Skip to main content
Top
Published in: Diabetologia 11/2022

Open Access 21-03-2022 | Metformin | Commentary

Pharmacoepigenetics in type 2 diabetes: is it clinically relevant?

Author: Charlotte Ling

Published in: Diabetologia | Issue 11/2022

Login to get access

Abstract

Data generated over nearly two decades clearly demonstrate the importance of epigenetic modifications and mechanisms in the pathogenesis of type 2 diabetes. However, the role of pharmacoepigenetics in type 2 diabetes is less well established. The field of pharmacoepigenetics covers epigenetic biomarkers that predict response to therapy, therapy-induced epigenetic alterations as well as epigenetic therapies including inhibitors of epigenetic enzymes. Not all individuals with type 2 diabetes respond to glucose-lowering therapies in the same way, and there is therefore a need for clinically useful biomarkers that discriminate responders from non-responders. Blood-based epigenetic biomarkers may be useful for this purpose. There is also a need for a better understanding of whether existing glucose-lowering therapies exert their function partly through therapy-induced epigenetic alterations. Finally, epigenetic enzymes may be drug targets for type 2 diabetes. Here, I discuss whether pharmacoepigenetics is clinically relevant for type 2 diabetes based on studies addressing this topic.
Appendix
Available only for authorised users
Literature
2.
go back to reference Ling C, Del Guerra S, Lupi R et al (2008) Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia. 51(4):615–622PubMedPubMedCentralCrossRef Ling C, Del Guerra S, Lupi R et al (2008) Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia. 51(4):615–622PubMedPubMedCentralCrossRef
3.
go back to reference Ling C, Poulsen P, Simonsson S et al (2007) Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle. J Clin Invest 117(11):3427–3435PubMedPubMedCentralCrossRef Ling C, Poulsen P, Simonsson S et al (2007) Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle. J Clin Invest 117(11):3427–3435PubMedPubMedCentralCrossRef
4.
go back to reference Volkov P, Bacos K, Ofori JK et al (2017) Whole-genome bisulfite sequencing of human pancreatic islets reveals novel differentially methylated regions in type 2 diabetes pathogenesis. Diabetes 66(4):1074–1085 Volkov P, Bacos K, Ofori JK et al (2017) Whole-genome bisulfite sequencing of human pancreatic islets reveals novel differentially methylated regions in type 2 diabetes pathogenesis. Diabetes 66(4):1074–1085
5.
go back to reference Davegardh C, Sall J, Benrick A et al (2021) VPS39-deficiency observed in type 2 diabetes impairs muscle stem cell differentiation via altered autophagy and epigenetics. Nat Commun 12(1):2431PubMedPubMedCentralCrossRef Davegardh C, Sall J, Benrick A et al (2021) VPS39-deficiency observed in type 2 diabetes impairs muscle stem cell differentiation via altered autophagy and epigenetics. Nat Commun 12(1):2431PubMedPubMedCentralCrossRef
6.
go back to reference Nilsson E, Jansson PA, Perfilyev A et al (2014) Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 63(9):2962–2976 Nilsson E, Jansson PA, Perfilyev A et al (2014) Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 63(9):2962–2976
7.
go back to reference Nilsson E, Matte A, Perfilyev A et al (2015) Epigenetic alterations in human liver from subjects with type 2 diabetes in parallel with reduced folate levels. J Clin Endocrinol Metab 100(11):E1491–E1501PubMedPubMedCentralCrossRef Nilsson E, Matte A, Perfilyev A et al (2015) Epigenetic alterations in human liver from subjects with type 2 diabetes in parallel with reduced folate levels. J Clin Endocrinol Metab 100(11):E1491–E1501PubMedPubMedCentralCrossRef
8.
go back to reference Chambers JC, Loh M, Lehne B et al (2015) Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol 3(7):526–534PubMedPubMedCentralCrossRef Chambers JC, Loh M, Lehne B et al (2015) Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol 3(7):526–534PubMedPubMedCentralCrossRef
9.
go back to reference Daneshpajooh M, Bacos K, Bysani M et al (2017) HDAC7 is overexpressed in human diabetic islets and impairs insulin secretion in rat islets and clonal beta cells. Diabetologia 60(1):116–125 Daneshpajooh M, Bacos K, Bysani M et al (2017) HDAC7 is overexpressed in human diabetic islets and impairs insulin secretion in rat islets and clonal beta cells. Diabetologia 60(1):116–125
10.
go back to reference Barres R, Osler ME, Yan J et al (2009) Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab 10(3):189–198PubMedCrossRef Barres R, Osler ME, Yan J et al (2009) Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab 10(3):189–198PubMedCrossRef
11.
go back to reference Dayeh T, Volkov P, Salo S et al (2014) Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet 10(3):e1004160PubMedPubMedCentralCrossRef Dayeh T, Volkov P, Salo S et al (2014) Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet 10(3):e1004160PubMedPubMedCentralCrossRef
12.
go back to reference Dayeh TA, Olsson AH, Volkov P, Almgren P, Ronn T, Ling C (2013) Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets. Diabetologia 56(5):1036–1046 Dayeh TA, Olsson AH, Volkov P, Almgren P, Ronn T, Ling C (2013) Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets. Diabetologia 56(5):1036–1046
13.
go back to reference Yang BT, Dayeh TA, Kirkpatrick CL et al (2011) Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia. 54(2):360–367PubMedCrossRef Yang BT, Dayeh TA, Kirkpatrick CL et al (2011) Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia. 54(2):360–367PubMedCrossRef
14.
go back to reference Yang BT, Dayeh TA, Volkov PA et al (2012) Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol 26(7):1203–1212PubMedPubMedCentralCrossRef Yang BT, Dayeh TA, Volkov PA et al (2012) Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol 26(7):1203–1212PubMedPubMedCentralCrossRef
15.
go back to reference Kirchner H, Sinha I, Gao H et al (2016) Altered DNA methylation of glycolytic and lipogenic genes in liver from obese and type 2 diabetic patients. Mol Metab 5(3):171–183PubMedPubMedCentralCrossRef Kirchner H, Sinha I, Gao H et al (2016) Altered DNA methylation of glycolytic and lipogenic genes in liver from obese and type 2 diabetic patients. Mol Metab 5(3):171–183PubMedPubMedCentralCrossRef
16.
go back to reference Abderrahmani A, Yengo L, Caiazzo R et al (2018) Increased hepatic PDGF-AA signaling mediates liver insulin resistance in obesity-associated type 2 diabetes. Diabetes 67(7):1310–1321 Abderrahmani A, Yengo L, Caiazzo R et al (2018) Increased hepatic PDGF-AA signaling mediates liver insulin resistance in obesity-associated type 2 diabetes. Diabetes 67(7):1310–1321
17.
go back to reference Ribel-Madsen R, Fraga MF, Jacobsen S et al (2012) Genome-wide analysis of DNA methylation differences in muscle and fat from monozygotic twins discordant for type 2 diabetes. PLoS One 7(12):e51302PubMedPubMedCentralCrossRef Ribel-Madsen R, Fraga MF, Jacobsen S et al (2012) Genome-wide analysis of DNA methylation differences in muscle and fat from monozygotic twins discordant for type 2 diabetes. PLoS One 7(12):e51302PubMedPubMedCentralCrossRef
18.
go back to reference Volkmar M, Dedeurwaerder S, Cunha DA et al (2012) DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J 31(6):1405–1426PubMedPubMedCentralCrossRef Volkmar M, Dedeurwaerder S, Cunha DA et al (2012) DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J 31(6):1405–1426PubMedPubMedCentralCrossRef
19.
go back to reference Gillberg L, Perfilyev A, Brons C et al (2016) Adipose tissue transcriptomics and epigenomics in low birthweight men and controls: role of high-fat overfeeding. Diabetologia 59(4):799–812. Gillberg L, Perfilyev A, Brons C et al (2016) Adipose tissue transcriptomics and epigenomics in low birthweight men and controls: role of high-fat overfeeding. Diabetologia 59(4):799–812.
20.
go back to reference Ronn T, Volkov P, Davegardh C et al (2013) A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet 9(6):e1003572PubMedPubMedCentralCrossRef Ronn T, Volkov P, Davegardh C et al (2013) A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet 9(6):e1003572PubMedPubMedCentralCrossRef
21.
22.
go back to reference Bacos K, Gillberg L, Volkov P et al (2016) Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat Commun 7:11089PubMedPubMedCentralCrossRef Bacos K, Gillberg L, Volkov P et al (2016) Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat Commun 7:11089PubMedPubMedCentralCrossRef
23.
go back to reference Barres R, Yan J, Egan B et al (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15(3):405–411PubMedCrossRef Barres R, Yan J, Egan B et al (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15(3):405–411PubMedCrossRef
24.
go back to reference Feinberg AP, Irizarry RA, Fradin D et al (2010) Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl Med 2(49):49ra67PubMedPubMedCentralCrossRef Feinberg AP, Irizarry RA, Fradin D et al (2010) Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl Med 2(49):49ra67PubMedPubMedCentralCrossRef
25.
go back to reference Elbere I, Silamikelis I, Ustinova M et al (2018) Significantly altered peripheral blood cell DNA methylation profile as a result of immediate effect of metformin use in healthy individuals. Clin Epigenetics 10(1):156PubMedPubMedCentralCrossRef Elbere I, Silamikelis I, Ustinova M et al (2018) Significantly altered peripheral blood cell DNA methylation profile as a result of immediate effect of metformin use in healthy individuals. Clin Epigenetics 10(1):156PubMedPubMedCentralCrossRef
26.
go back to reference Zhou K, Yee SW, Seiser EL et al (2016) Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat Genet 48(9):1055–1059PubMedPubMedCentralCrossRef Zhou K, Yee SW, Seiser EL et al (2016) Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat Genet 48(9):1055–1059PubMedPubMedCentralCrossRef
27.
go back to reference Zhou K, Donnelly L, Yang J et al (2014) Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis. Lancet Diabetes Endocrinol 2(6):481–487PubMedPubMedCentralCrossRef Zhou K, Donnelly L, Yang J et al (2014) Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis. Lancet Diabetes Endocrinol 2(6):481–487PubMedPubMedCentralCrossRef
28.
go back to reference Rotroff DM, Yee SW, Zhou K et al (2018) Genetic variants in CPA6 and PRPF31 are associated with variation in response to metformin in individuals with type 2 diabetes. Diabetes. 67(7):1428–1440PubMedPubMedCentralCrossRef Rotroff DM, Yee SW, Zhou K et al (2018) Genetic variants in CPA6 and PRPF31 are associated with variation in response to metformin in individuals with type 2 diabetes. Diabetes. 67(7):1428–1440PubMedPubMedCentralCrossRef
29.
go back to reference Jablonski KA, McAteer JB, de Bakker PI et al (2010) Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program. Diabetes. 59(10):2672–2681PubMedPubMedCentralCrossRef Jablonski KA, McAteer JB, de Bakker PI et al (2010) Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program. Diabetes. 59(10):2672–2681PubMedPubMedCentralCrossRef
30.
go back to reference GoDarts, Group UDPS, Wellcome Trust Case Control C, Zhou K, Bellenguez C, Spencer CC et al (2011) Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat Genet 43(2):117–120CrossRef GoDarts, Group UDPS, Wellcome Trust Case Control C, Zhou K, Bellenguez C, Spencer CC et al (2011) Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat Genet 43(2):117–120CrossRef
31.
go back to reference Dujic T, Zhou K, Tavendale R, Palmer CN, Pearson ER (2016) Effect of serotonin transporter 5-HTTLPR polymorphism on gastrointestinal intolerance to metformin: a GoDARTS study. Diabetes Care 39(11):1896–1901PubMedCrossRef Dujic T, Zhou K, Tavendale R, Palmer CN, Pearson ER (2016) Effect of serotonin transporter 5-HTTLPR polymorphism on gastrointestinal intolerance to metformin: a GoDARTS study. Diabetes Care 39(11):1896–1901PubMedCrossRef
32.
go back to reference Garcia-Calzon S, Perfilyev A, Martinell M et al (2020) Epigenetic markers associated with metformin response and intolerance in drug-naive patients with type 2 diabetes. Sci Transl Med 12:561CrossRef Garcia-Calzon S, Perfilyev A, Martinell M et al (2020) Epigenetic markers associated with metformin response and intolerance in drug-naive patients with type 2 diabetes. Sci Transl Med 12:561CrossRef
33.
go back to reference Cook MN, Girman CJ, Stein PP, Alexander CM (2007) Initial monotherapy with either metformin or sulphonylureas often fails to achieve or maintain current glycaemic goals in patients with type 2 diabetes in UK primary care. Diabet Med 24(4):350–358PubMedCrossRef Cook MN, Girman CJ, Stein PP, Alexander CM (2007) Initial monotherapy with either metformin or sulphonylureas often fails to achieve or maintain current glycaemic goals in patients with type 2 diabetes in UK primary care. Diabet Med 24(4):350–358PubMedCrossRef
34.
go back to reference Kahn SE, Haffner SM, Heise MA et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355(23):2427–2443PubMedCrossRef Kahn SE, Haffner SM, Heise MA et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355(23):2427–2443PubMedCrossRef
35.
go back to reference Donnelly LA, Doney AS, Hattersley AT, Morris AD, Pearson ER (2006) The effect of obesity on glycaemic response to metformin or sulphonylureas in type 2 diabetes. Diabet Med 23(2):128–133PubMedCrossRef Donnelly LA, Doney AS, Hattersley AT, Morris AD, Pearson ER (2006) The effect of obesity on glycaemic response to metformin or sulphonylureas in type 2 diabetes. Diabet Med 23(2):128–133PubMedCrossRef
36.
go back to reference Dujic T, Zhou K, Donnelly LA, Tavendale R, Palmer CN, Pearson ER (2015) Association of Organic Cation Transporter 1 with intolerance to metformin in type 2 diabetes: a GoDARTS study. Diabetes 64(5):1786–1793 Dujic T, Zhou K, Donnelly LA, Tavendale R, Palmer CN, Pearson ER (2015) Association of Organic Cation Transporter 1 with intolerance to metformin in type 2 diabetes: a GoDARTS study. Diabetes 64(5):1786–1793
37.
go back to reference Dujic T, Causevic A, Bego T et al (2016) Organic cation transporter 1 variants and gastrointestinal side effects of metformin in patients with type 2 diabetes. Diabet Med 33(4):511–514PubMedCrossRef Dujic T, Causevic A, Bego T et al (2016) Organic cation transporter 1 variants and gastrointestinal side effects of metformin in patients with type 2 diabetes. Diabet Med 33(4):511–514PubMedCrossRef
39.
go back to reference Garcia-Calzon S, Perfilyev A, Mannisto V et al (2017) Diabetes medication associates with DNA methylation of metformin transporter genes in the human liver. Clin Epigenetics 9:102PubMedPubMedCentralCrossRef Garcia-Calzon S, Perfilyev A, Mannisto V et al (2017) Diabetes medication associates with DNA methylation of metformin transporter genes in the human liver. Clin Epigenetics 9:102PubMedPubMedCentralCrossRef
40.
go back to reference Scisciola L, Rizzo MR, Cataldo V et al (2020) Incretin drugs effect on epigenetic machinery: new potential therapeutic implications in preventing vascular diabetic complications. FASEB J 34(12):16489–16503PubMedCrossRef Scisciola L, Rizzo MR, Cataldo V et al (2020) Incretin drugs effect on epigenetic machinery: new potential therapeutic implications in preventing vascular diabetic complications. FASEB J 34(12):16489–16503PubMedCrossRef
41.
go back to reference Schrader S, Perfilyev A, Martinell M, Garcia-Calzon S, Ling C (2021) Statin therapy is associated with epigenetic modifications in individuals with type 2 diabetes. Epigenomics. 13(12):919–925PubMedCrossRef Schrader S, Perfilyev A, Martinell M, Garcia-Calzon S, Ling C (2021) Statin therapy is associated with epigenetic modifications in individuals with type 2 diabetes. Epigenomics. 13(12):919–925PubMedCrossRef
42.
go back to reference Ochoa-Rosales C, Portilla-Fernandez E, Nano J et al (2020) Epigenetic link between statin therapy and type 2 diabetes. Diabetes Care 43(4):875–884PubMedCrossRef Ochoa-Rosales C, Portilla-Fernandez E, Nano J et al (2020) Epigenetic link between statin therapy and type 2 diabetes. Diabetes Care 43(4):875–884PubMedCrossRef
43.
go back to reference Pinney SE, Jaeckle Santos LJ, Han Y, Stoffers DA, Simmons RA (2011) Exendin-4 increases histone acetylase activity and reverses epigenetic modifications that silence Pdx1 in the intrauterine growth retarded rat. Diabetologia 54(10):2606–2614 Pinney SE, Jaeckle Santos LJ, Han Y, Stoffers DA, Simmons RA (2011) Exendin-4 increases histone acetylase activity and reverses epigenetic modifications that silence Pdx1 in the intrauterine growth retarded rat. Diabetologia 54(10):2606–2614
44.
go back to reference Cheng Y, He C, Wang M et al (2019) Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 4(1):62PubMedPubMedCentralCrossRef Cheng Y, He C, Wang M et al (2019) Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 4(1):62PubMedPubMedCentralCrossRef
45.
go back to reference Nilsson E, Vavakova M, Perfilyev A et al (2021) Differential DNA Methylation and Expression of MicroRNAs in Adipose Tissue from Twin Pairs Discordant for Type 2 Diabetes. Diabetes 70(10):2402–2418 Nilsson E, Vavakova M, Perfilyev A et al (2021) Differential DNA Methylation and Expression of MicroRNAs in Adipose Tissue from Twin Pairs Discordant for Type 2 Diabetes. Diabetes 70(10):2402–2418
46.
go back to reference Backe MB, Andersson JL, Bacos K et al (2018) Lysine demethylase inhibition protects pancreatic beta cells from apoptosis and improves beta-cell function. Mol Cell Endocrinol 460:47–56PubMedCrossRef Backe MB, Andersson JL, Bacos K et al (2018) Lysine demethylase inhibition protects pancreatic beta cells from apoptosis and improves beta-cell function. Mol Cell Endocrinol 460:47–56PubMedCrossRef
47.
48.
go back to reference Lundh M, Galbo T, Poulsen SS, Mandrup-Poulsen T (2015) Histone deacetylase 3 inhibition improves glycaemia and insulin secretion in obese diabetic rats. Diabetes Obes Metab 17(7):703–707PubMedCrossRef Lundh M, Galbo T, Poulsen SS, Mandrup-Poulsen T (2015) Histone deacetylase 3 inhibition improves glycaemia and insulin secretion in obese diabetic rats. Diabetes Obes Metab 17(7):703–707PubMedCrossRef
49.
go back to reference Daneshpajooh M, Eliasson L, Bacos K, Ling C (2018) MC1568 improves insulin secretion in islets from type 2 diabetes patients and rescues beta-cell dysfunction caused by Hdac7 upregulation. Acta Diabetol 55(12):1231–1235PubMedPubMedCentralCrossRef Daneshpajooh M, Eliasson L, Bacos K, Ling C (2018) MC1568 improves insulin secretion in islets from type 2 diabetes patients and rescues beta-cell dysfunction caused by Hdac7 upregulation. Acta Diabetol 55(12):1231–1235PubMedPubMedCentralCrossRef
50.
go back to reference Galmozzi A, Mitro N, Ferrari A et al (2013) Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue. Diabetes 62(3):732–742 Galmozzi A, Mitro N, Ferrari A et al (2013) Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue. Diabetes 62(3):732–742
51.
go back to reference Lee SJ, Choi SE, Lee HB et al (2020) A class I histone deacetylase inhibitor attenuates insulin resistance and inflammation in palmitate-treated C2C12 Myotubes and muscle of HF/HFr diet mice. Front Pharmacol 11:601448PubMedPubMedCentralCrossRef Lee SJ, Choi SE, Lee HB et al (2020) A class I histone deacetylase inhibitor attenuates insulin resistance and inflammation in palmitate-treated C2C12 Myotubes and muscle of HF/HFr diet mice. Front Pharmacol 11:601448PubMedPubMedCentralCrossRef
52.
go back to reference Gao Z, Yin J, Zhang J et al (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58(7):1509–1517 Gao Z, Yin J, Zhang J et al (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58(7):1509–1517
Metadata
Title
Pharmacoepigenetics in type 2 diabetes: is it clinically relevant?
Author
Charlotte Ling
Publication date
21-03-2022
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 11/2022
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-022-05681-x

Other articles of this Issue 11/2022

Diabetologia 11/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine
Webinar | 06-02-2024 | 20:00 (CET)

Mastering chronic pancreatitis pain: A multidisciplinary approach and practical solutions

Severe pain is the most common symptom of chronic pancreatitis. In this webinar, experts share the latest insights in pain management for chronic pancreatitis patients. Experts from a range of disciplines discuss pertinent cases and provide practical suggestions for use within clinical practice.

Sponsored by: Viatris

Developed by: Springer Healthcare