogedby HC. On the phase space approach to complexity. J Stat Phys. 1992;69(1):411–25.CrossRef
10.
go back to reference Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett. 2002;89(6):068102.CrossRefPubMed Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett. 2002;89(6):068102.CrossRefPubMed
11.
go back to reference Chou C-M. Wavelet-Based Multi-Scale Entropy Analysis of Complex Rainfall Time Series. Entropy. 2011;13(1):241–53.CrossRef Chou C-M. Wavelet-Based Multi-Scale Entropy Analysis of Complex Rainfall Time Series. Entropy. 2011;13(1):241–53.CrossRef
12.
go back to reference Niu H, Wang J. Quantifying complexity of financial short-term time series by composite multiscale entropy measure. Commun Nonlinear Sci Numer Simul. 2015;22(1–3):375–82.CrossRef Niu H, Wang J. Quantifying complexity of financial short-term time series by composite multiscale entropy measure. Commun Nonlinear Sci Numer Simul. 2015;22(1–3):375–82.CrossRef
13.
go back to reference Brad M, Costa MD, Kun H, Elizabeth N, Olga S, Hyun Gu, K., Peng, C. K., Vera, N., Lipsitz, L. A.,. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. J Appl Physiol. 2010;109(6):1786–91.CrossRef Brad M, Costa MD, Kun H, Elizabeth N, Olga S, Hyun Gu, K., Peng, C. K., Vera, N., Lipsitz, L. A.,. Physiological complexity and system adaptability: evidence from postural control dynamics of older adults. J Appl Physiol. 2010;109(6):1786–91.CrossRef
14.
go back to reference Madalena, C.; Goldberger, A. L.; C-K, P., Multiscale entropy analysis of biological signals. Physical Review E Statistical Nonlinear & Soft Matter Physics. 2005;71(2 Pt 1);021906. Madalena, C.; Goldberger, A. L.; C-K, P., Multiscale entropy analysis of biological signals. Physical Review E Statistical Nonlinear & Soft Matter Physics. 2005;71(2 Pt 1);021906.
15.
go back to reference Borowiec M, Sen AK, Litak G, Hunicz J, Koszałka G, Niewczas A. Vibrations of a vehicle excited by real road profiles. Pamm. 2010;8(1):10713–4.CrossRef Borowiec M, Sen AK, Litak G, Hunicz J, Koszałka G, Niewczas A. Vibrations of a vehicle excited by real road profiles. Pamm. 2010;8(1):10713–4.CrossRef
16.
go back to reference Nikulin VV, Tom B. Comment on “Multiscale entropy analysis of complex physiologic time series.” Phys Rev Lett. 2004;92(8):705–8.CrossRef Nikulin VV, Tom B. Comment on “Multiscale entropy analysis of complex physiologic time series.” Phys Rev Lett. 2004;92(8):705–8.CrossRef
17.
go back to reference Wu S-D, Wu C-W, Lee K-Y, Lin S-G. Modified multiscale entropy for short-term time series analysis. Physica A. 2013;392(23):5865–73.CrossRef Wu S-D, Wu C-W, Lee K-Y, Lin S-G. Modified multiscale entropy for short-term time series analysis. Physica A. 2013;392(23):5865–73.CrossRef
18.
go back to reference Wu S-D, Wu C-W, Lin S-G, Wang C-C, Lee K-Y. Time Series Analysis Using Composite Multiscale Entropy. Entropy. 2013;15(3):1069–84.CrossRef Wu S-D, Wu C-W, Lin S-G, Wang C-C, Lee K-Y. Time Series Analysis Using Composite Multiscale Entropy. Entropy. 2013;15(3):1069–84.CrossRef
19.
go back to reference Costa, M.; Al., G.; Ck., P., Multiscale entropy analysis of complex physiologic time series - art. no. 068102. Phys Rev Lett. 2002 (6);89. Costa, M.; Al., G.; Ck., P., Multiscale entropy analysis of complex physiologic time series - art. no. 068102. Phys Rev Lett. 2002 (6);89.
20.
go back to reference Costa, M.; Goldberger, A. L.; Peng, C. K., Multiscale entropy analysis of biological signals. Physical review, E. Statistical, Nonlinear, and Soft Matter Physics. 2005, (2 Pt.1);71. Costa, M.; Goldberger, A. L.; Peng, C. K., Multiscale entropy analysis of biological signals. Physical review, E. Statistical, Nonlinear, and Soft Matter Physics. 2005, (2 Pt.1);71.
21.
go back to reference Valencia JF, Porta A, Vallverdu M, Claria F, Baranowski R, Orlowska-Baranowska E, Caminal P. Refined Multiscale Entropy: Application to 24-h Holter Recordings of Heart Period Variability in Healthy and Aortic Stenosis Subjects. IEEE Trans Biomed Eng. 2009;56(9):2202–13.CrossRefPubMed Valencia JF, Porta A, Vallverdu M, Claria F, Baranowski R, Orlowska-Baranowska E, Caminal P. Refined Multiscale Entropy: Application to 24-h Holter Recordings of Heart Period Variability in Healthy and Aortic Stenosis Subjects. IEEE Trans Biomed Eng. 2009;56(9):2202–13.CrossRefPubMed
22.
go back to reference Li P, Karmakar C, Yan C, Palaniswami M, Liu C. Classification of 5-S Epileptic EEG Recordings Using Distribution Entropy and Sample Entropy. Front Physiol. 2016;7:136.CrossRefPubMedPubMedCentral Li P, Karmakar C, Yan C, Palaniswami M, Liu C. Classification of 5-S Epileptic EEG Recordings Using Distribution Entropy and Sample Entropy. Front Physiol. 2016;7:136.CrossRefPubMedPubMedCentral
23.
go back to reference Li P, Liu C, Li K, Zheng D, Liu C, Hou Y. Assessing the complexity of short-term heartbeat interval series by distribution entropy. Med Biol Eng Compu. 2015;53(1):77–87.CrossRef Li P, Liu C, Li K, Zheng D, Liu C, Hou Y. Assessing the complexity of short-term heartbeat interval series by distribution entropy. Med Biol Eng Compu. 2015;53(1):77–87.CrossRef
24.
go back to reference Serinaldi F, Zunino L, Rosso OA. Complexity–entropy analysis of daily stream flow time series in the continental United States. Stoch Env Res Risk Assess. 2014;28(7):1685–708.CrossRef Serinaldi F, Zunino L, Rosso OA. Complexity–entropy analysis of daily stream flow time series in the continental United States. Stoch Env Res Risk Assess. 2014;28(7):1685–708.CrossRef
25.
go back to reference Voss A, Heitmann A, Schroeder R, Peters A, Perz S. Short-term heart rate variability—age dependence in healthy subjects. Physiol Meas. 2012;33(8):1289–311.CrossRefPubMed Voss A, Heitmann A, Schroeder R, Peters A, Perz S. Short-term heart rate variability—age dependence in healthy subjects. Physiol Meas. 2012;33(8):1289–311.CrossRefPubMed
26.
go back to reference Porta A, Maria BD, Bari V, Marchi A, Faes L. Are Nonlinear Model-Free Conditional Entropy Approaches for the Assessment of Cardiac Control Complexity Superior to the Linear Model-Based One? IEEE Trans Biomed Eng. 2016;64(6):1287–96.CrossRefPubMed Porta A, Maria BD, Bari V, Marchi A, Faes L. Are Nonlinear Model-Free Conditional Entropy Approaches for the Assessment of Cardiac Control Complexity Superior to the Linear Model-Based One? IEEE Trans Biomed Eng. 2016;64(6):1287–96.CrossRefPubMed
27.
go back to reference Alberto, P.; Vlasta, B.; Beatrice, D. M.; Beatrice, C.; Emanuele, V.; Mara, M.; Massimo, P.; Daniela, L., On the Relevance of Computing a Local Version of Sample Entropy in Cardiovascular Control Analysis. IEEE Transactions on Biomedical Engineering 2018, PP, 1–1. Alberto, P.; Vlasta, B.; Beatrice, D. M.; Beatrice, C.; Emanuele, V.; Mara, M.; Massimo, P.; Daniela, L., On the Relevance of Computing a Local Version of Sample Entropy in Cardiovascular Control Analysis. IEEE Transactions on Biomedical Engineering 2018, PP, 1–1.
28.
go back to reference Porta A, Cairo B, Bari V, Maria BD, Gelpi F, Barbic F, Furlan R. Are Strategies Favoring Pattern Matching a Viable Way to Improve Complexity Estimation Based on Sample Entropy? Entropy. 2020;22(7):724.CrossRefPubMedPubMedCentral Porta A, Cairo B, Bari V, Maria BD, Gelpi F, Barbic F, Furlan R. Are Strategies Favoring Pattern Matching a Viable Way to Improve Complexity Estimation Based on Sample Entropy? Entropy. 2020;22(7):724.CrossRefPubMedPubMedCentral
29.
go back to reference Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278(6):H2039.CrossRefPubMed Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278(6):H2039.CrossRefPubMed
30.
go back to reference Mayer CC, Bachler M, Hörtenhuber M, Stocker C, Holzinger A, Wassertheurer S. Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. Bmc Bioinform. 2014;15(S6):S2.CrossRef Mayer CC, Bachler M, Hörtenhuber M, Stocker C, Holzinger A, Wassertheurer S. Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. Bmc Bioinform. 2014;15(S6):S2.CrossRef
31.
go back to reference Karmakar C, Udhayakumar RK, Li P, Venkatesh S, Palaniswami M. Stability, Consistency and Performance of Distribution Entropy in Analysing Short Length Heart Rate Variability (HRV) Signal. Front Physiol. 2017;8:720.CrossRefPubMedPubMedCentral Karmakar C, Udhayakumar RK, Li P, Venkatesh S, Palaniswami M. Stability, Consistency and Performance of Distribution Entropy in Analysing Short Length Heart Rate Variability (HRV) Signal. Front Physiol. 2017;8:720.CrossRefPubMedPubMedCentral
33.
go back to reference Xu, P. Z., Sheng, Multiscale analysis of financial time series by Renyi distribution entropy. Physica, A. Statistical mechanics and its applications 2019, 536. Xu, P. Z., Sheng, Multiscale analysis of financial time series by Renyi distribution entropy. Physica, A. Statistical mechanics and its applications 2019, 536.
34.
go back to reference Xu, M.; Shang, P.; Zhang, S., Multiscale analysis of financial time series by Rényi distribution entropy. Physica A: Statistical Mechanics and its Applications 2019, 120916. Xu, M.; Shang, P.; Zhang, S., Multiscale analysis of financial time series by Rényi distribution entropy. Physica A: Statistical Mechanics and its Applications 2019, 120916.
35.
go back to reference Yentes JM, Hunt N, Schmid KK, Kaipust JP, Mcgrath D, Stergiou N. The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets. Ann Biomed Eng. 2013;41(2):349–65.CrossRefPubMed Yentes JM, Hunt N, Schmid KK, Kaipust JP, Mcgrath D, Stergiou N. The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets. Ann Biomed Eng. 2013;41(2):349–65.CrossRefPubMed
36.
go back to reference Anne; Humeau-Heurtier, The Multiscale Entropy Algorithm and Its Variants: A Review. Entropy 2015;17(5);3110–3123. Anne; Humeau-Heurtier, The Multiscale Entropy Algorithm and Its Variants: A Review. Entropy 2015;17(5);3110–3123.
37.
go back to reference Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad SciUSA. 1991;88(6):2297–301.CrossRef Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad SciUSA. 1991;88(6):2297–301.CrossRef
38.
go back to reference Lake DE, Richman JS, Griffin MP, Moorman JR. Sample entropy analysis of neonatal heart rate variability. Am J Physiol. 2002;3:283. Lake DE, Richman JS, Griffin MP, Moorman JR. Sample entropy analysis of neonatal heart rate variability. Am J Physiol. 2002;3:283.
Metadata
Title
Modified multiscale Renyi distribution entropy for short-term heart rate variability analysis
Authors
Manhong Shi
Yinuo Shi
Yuxin Lin
Xue Qi
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2024
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-024-02763-1