Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 6/2024

29-12-2023 | Original Article

MIDOS: a novel stochastic model towards a treatment planning system for microsphere dosimetry in liver tumors

Authors: Carlos Huesa-Berral, Julia D. Withrow, Robert J. Dawson, Chris Beekman, Wesley E. Bolch, Harald Paganetti, Eric Wehrenberg-Klee, Alejandro Bertolet

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 6/2024

Login to get access

Abstract

Purpose

Transarterial radioembolization (TARE) procedures treat liver tumors by injecting radioactive microspheres into the hepatic artery. Currently, there is a critical need to optimize TARE towards a personalized dosimetry approach. To this aim, we present a novel microsphere dosimetry (MIDOS) stochastic model to estimate the activity delivered to the tumor(s), normal liver, and lung.

Methods

MIDOS incorporates adult male/female liver computational phantoms with the hepatic arterial, hepatic portal venous, and hepatic venous vascular trees. Tumors can be placed in both models at user discretion. The perfusion of microspheres follows cluster patterns, and a Markov chain approach was applied to microsphere navigation, with the terminal location of microspheres determined to be in either normal hepatic parenchyma, hepatic tumor, or lung. A tumor uptake model was implemented to determine if microspheres get lodged in the tumor, and a probability was included in determining the shunt of microspheres to the lung. A sensitivity analysis of the model parameters was performed, and radiation segmentectomy/lobectomy procedures were simulated over a wide range of activity perfused. Then, the impact of using different microspheres, i.e., SIR-Sphere®, TheraSphere®, and QuiremSphere®, on the tumor-to-normal ratio (TNR), lung shunt fraction (LSF), and mean absorbed dose was analyzed.

Results

Highly vascularized tumors translated into increased TNR. Treatment results (TNR and LSF) were significantly more variable for microspheres with high particle load. In our scenarios with 1.5 GBq perfusion, TNR was maximum for TheraSphere® at calibration time in segmentectomy/lobar technique, for SIR-Sphere® at 1–3 days post-calibration, and regarding QuiremSphere® at 3 days post-calibration.

Conclusion

This novel approach is a decisive step towards developing a personalized dosimetry framework for TARE. MIDOS assists in making clinical decisions in TARE treatment planning by assessing various delivery parameters and simulating different tumor uptakes. MIDOS offers evaluation of treatment outcomes, such as TNR and LSF, and quantitative scenario-specific decisions.
Literature
2.
go back to reference Kim SP, Cohalan C, Kopek N, Enger SA. A guide to 90Y radioembolization and its dosimetry. Phys Med. 2019;68:132–45.CrossRefPubMed Kim SP, Cohalan C, Kopek N, Enger SA. A guide to 90Y radioembolization and its dosimetry. Phys Med. 2019;68:132–45.CrossRefPubMed
3.
go back to reference Gulec SA, McGoron AJ. Radiomicrosphere dosimetry: principles and current state of the art. Semin Nucl Med. 2022;52:215–28.CrossRefPubMed Gulec SA, McGoron AJ. Radiomicrosphere dosimetry: principles and current state of the art. Semin Nucl Med. 2022;52:215–28.CrossRefPubMed
4.
go back to reference Knight GM, Gordon AC, Gates V, Talwar A, Riaz A, Salem R, et al. Evolution of personalized dosimetry for radioembolization of hepatocellular carcinoma. J Vasc Interv Radiol. 2023;34:1214–25.CrossRefPubMed Knight GM, Gordon AC, Gates V, Talwar A, Riaz A, Salem R, et al. Evolution of personalized dosimetry for radioembolization of hepatocellular carcinoma. J Vasc Interv Radiol. 2023;34:1214–25.CrossRefPubMed
5.
go back to reference Kennedy AS, Coldwell D, Nutting C, Murthy R, Wertman DE, Loehr SP, et al. Resin 90Y-microsphere brachytherapy for unresectable colorectal liver metastases: modern USA experience. Int J Radiat Oncol Biol Phys. 2006;65:412–25.CrossRefPubMed Kennedy AS, Coldwell D, Nutting C, Murthy R, Wertman DE, Loehr SP, et al. Resin 90Y-microsphere brachytherapy for unresectable colorectal liver metastases: modern USA experience. Int J Radiat Oncol Biol Phys. 2006;65:412–25.CrossRefPubMed
6.
go back to reference Malhotra A, Liu DM, Talenfeld AD. Radiation segmentectomy and radiation lobectomy: a practical review of techniques. Tech Vasc Interv Radiol. 2019;22:49–57.CrossRefPubMed Malhotra A, Liu DM, Talenfeld AD. Radiation segmentectomy and radiation lobectomy: a practical review of techniques. Tech Vasc Interv Radiol. 2019;22:49–57.CrossRefPubMed
7.
go back to reference Westcott MA, Coldwell DM, Liu DM, Zikria JF. The development, commercialization, and clinical context of yttrium-90 radiolabeled resin and glass microspheres. Adv Radiat Oncol. 2016;1:351–64.CrossRefPubMedPubMedCentral Westcott MA, Coldwell DM, Liu DM, Zikria JF. The development, commercialization, and clinical context of yttrium-90 radiolabeled resin and glass microspheres. Adv Radiat Oncol. 2016;1:351–64.CrossRefPubMedPubMedCentral
8.
go back to reference Weber M, Lam M, Chiesa C, Konijnenberg M, Cremonesi M, Flamen P, et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging. 2022;49:1682–99.CrossRefPubMedPubMedCentral Weber M, Lam M, Chiesa C, Konijnenberg M, Cremonesi M, Flamen P, et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging. 2022;49:1682–99.CrossRefPubMedPubMedCentral
9.
go back to reference Reinders MTM, Smits MLJ, van Roekel C, Braat AJAT. Holmium-166 microsphere radioembolization of hepatic malignancies. Semin Nucl Med. 2019;49:237–43.CrossRefPubMed Reinders MTM, Smits MLJ, van Roekel C, Braat AJAT. Holmium-166 microsphere radioembolization of hepatic malignancies. Semin Nucl Med. 2019;49:237–43.CrossRefPubMed
10.
go back to reference Ilhan H, Goritschan A, Paprottka P, Jakobs TF, Fendler WP, Todica A, et al. Predictive value of 99mTc-MAA SPECT for 90Y-labeled resin microsphere distribution in radioembolization of primary and secondary hepatic tumors. J Nucl Med. 2015;56:1654–60.CrossRefPubMed Ilhan H, Goritschan A, Paprottka P, Jakobs TF, Fendler WP, Todica A, et al. Predictive value of 99mTc-MAA SPECT for 90Y-labeled resin microsphere distribution in radioembolization of primary and secondary hepatic tumors. J Nucl Med. 2015;56:1654–60.CrossRefPubMed
11.
go back to reference Haste P, Tann M, Persohn S, LaRoche T, Aaron V, Mauxion T, et al. Correlation of technetium-99m macroaggregated albumin and yttrium-90 glass microsphere biodistribution in hepatocellular carcinoma: a retrospective review of pretreatment single photon emission CT and posttreatment positron emission tomography/CT. J Vasc Interv Radiol. 2017;28:722-730.e1.CrossRefPubMed Haste P, Tann M, Persohn S, LaRoche T, Aaron V, Mauxion T, et al. Correlation of technetium-99m macroaggregated albumin and yttrium-90 glass microsphere biodistribution in hepatocellular carcinoma: a retrospective review of pretreatment single photon emission CT and posttreatment positron emission tomography/CT. J Vasc Interv Radiol. 2017;28:722-730.e1.CrossRefPubMed
12.
go back to reference Bertolet A, Wehrenberg-Klee E, Bobic M, Grassberger C, Perl J, Paganetti H, et al. Pre- and post-treatment image-based dosimetry in 90Y-microsphere radioembolization using the TOPAS Monte Carlo toolkit. Phys Med Biol. 2021;66:244002.CrossRef Bertolet A, Wehrenberg-Klee E, Bobic M, Grassberger C, Perl J, Paganetti H, et al. Pre- and post-treatment image-based dosimetry in 90Y-microsphere radioembolization using the TOPAS Monte Carlo toolkit. Phys Med Biol. 2021;66:244002.CrossRef
13.
go back to reference Villalobos A, Cheng B, Wagstaff W, Sethi I, Bercu Z, Schuster DM, et al. Tumor-to-normal ratio relationship between planning technetium-99 macroaggregated albumin and posttherapy yttrium-90 bremsstrahlung SPECT/CT. J Vasc Interv Radiol. 2021;32:752–60.CrossRefPubMed Villalobos A, Cheng B, Wagstaff W, Sethi I, Bercu Z, Schuster DM, et al. Tumor-to-normal ratio relationship between planning technetium-99 macroaggregated albumin and posttherapy yttrium-90 bremsstrahlung SPECT/CT. J Vasc Interv Radiol. 2021;32:752–60.CrossRefPubMed
14.
go back to reference Young S, Chen T, Flanagan S, Golzarian J, Sanghvi T. Realized tumor to normal ratios in hepatocellular carcinoma patients undergoing transarterial radioembolization: a retrospective evaluation. Eur Radiol. 2022;32:4160–7.CrossRefPubMed Young S, Chen T, Flanagan S, Golzarian J, Sanghvi T. Realized tumor to normal ratios in hepatocellular carcinoma patients undergoing transarterial radioembolization: a retrospective evaluation. Eur Radiol. 2022;32:4160–7.CrossRefPubMed
15.
go back to reference Villalobos A, Arndt L, Cheng B, Dabbous H, Loya M, Majdalany B, et al. Yttrium-90 radiation segmentectomy of hepatocellular carcinoma: a comparative study of the effectiveness, safety, and dosimetry of glass vs. resin-based microspheres. J Vasc Interv Radiol. 2023;34:1226–34.CrossRefPubMed Villalobos A, Arndt L, Cheng B, Dabbous H, Loya M, Majdalany B, et al. Yttrium-90 radiation segmentectomy of hepatocellular carcinoma: a comparative study of the effectiveness, safety, and dosimetry of glass vs. resin-based microspheres. J Vasc Interv Radiol. 2023;34:1226–34.CrossRefPubMed
16.
go back to reference Pasciak AS, Abiola G, Liddell RP, Crookston N, Besharati S, Donahue D, et al. The number of microspheres in Y90 radioembolization directly affects normal tissue radiation exposure. Eur J Nucl Med Mol Imaging. 2020;47:816–27.CrossRefPubMed Pasciak AS, Abiola G, Liddell RP, Crookston N, Besharati S, Donahue D, et al. The number of microspheres in Y90 radioembolization directly affects normal tissue radiation exposure. Eur J Nucl Med Mol Imaging. 2020;47:816–27.CrossRefPubMed
17.
go back to reference Maxwell AWP, Mendoza HG, Sellitti MJ, Camacho JC, Deipolyi AR, Ziv E, et al. Optimizing 90Y particle density improves outcomes after radioembolization. Cardiovasc Intervent Radiol. 2022;45:958–69.CrossRefPubMedPubMedCentral Maxwell AWP, Mendoza HG, Sellitti MJ, Camacho JC, Deipolyi AR, Ziv E, et al. Optimizing 90Y particle density improves outcomes after radioembolization. Cardiovasc Intervent Radiol. 2022;45:958–69.CrossRefPubMedPubMedCentral
18.
go back to reference Boas FE, Maxwell AWP. Beyond mean tumor dose: the importance of particle density in radioembolization. J Vasc Interv Radiol. 2023;34:1235–6.CrossRefPubMed Boas FE, Maxwell AWP. Beyond mean tumor dose: the importance of particle density in radioembolization. J Vasc Interv Radiol. 2023;34:1235–6.CrossRefPubMed
19.
go back to reference Aramburu J, Antón R, Rodríguez-Fraile M, Sangro B, Bilbao JI. Computational fluid dynamics modeling of liver radioembolization: a review. Cardiovasc Intervent Radiol Springer. 2022;45:12–20.CrossRef Aramburu J, Antón R, Rodríguez-Fraile M, Sangro B, Bilbao JI. Computational fluid dynamics modeling of liver radioembolization: a review. Cardiovasc Intervent Radiol Springer. 2022;45:12–20.CrossRef
20.
go back to reference Toskich B, Lewandowski RJ. Computational modeling of radioembolization: how to calculate infinity. Cardiovasc Intervent Radiol. Springer; 2021. pp. 2020–1. Toskich B, Lewandowski RJ. Computational modeling of radioembolization: how to calculate infinity. Cardiovasc Intervent Radiol. Springer; 2021. pp. 2020–1.
21.
go back to reference Miller SR, Jernigan SR, Abraham RJ, Buckner GD. Comparison of bolus versus dual-syringe administration systems on glass yttrium-90 microsphere deposition in an in vitro microvascular hepatic tumor model. J Vasc Interv Radiol. 2023;34:11–20.CrossRefPubMed Miller SR, Jernigan SR, Abraham RJ, Buckner GD. Comparison of bolus versus dual-syringe administration systems on glass yttrium-90 microsphere deposition in an in vitro microvascular hepatic tumor model. J Vasc Interv Radiol. 2023;34:11–20.CrossRefPubMed
22.
go back to reference Crookston NR, Fung GSK, Frey EC. Development of a customizable hepatic arterial tree and particle transport model for use in treatment planning. IEEE Trans Radiat Plasma Med Sci. 2019;3:31–7.CrossRefPubMed Crookston NR, Fung GSK, Frey EC. Development of a customizable hepatic arterial tree and particle transport model for use in treatment planning. IEEE Trans Radiat Plasma Med Sci. 2019;3:31–7.CrossRefPubMed
23.
go back to reference Walrand S, Hesse M, Chiesa C, Lhommel R, Jamar F. The low hepatic toxicity per gray of 90Y glass microspheres is linked to their transport in the arterial tree favoring a nonuniform trapping as observed in posttherapy PET imaging. J Nucl Med. 2014;55:135–40.CrossRefPubMed Walrand S, Hesse M, Chiesa C, Lhommel R, Jamar F. The low hepatic toxicity per gray of 90Y glass microspheres is linked to their transport in the arterial tree favoring a nonuniform trapping as observed in posttherapy PET imaging. J Nucl Med. 2014;55:135–40.CrossRefPubMed
24.
go back to reference Högberg J, Rizell M, Hultborn R, Svensson J, Henrikson O, Mölne J, et al. Simulation model of microsphere distribution for selective internal radiation therapy agrees with observations. Int J Radiat Oncol Biol Phys. 2016;96:414–21.CrossRefPubMed Högberg J, Rizell M, Hultborn R, Svensson J, Henrikson O, Mölne J, et al. Simulation model of microsphere distribution for selective internal radiation therapy agrees with observations. Int J Radiat Oncol Biol Phys. 2016;96:414–21.CrossRefPubMed
25.
go back to reference Pasciak AS, Bourgeois AC, Bradley YC. A microdosimetric analysis of absorbed dose to tumor as a function of number of microspheres per unit volume in 90Y Radioembolization. J Nucl Med. 2016;57:1020–6.CrossRefPubMed Pasciak AS, Bourgeois AC, Bradley YC. A microdosimetric analysis of absorbed dose to tumor as a function of number of microspheres per unit volume in 90Y Radioembolization. J Nucl Med. 2016;57:1020–6.CrossRefPubMed
26.
go back to reference Correa-Alfonso CM, Withrow JD, Domal SJ, Xing S, Shin J, Grassberger C, et al. A mesh-based model of liver vasculature: implications for improved radiation dosimetry to liver parenchyma for radiopharmaceuticals. EJNMMI Phys. 2022;9:28.CrossRefPubMedPubMedCentral Correa-Alfonso CM, Withrow JD, Domal SJ, Xing S, Shin J, Grassberger C, et al. A mesh-based model of liver vasculature: implications for improved radiation dosimetry to liver parenchyma for radiopharmaceuticals. EJNMMI Phys. 2022;9:28.CrossRefPubMedPubMedCentral
27.
go back to reference Lewandowski RJ, Minocha J, Memon K, Riaz A, Gates VL, Ryu RK, et al. Sustained safety and efficacy of extended-shelf-life 90Y glass microspheres: long-term follow-up in a 134-patient cohort. Eur J Nucl Med Mol Imaging. 2014;41:486–93.CrossRefPubMed Lewandowski RJ, Minocha J, Memon K, Riaz A, Gates VL, Ryu RK, et al. Sustained safety and efficacy of extended-shelf-life 90Y glass microspheres: long-term follow-up in a 134-patient cohort. Eur J Nucl Med Mol Imaging. 2014;41:486–93.CrossRefPubMed
28.
go back to reference Gulec SA, Mesoloras G, Stabin M. Dosimetric techniques in 90 Y-microsphere therapy of liver cancer: the MIRD equations for dose calculations. J Nucl Med. 2006;47. Gulec SA, Mesoloras G, Stabin M. Dosimetric techniques in 90 Y-microsphere therapy of liver cancer: the MIRD equations for dose calculations. J Nucl Med. 2006;47.
29.
go back to reference Campbell AM, Bailey IH, Burton MA. Analysis of the distribution of intra-arterial microspheres in human liver following hepatic yttrium-90 microsphere therapy. Phys Med Biol. 2000;45:1023–33.CrossRefPubMed Campbell AM, Bailey IH, Burton MA. Analysis of the distribution of intra-arterial microspheres in human liver following hepatic yttrium-90 microsphere therapy. Phys Med Biol. 2000;45:1023–33.CrossRefPubMed
30.
go back to reference Högberg J, Rizell M, Hultborn R, Svensson J, Henrikson O, Mölne J, et al. Heterogeneity of microsphere distribution in resected liver and tumour tissue following selective intrahepatic radiotherapy. EJNMMI Res. 2014;4. Högberg J, Rizell M, Hultborn R, Svensson J, Henrikson O, Mölne J, et al. Heterogeneity of microsphere distribution in resected liver and tumour tissue following selective intrahepatic radiotherapy. EJNMMI Res. 2014;4.
31.
go back to reference Högberg J, Rizell M, Hultborn R, Svensson J, Henrikson O, Mölne J, et al. Increased absorbed liver dose in selective internal radiation therapy (SIRT) correlates with increased sphere-cluster frequency and absorbed dose inhomogeneity. EJNMMI Phys. 2015;2:1–17.CrossRef Högberg J, Rizell M, Hultborn R, Svensson J, Henrikson O, Mölne J, et al. Increased absorbed liver dose in selective internal radiation therapy (SIRT) correlates with increased sphere-cluster frequency and absorbed dose inhomogeneity. EJNMMI Phys. 2015;2:1–17.CrossRef
32.
go back to reference Kennedy AS, Nutting C, Coldwell D, Gaiser J, Drachenberg C. Pathologic response and microdosimetry of 90Y microspheres in man: review of four explanted whole livers. Int J Radiat Oncol Biol Phys. 2004;60:1552–63.CrossRefPubMed Kennedy AS, Nutting C, Coldwell D, Gaiser J, Drachenberg C. Pathologic response and microdosimetry of 90Y microspheres in man: review of four explanted whole livers. Int J Radiat Oncol Biol Phys. 2004;60:1552–63.CrossRefPubMed
33.
go back to reference Schiro BJ, Amour ES, Harnain C, Gandhi RT. Management of high hepatopulmonary shunts in the setting of Y90 radioembolization. Tech Vasc Interv Radiol. 2019;22:58–62.CrossRefPubMed Schiro BJ, Amour ES, Harnain C, Gandhi RT. Management of high hepatopulmonary shunts in the setting of Y90 radioembolization. Tech Vasc Interv Radiol. 2019;22:58–62.CrossRefPubMed
34.
go back to reference Riaz A, Awais R, Salem R. Side effects of yttrium-90 radioembolization. Front Oncol. 2014;4. Riaz A, Awais R, Salem R. Side effects of yttrium-90 radioembolization. Front Oncol. 2014;4.
35.
go back to reference Van Roekel C, Van Den Hoven AF, Bastiaannet R, Bruijnen RCG, Braat AJAT, De Keizer B, et al. Use of an anti-reflux catheter to improve tumor targeting for holmium-166 radioembolization-a prospective, within-patient randomized study. Eur J Nucl Med Mol Imaging. 2021;48:1658–68.CrossRefPubMed Van Roekel C, Van Den Hoven AF, Bastiaannet R, Bruijnen RCG, Braat AJAT, De Keizer B, et al. Use of an anti-reflux catheter to improve tumor targeting for holmium-166 radioembolization-a prospective, within-patient randomized study. Eur J Nucl Med Mol Imaging. 2021;48:1658–68.CrossRefPubMed
36.
go back to reference Reinders MTM, van Erpecum KJ, Smits MLJ, Braat AJAT, de Bruijne J, Bruijnen R, et al. Safety and efficacy of 166Ho radioembolization in hepatocellular carcinoma: the HEPAR Primary Study. J Nucl Med. 2022;63:1891–8.CrossRefPubMedPubMedCentral Reinders MTM, van Erpecum KJ, Smits MLJ, Braat AJAT, de Bruijne J, Bruijnen R, et al. Safety and efficacy of 166Ho radioembolization in hepatocellular carcinoma: the HEPAR Primary Study. J Nucl Med. 2022;63:1891–8.CrossRefPubMedPubMedCentral
37.
go back to reference van Roekel C, Harlianto NI, Braat AJAT, Prince JF, van den Hoven AF, Bruijnen RCG, et al. Evaluation of the safety and feasibility of same-day holmium-166-radioembolization simulation and treatment of hepatic metastases. J Vasc Interv Radiol. 2020;31:1593–9.CrossRefPubMed van Roekel C, Harlianto NI, Braat AJAT, Prince JF, van den Hoven AF, Bruijnen RCG, et al. Evaluation of the safety and feasibility of same-day holmium-166-radioembolization simulation and treatment of hepatic metastases. J Vasc Interv Radiol. 2020;31:1593–9.CrossRefPubMed
38.
go back to reference Aramburu J, Antón R, Rivas A, Ramos JC, Sangro B, Bilbao JI. Computational assessment of the effects of the catheter type on particle–hemodynamics during liver radioembolization. J Biomech. 2016;49:3705–13.CrossRefPubMed Aramburu J, Antón R, Rivas A, Ramos JC, Sangro B, Bilbao JI. Computational assessment of the effects of the catheter type on particle–hemodynamics during liver radioembolization. J Biomech. 2016;49:3705–13.CrossRefPubMed
39.
go back to reference Lertxundi U, Aramburu J, Rodríguez-Fraile M, Sangro B, Antón R. Computational study of the microsphere concentration in blood during radioembolization. Mathematics. 2022;10:4280.CrossRef Lertxundi U, Aramburu J, Rodríguez-Fraile M, Sangro B, Antón R. Computational study of the microsphere concentration in blood during radioembolization. Mathematics. 2022;10:4280.CrossRef
40.
go back to reference Aramburu J, Antón R, Rivas A, Ramos JC, Sangro B, Bilbao JI. The role of angled-tip microcatheter and microsphere injection velocity in liver radioembolization: a computational particle–hemodynamics study. Int J Numer Method Biomed Eng. 2017;33:e2895.CrossRef Aramburu J, Antón R, Rivas A, Ramos JC, Sangro B, Bilbao JI. The role of angled-tip microcatheter and microsphere injection velocity in liver radioembolization: a computational particle–hemodynamics study. Int J Numer Method Biomed Eng. 2017;33:e2895.CrossRef
41.
go back to reference Taebi A, Janibek N, Goldman R, Pillai R, Vu CT, Roncali E. The impact of injection distance to bifurcations on yttrium-90 distribution in liver cancer radioembolization. J Vasc Interv Radiol. 2022;33:668–77.CrossRefPubMedPubMedCentral Taebi A, Janibek N, Goldman R, Pillai R, Vu CT, Roncali E. The impact of injection distance to bifurcations on yttrium-90 distribution in liver cancer radioembolization. J Vasc Interv Radiol. 2022;33:668–77.CrossRefPubMedPubMedCentral
42.
go back to reference Bomberna T, Koudehi GA, Claerebout C, Verslype C, Maleux G, Debbaut C. Transarterial drug delivery for liver cancer: numerical simulations and experimental validation of particle distribution in patient-specific livers. Expert Opin Drug Deliv. 2021;18:409–22.CrossRefPubMed Bomberna T, Koudehi GA, Claerebout C, Verslype C, Maleux G, Debbaut C. Transarterial drug delivery for liver cancer: numerical simulations and experimental validation of particle distribution in patient-specific livers. Expert Opin Drug Deliv. 2021;18:409–22.CrossRefPubMed
Metadata
Title
MIDOS: a novel stochastic model towards a treatment planning system for microsphere dosimetry in liver tumors
Authors
Carlos Huesa-Berral
Julia D. Withrow
Robert J. Dawson
Chris Beekman
Wesley E. Bolch
Harald Paganetti
Eric Wehrenberg-Klee
Alejandro Bertolet
Publication date
29-12-2023
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 6/2024
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-023-06567-9

Other articles of this Issue 6/2024

European Journal of Nuclear Medicine and Molecular Imaging 6/2024 Go to the issue