Skip to main content
Top
Published in:

Open Access 01-12-2024 | Metastasis | Review

Personalized nanovaccines for treating solid cancer metastases

Authors: Tang Feng, Jia Hu, Jirui Wen, Zhiyong Qian, Guowei Che, Qinghua Zhou, Lingling Zhu

Published in: Journal of Hematology & Oncology | Issue 1/2024

Login to get access

Abstract

Cancer vaccines have garnered attention as a potential treatment for cancer metastases. Nevertheless, the clinical response rate to vaccines remains < 30%. Nanoparticles stabilize vaccines and improve antigen recognition and presentation, resulting in high tumor penetration or accumulation, effective co-distribution of drugs to the secondary lymphatic system, and adaptable antigen or adjuvant administration. Such vaccine-like nanomedicines have the ability to eradicate the primary tumors as well as to prevent or eliminate metastases. This review examines state-of-the-art nanocarriers developed to deliver tumor vaccines to metastases, including synthetic, semi-biogenic, and biogenic nanosystems. Moreover, it highlights the physical and pharmacological properties that enhance their anti-metastasis efficiency. This review also addresses the combination of nanovaccines with cancer immunotherapy to target various steps in the metastatic cascade, drawing insights from preclinical and clinical studies. The review concludes with a critical analysis of the challenges and frameworks linked to the clinical translation of cancer nanovaccines.
Literature
1.
go back to reference Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020;5:28.PubMedPubMedCentralCrossRef Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020;5:28.PubMedPubMedCentralCrossRef
3.
go back to reference Castaneda M, den Hollander P, Kuburich NA, Rosen JM, Mani SA. Mechanisms of cancer metastasis. Semin Cancer Biol. 2022;87:17–31.PubMedCrossRef Castaneda M, den Hollander P, Kuburich NA, Rosen JM, Mani SA. Mechanisms of cancer metastasis. Semin Cancer Biol. 2022;87:17–31.PubMedCrossRef
6.
go back to reference Haynes NM, Chadwick TB, Parker BS. The complexity of immune evasion mechanisms throughout the metastatic cascade. Nat Immunol. 2024;25:1793–808.PubMedCrossRef Haynes NM, Chadwick TB, Parker BS. The complexity of immune evasion mechanisms throughout the metastatic cascade. Nat Immunol. 2024;25:1793–808.PubMedCrossRef
7.
go back to reference Phuengkham H, Ren L, Shin IW, Lim YT. Nanoengineered Immune Niches for Reprogramming the Immunosuppressive Tumor Microenvironment and Enhancing Cancer Immunotherapy. Adv Mater. 2019;31: e1803322.PubMedCrossRef Phuengkham H, Ren L, Shin IW, Lim YT. Nanoengineered Immune Niches for Reprogramming the Immunosuppressive Tumor Microenvironment and Enhancing Cancer Immunotherapy. Adv Mater. 2019;31: e1803322.PubMedCrossRef
8.
go back to reference Zhu L, Wu J, Gao H, Wang T, Xiao G, Hu C, Lin Q, Zhou Q. Tumor immune microenvironment-modulated nanostrategy for the treatment of lung cancer metastasis. Chin Med J (Engl). 2023;136:2787–801.PubMed Zhu L, Wu J, Gao H, Wang T, Xiao G, Hu C, Lin Q, Zhou Q. Tumor immune microenvironment-modulated nanostrategy for the treatment of lung cancer metastasis. Chin Med J (Engl). 2023;136:2787–801.PubMed
9.
go back to reference Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol. 2024;13:72.PubMedPubMedCentralCrossRef Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol. 2024;13:72.PubMedPubMedCentralCrossRef
10.
go back to reference Zhang P, Zhai Y, Cai Y, Zhao Y, Li Y. Nanomedicine-based immunotherapy for the treatment of cancer metastasis. Adv Mater. 2019;31: e1904156.PubMedCrossRef Zhang P, Zhai Y, Cai Y, Zhao Y, Li Y. Nanomedicine-based immunotherapy for the treatment of cancer metastasis. Adv Mater. 2019;31: e1904156.PubMedCrossRef
11.
go back to reference Liang C, Xu L, Song G, Liu Z. Emerging nanomedicine approaches fighting tumor metastasis: animal models, metastasis-targeted drug delivery, phototherapy, and immunotherapy. Chem Soc Rev. 2016;45:6250–69.PubMedCrossRef Liang C, Xu L, Song G, Liu Z. Emerging nanomedicine approaches fighting tumor metastasis: animal models, metastasis-targeted drug delivery, phototherapy, and immunotherapy. Chem Soc Rev. 2016;45:6250–69.PubMedCrossRef
12.
go back to reference Liu J, Liew SS, Wang J, Pu K. Bioinspired and Biomimetic Delivery Platforms for Cancer Vaccines. Adv Mater. 2022;34: e2103790.PubMedCrossRef Liu J, Liew SS, Wang J, Pu K. Bioinspired and Biomimetic Delivery Platforms for Cancer Vaccines. Adv Mater. 2022;34: e2103790.PubMedCrossRef
13.
14.
go back to reference Li WH, Su JY, Li YM. Rational design of T-Cell- and B-Cell-based therapeutic cancer vaccines. Acc Chem Res. 2022;55:2660–71.PubMedCrossRef Li WH, Su JY, Li YM. Rational design of T-Cell- and B-Cell-based therapeutic cancer vaccines. Acc Chem Res. 2022;55:2660–71.PubMedCrossRef
15.
go back to reference Tagliamonte M, Cavalluzzo B, Mauriello A, Ragone C, Buonaguro FM, Tornesello ML, Buonaguro L. Molecular mimicry and cancer vaccine development. Mol Cancer. 2023;22:75.PubMedPubMedCentralCrossRef Tagliamonte M, Cavalluzzo B, Mauriello A, Ragone C, Buonaguro FM, Tornesello ML, Buonaguro L. Molecular mimicry and cancer vaccine development. Mol Cancer. 2023;22:75.PubMedPubMedCentralCrossRef
16.
go back to reference Viswanath DI, Liu HC, Huston DP, Chua CYX, Grattoni A. Emerging biomaterial-based strategies for personalized therapeutic in situ cancer vaccines. Biomaterials. 2022;280: 121297.PubMedCrossRef Viswanath DI, Liu HC, Huston DP, Chua CYX, Grattoni A. Emerging biomaterial-based strategies for personalized therapeutic in situ cancer vaccines. Biomaterials. 2022;280: 121297.PubMedCrossRef
17.
go back to reference Liu S, Jiang Q, Zhao X, Zhao R, Wang Y, Wang Y, Liu J, Shang Y, Zhao S, Wu T, Zhang Y, Nie G, Ding B. A DNA nanodevice-based vaccine for cancer immunotherapy. Nat Mater. 2021;20:421–30.PubMedCrossRef Liu S, Jiang Q, Zhao X, Zhao R, Wang Y, Wang Y, Liu J, Shang Y, Zhao S, Wu T, Zhang Y, Nie G, Ding B. A DNA nanodevice-based vaccine for cancer immunotherapy. Nat Mater. 2021;20:421–30.PubMedCrossRef
18.
19.
go back to reference Gerstberger S, Jiang Q, Ganesh K. Metastasis Cell. 2023;186:1564–79.PubMed Gerstberger S, Jiang Q, Ganesh K. Metastasis Cell. 2023;186:1564–79.PubMed
20.
go back to reference Liang Y, Zhang H, Song X, Yang Q. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Semin Cancer Biol. 2020;60:14–27.PubMedCrossRef Liang Y, Zhang H, Song X, Yang Q. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Semin Cancer Biol. 2020;60:14–27.PubMedCrossRef
21.
go back to reference Sharma G, Pothuraju R, Kanchan RK, Batra SK, Siddiqui JA. Chemokines network in bone metastasis: vital regulators of seeding and soiling. Semin Cancer Biol. 2022;86:457–72.PubMedPubMedCentralCrossRef Sharma G, Pothuraju R, Kanchan RK, Batra SK, Siddiqui JA. Chemokines network in bone metastasis: vital regulators of seeding and soiling. Semin Cancer Biol. 2022;86:457–72.PubMedPubMedCentralCrossRef
22.
23.
go back to reference Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20:101–24.PubMedCrossRef Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20:101–24.PubMedCrossRef
24.
go back to reference Rao VU, Reeves DJ, Chugh AR, O’Quinn R, Fradley MG, Raghavendra M, Dent S, Barac A, Lenihan D. Clinical approach to cardiovascular toxicity of oral antineoplastic agents: JACC state-of-the-art review. J Am Coll Cardiol. 2021;77:2693–716.PubMedCrossRef Rao VU, Reeves DJ, Chugh AR, O’Quinn R, Fradley MG, Raghavendra M, Dent S, Barac A, Lenihan D. Clinical approach to cardiovascular toxicity of oral antineoplastic agents: JACC state-of-the-art review. J Am Coll Cardiol. 2021;77:2693–716.PubMedCrossRef
25.
go back to reference Yang F, Zhao Z, Sun B, Chen Q, Sun J, He Z, Luo C. Nanotherapeutics for antimetastatic treatment. Trends Cancer. 2020;6:645–59.PubMedCrossRef Yang F, Zhao Z, Sun B, Chen Q, Sun J, He Z, Luo C. Nanotherapeutics for antimetastatic treatment. Trends Cancer. 2020;6:645–59.PubMedCrossRef
26.
go back to reference Zhou J, Kroll AV, Holay M, Fang RH, Zhang L. Biomimetic nanotechnology toward personalized vaccines. Adv Mater. 2020;32: e1901255.PubMedCrossRef Zhou J, Kroll AV, Holay M, Fang RH, Zhang L. Biomimetic nanotechnology toward personalized vaccines. Adv Mater. 2020;32: e1901255.PubMedCrossRef
27.
go back to reference Chung CK, Da Silva CG, Kralisch D, Chan A, Ossendorp F, Cruz LJ. Combinatory therapy adopting nanoparticle-based cancer vaccination with immune checkpoint blockade for treatment of post-surgical tumor recurrences. J Contr Release: Off J Controlled Release Soc. 2018;285:56–66.CrossRef Chung CK, Da Silva CG, Kralisch D, Chan A, Ossendorp F, Cruz LJ. Combinatory therapy adopting nanoparticle-based cancer vaccination with immune checkpoint blockade for treatment of post-surgical tumor recurrences. J Contr Release: Off J Controlled Release Soc. 2018;285:56–66.CrossRef
28.
go back to reference Liu J, Miao L, Sui J, Hao Y, Huang G. Nanoparticle cancer vaccines: design considerations and recent advances. Asian J Pharm Sci. 2020;15:576–90.PubMedCrossRef Liu J, Miao L, Sui J, Hao Y, Huang G. Nanoparticle cancer vaccines: design considerations and recent advances. Asian J Pharm Sci. 2020;15:576–90.PubMedCrossRef
29.
go back to reference Liao Z, Huang J, Lo PC, Lovell JF, Jin H, Yang K. Self-adjuvanting cancer nanovaccines. J Nanobiotechnol. 2022;20:345.CrossRef Liao Z, Huang J, Lo PC, Lovell JF, Jin H, Yang K. Self-adjuvanting cancer nanovaccines. J Nanobiotechnol. 2022;20:345.CrossRef
30.
go back to reference Li Y, Li S, Jiang Z, Tan K, Meng Y, Zhang D, Ma X. Targeting lymph node delivery with nanovaccines for cancer immunotherapy: recent advances and future directions. J Nanobiotechnol. 2023;21:212.CrossRef Li Y, Li S, Jiang Z, Tan K, Meng Y, Zhang D, Ma X. Targeting lymph node delivery with nanovaccines for cancer immunotherapy: recent advances and future directions. J Nanobiotechnol. 2023;21:212.CrossRef
31.
go back to reference Kim HY, Kang M, Choo YW, Go SH, Kwon SP, Song SY, Sohn HS, Hong J, Kim BS. Immunomodulatory lipocomplex functionalized with photosensitizer-embedded cancer cell membrane inhibits tumor growth and metastasis. Nano Lett. 2019;19:5185–93.PubMedCrossRef Kim HY, Kang M, Choo YW, Go SH, Kwon SP, Song SY, Sohn HS, Hong J, Kim BS. Immunomodulatory lipocomplex functionalized with photosensitizer-embedded cancer cell membrane inhibits tumor growth and metastasis. Nano Lett. 2019;19:5185–93.PubMedCrossRef
32.
go back to reference Cheng K, Zhao R, Li Y, Qi Y, Wang Y, Zhang Y, Qin H, Qin Y, Chen L, Li C, Liang J, Li Y, Xu J, Han X, Anderson GJ, Shi J, Ren L, Zhao X, Nie G. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via plug-and-display technology. Nat Commun. 2021;12:2041.PubMedPubMedCentralCrossRef Cheng K, Zhao R, Li Y, Qi Y, Wang Y, Zhang Y, Qin H, Qin Y, Chen L, Li C, Liang J, Li Y, Xu J, Han X, Anderson GJ, Shi J, Ren L, Zhao X, Nie G. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via plug-and-display technology. Nat Commun. 2021;12:2041.PubMedPubMedCentralCrossRef
33.
go back to reference Liu X, Feng Z, Wang C, Su Q, Song H, Zhang C, Huang P, Liang XJ, Dong A, Kong D, Wang W. Co-localized delivery of nanomedicine and nanovaccine augments the postoperative cancer immunotherapy by amplifying T-cell responses. Biomaterials. 2020;230: 119649.PubMedCrossRef Liu X, Feng Z, Wang C, Su Q, Song H, Zhang C, Huang P, Liang XJ, Dong A, Kong D, Wang W. Co-localized delivery of nanomedicine and nanovaccine augments the postoperative cancer immunotherapy by amplifying T-cell responses. Biomaterials. 2020;230: 119649.PubMedCrossRef
34.
go back to reference Xiao B, Li D, Xu H, Zhou X, Xu X, Qian Y, Yu F, Hu H, Zhou Z, Liu X, Gao J, Slater NKH, Shen Y, Tang J. An MRI-trackable therapeutic nanovaccine preventing cancer liver metastasis. Biomaterials. 2021;274: 120893.PubMedCrossRef Xiao B, Li D, Xu H, Zhou X, Xu X, Qian Y, Yu F, Hu H, Zhou Z, Liu X, Gao J, Slater NKH, Shen Y, Tang J. An MRI-trackable therapeutic nanovaccine preventing cancer liver metastasis. Biomaterials. 2021;274: 120893.PubMedCrossRef
36.
go back to reference Wang Q, Wang Z, Sun X, Jiang Q, Sun B, He Z, Zhang S, Luo C, Sun J. Lymph node-targeting nanovaccines for cancer immunotherapy. J Control Release. 2022;351:102–22.PubMedCrossRef Wang Q, Wang Z, Sun X, Jiang Q, Sun B, He Z, Zhang S, Luo C, Sun J. Lymph node-targeting nanovaccines for cancer immunotherapy. J Control Release. 2022;351:102–22.PubMedCrossRef
37.
go back to reference Guo Y, Wang D, Song Q, Wu T, Zhuang X, Bao Y, Kong M, Qi Y, Tan S, Zhang Z. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma. ACS Nano. 2015;9:6918–33.PubMedCrossRef Guo Y, Wang D, Song Q, Wu T, Zhuang X, Bao Y, Kong M, Qi Y, Tan S, Zhang Z. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma. ACS Nano. 2015;9:6918–33.PubMedCrossRef
38.
go back to reference Chen F, Wang Y, Gao J, Saeed M, Li T, Wang W, Yu H. Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials. 2021;270: 120709.PubMedCrossRef Chen F, Wang Y, Gao J, Saeed M, Li T, Wang W, Yu H. Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials. 2021;270: 120709.PubMedCrossRef
39.
go back to reference Chen F, Li T, Zhang H, Saeed M, Liu X, Huang L, Wang X, Gao J, Hou B, Lai Y, Ding C, Xu Z, Xie Z, Luo M, Yu H. Acid-ionizable iron nanoadjuvant augments STING activation for personalized vaccination immunotherapy of cancer. Adv Mater. 2023;35: e2209910.PubMedCrossRef Chen F, Li T, Zhang H, Saeed M, Liu X, Huang L, Wang X, Gao J, Hou B, Lai Y, Ding C, Xu Z, Xie Z, Luo M, Yu H. Acid-ionizable iron nanoadjuvant augments STING activation for personalized vaccination immunotherapy of cancer. Adv Mater. 2023;35: e2209910.PubMedCrossRef
40.
go back to reference Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells - mechanisms of immune surveillance and escape. Nat Rev Clin Oncol. 2017;14:155–67.PubMedCrossRef Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells - mechanisms of immune surveillance and escape. Nat Rev Clin Oncol. 2017;14:155–67.PubMedCrossRef
43.
go back to reference Zhu L, Yu X, Cao T, Deng H, Tang X, Lin Q, Zhou Q. Immune cell membrane-based biomimetic nanomedicine for treating cancer metastasis. Acta Pharm Sin B. 2023;13:2464–82.PubMedPubMedCentralCrossRef Zhu L, Yu X, Cao T, Deng H, Tang X, Lin Q, Zhou Q. Immune cell membrane-based biomimetic nanomedicine for treating cancer metastasis. Acta Pharm Sin B. 2023;13:2464–82.PubMedPubMedCentralCrossRef
45.
go back to reference Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther. 2024;9:192.PubMedPubMedCentralCrossRef Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther. 2024;9:192.PubMedPubMedCentralCrossRef
46.
go back to reference Yuan CS, Deng ZW, Qin D, Mu YZ, Chen XG, Liu Y. Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: where do we stand? Acta Biomater. 2021;125:1–28.PubMedCrossRef Yuan CS, Deng ZW, Qin D, Mu YZ, Chen XG, Liu Y. Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: where do we stand? Acta Biomater. 2021;125:1–28.PubMedCrossRef
47.
go back to reference Zhou Q, Li Y, Zhu Y, Yu C, Jia H, Bao B, Hu H, Xiao C, Zhang J, Zeng X, Wan Y, Xu H, Li Z, Yang X. Co-delivery nanoparticle to overcome metastasis promoted by insufficient chemotherapy. J Control Release. 2018;275:67–77.PubMedCrossRef Zhou Q, Li Y, Zhu Y, Yu C, Jia H, Bao B, Hu H, Xiao C, Zhang J, Zeng X, Wan Y, Xu H, Li Z, Yang X. Co-delivery nanoparticle to overcome metastasis promoted by insufficient chemotherapy. J Control Release. 2018;275:67–77.PubMedCrossRef
48.
go back to reference Li Y, Xiao Y, Lin HP, Reichel D, Bae Y, Lee EY, Jiang Y, Huang X, Yang C, Wang Z. In vivo beta-catenin attenuation by the integrin alpha5-targeting nano-delivery strategy suppresses triple negative breast cancer stemness and metastasis. Biomaterials. 2019;188:160–72.PubMedCrossRef Li Y, Xiao Y, Lin HP, Reichel D, Bae Y, Lee EY, Jiang Y, Huang X, Yang C, Wang Z. In vivo beta-catenin attenuation by the integrin alpha5-targeting nano-delivery strategy suppresses triple negative breast cancer stemness and metastasis. Biomaterials. 2019;188:160–72.PubMedCrossRef
49.
go back to reference Du Q, Luo Y, Xu L, Du C, Zhang W, Xu J, Liu Y, Liu B, Chen S, Wang Y, Wang Z, Ran H, Wang J, Guo D. Smart responsive Fe/Mn nanovaccine triggers liver cancer immunotherapy via pyroptosis and pyroptosis-boosted cGAS-STING activation. J Nanobiotechnology. 2024;22:95.PubMedPubMedCentralCrossRef Du Q, Luo Y, Xu L, Du C, Zhang W, Xu J, Liu Y, Liu B, Chen S, Wang Y, Wang Z, Ran H, Wang J, Guo D. Smart responsive Fe/Mn nanovaccine triggers liver cancer immunotherapy via pyroptosis and pyroptosis-boosted cGAS-STING activation. J Nanobiotechnology. 2024;22:95.PubMedPubMedCentralCrossRef
50.
go back to reference Huang Y, Zhou B, Luo H, Mao J, Huang Y, Zhang K, Mei C, Yan Y, Jin H, Gao J, Su Z, Pang P, Li D, Shan H. ZnAs@SiO(2) nanoparticles as a potential anti-tumor drug for targeting stemness and epithelial-mesenchymal transition in hepatocellular carcinoma via SHP-1/JAK2/STAT3 signaling. Theranostics. 2019;9:4391–408.PubMedPubMedCentralCrossRef Huang Y, Zhou B, Luo H, Mao J, Huang Y, Zhang K, Mei C, Yan Y, Jin H, Gao J, Su Z, Pang P, Li D, Shan H. ZnAs@SiO(2) nanoparticles as a potential anti-tumor drug for targeting stemness and epithelial-mesenchymal transition in hepatocellular carcinoma via SHP-1/JAK2/STAT3 signaling. Theranostics. 2019;9:4391–408.PubMedPubMedCentralCrossRef
51.
go back to reference Qin L, Zhang H, Zhou Y, Umeshappa CS, Gao H. Nanovaccine-based strategies to overcome challenges in the whole vaccination cascade for tumor immunotherapy. Small. 2021;17: e2006000.PubMedCrossRef Qin L, Zhang H, Zhou Y, Umeshappa CS, Gao H. Nanovaccine-based strategies to overcome challenges in the whole vaccination cascade for tumor immunotherapy. Small. 2021;17: e2006000.PubMedCrossRef
54.
go back to reference Liang X, Li L, Li X, He T, Gong S, Zhu S, Zhang M, Wu Q, Gong C. A spontaneous multifunctional hydrogel vaccine amplifies the innate immune response to launch a powerful antitumor adaptive immune response. Theranostics. 2021;11:6936–49.PubMedPubMedCentralCrossRef Liang X, Li L, Li X, He T, Gong S, Zhu S, Zhang M, Wu Q, Gong C. A spontaneous multifunctional hydrogel vaccine amplifies the innate immune response to launch a powerful antitumor adaptive immune response. Theranostics. 2021;11:6936–49.PubMedPubMedCentralCrossRef
55.
go back to reference Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020;20:7–24.PubMedCrossRef Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020;20:7–24.PubMedCrossRef
56.
go back to reference Zhao X, Zhang J, Chen B, Ding X, Zhao N, Xu FJ. Rough nanovaccines boost antitumor immunity through the enhancement of vaccination cascade and immunogenic cell death induction. Small methods. 2023;7: e2201595.PubMedCrossRef Zhao X, Zhang J, Chen B, Ding X, Zhao N, Xu FJ. Rough nanovaccines boost antitumor immunity through the enhancement of vaccination cascade and immunogenic cell death induction. Small methods. 2023;7: e2201595.PubMedCrossRef
57.
go back to reference Zhang L, Wu S, Qin Y, Fan F, Zhang Z, Huang C, Ji W, Lu L, Wang C, Sun H, Leng X, Kong D, Zhu D. Targeted codelivery of an antigen and dual agonists by hybrid nanoparticles for enhanced cancer immunotherapy. Nano Lett. 2019;19:4237–49.PubMedCrossRef Zhang L, Wu S, Qin Y, Fan F, Zhang Z, Huang C, Ji W, Lu L, Wang C, Sun H, Leng X, Kong D, Zhu D. Targeted codelivery of an antigen and dual agonists by hybrid nanoparticles for enhanced cancer immunotherapy. Nano Lett. 2019;19:4237–49.PubMedCrossRef
58.
go back to reference Xie C, You X, Zhang H, Li J, Wang L, Liu Y, Wang Z, Yao R, Tong T, Li M, Wang X. A nanovaccine based on adjuvant peptide FK-13 and l-phenylalanine poly (ester amide) enhances CD8+ T cell-mediated antitumor immunity. Adv Sci. 2023;10(20):2300418.CrossRef Xie C, You X, Zhang H, Li J, Wang L, Liu Y, Wang Z, Yao R, Tong T, Li M, Wang X. A nanovaccine based on adjuvant peptide FK-13 and l-phenylalanine poly (ester amide) enhances CD8+ T cell-mediated antitumor immunity. Adv Sci. 2023;10(20):2300418.CrossRef
60.
go back to reference Yin Y, Li X, Ma H, Zhang J, Yu D, Zhao R, Yu S, Nie G, Wang H. In Situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy. Nano Lett. 2021;21:2224–31.PubMedCrossRef Yin Y, Li X, Ma H, Zhang J, Yu D, Zhao R, Yu S, Nie G, Wang H. In Situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy. Nano Lett. 2021;21:2224–31.PubMedCrossRef
62.
64.
go back to reference Li Y, Wang M, Peng X, Yang Y, Chen Q, Liu J, She Q, Tan J, Lou C, Liao Z, Li X. mRNA vaccine in cancer therapy: current advance and future outlook. Clin Transl Med. 2023;13: e1384.PubMedPubMedCentralCrossRef Li Y, Wang M, Peng X, Yang Y, Chen Q, Liu J, She Q, Tan J, Lou C, Liao Z, Li X. mRNA vaccine in cancer therapy: current advance and future outlook. Clin Transl Med. 2023;13: e1384.PubMedPubMedCentralCrossRef
65.
go back to reference Meng L, Teng Z, Yang S, Wang N, Guan Y, Chen X, Liu Y. Biomimetic nanoparticles for DC vaccination: a versatile approach to boost cancer immunotherapy. Nanoscale. 2023;15:6432–55.PubMedCrossRef Meng L, Teng Z, Yang S, Wang N, Guan Y, Chen X, Liu Y. Biomimetic nanoparticles for DC vaccination: a versatile approach to boost cancer immunotherapy. Nanoscale. 2023;15:6432–55.PubMedCrossRef
66.
go back to reference Xu J, Lv J, Zhuang Q, Yang Z, Cao Z, Xu L, Pei P, Wang C, Wu H, Dong Z, Chao Y, Wang C, Yang K, Peng R, Cheng Y, Liu Z. A general strategy towards personalized nanovaccines based on fluoropolymers for post-surgical cancer immunotherapy. Nat Nanotechnol. 2020;15:1043–52.PubMedCrossRef Xu J, Lv J, Zhuang Q, Yang Z, Cao Z, Xu L, Pei P, Wang C, Wu H, Dong Z, Chao Y, Wang C, Yang K, Peng R, Cheng Y, Liu Z. A general strategy towards personalized nanovaccines based on fluoropolymers for post-surgical cancer immunotherapy. Nat Nanotechnol. 2020;15:1043–52.PubMedCrossRef
67.
go back to reference Shi W, Feng W, Li S, Cui Y, Liu S, Jiang H, Liu Y, Zhang H. Ferroptosis and necroptosis produced autologous tumor cell lysates co-delivering with combined immnoadjuvants as personalized in situ nanovaccines for antitumor immunity. ACS Nano. 2023;17:14475–93.PubMedCrossRef Shi W, Feng W, Li S, Cui Y, Liu S, Jiang H, Liu Y, Zhang H. Ferroptosis and necroptosis produced autologous tumor cell lysates co-delivering with combined immnoadjuvants as personalized in situ nanovaccines for antitumor immunity. ACS Nano. 2023;17:14475–93.PubMedCrossRef
68.
go back to reference Guasp P, Reiche C, Sethna Z, Balachandran VP. RNA vaccines for cancer: principles to practice. Cancer Cell. 2024;42:1163–84.PubMedCrossRef Guasp P, Reiche C, Sethna Z, Balachandran VP. RNA vaccines for cancer: principles to practice. Cancer Cell. 2024;42:1163–84.PubMedCrossRef
69.
go back to reference Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer nanovaccines: nanomaterials and clinical perspectives. Small. 2024;20: e2401631.PubMedCrossRef Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer nanovaccines: nanomaterials and clinical perspectives. Small. 2024;20: e2401631.PubMedCrossRef
70.
go back to reference Song Y, Zhang Y. Research progress of neoantigens in gynecologic cancers. Int Immunopharmacol. 2022;112: 109236.PubMedCrossRef Song Y, Zhang Y. Research progress of neoantigens in gynecologic cancers. Int Immunopharmacol. 2022;112: 109236.PubMedCrossRef
71.
72.
go back to reference Wang C, Zainal NS, Chai SJ, Dickie J, Gan CP, Zulaziz N, Lye BKW, Sutavani RV, Ottensmeier CH, King EV, Abraham MT, Ismail SMB, Lau SH, Kallarakkal TG, Mun KS, Zain RB, Abdul Rahman ZA, Thomas GJ, Cheong SC, Savelyeva N, Lim KP. DNA vaccines targeting novel cancer-associated antigens frequently expressed in head and neck cancer enhance the efficacy of checkpoint inhibitor. Front Immunol. 2021;12:763086. https://doi.org/10.3389/fimmu.2021.763086.CrossRefPubMedPubMedCentral Wang C, Zainal NS, Chai SJ, Dickie J, Gan CP, Zulaziz N, Lye BKW, Sutavani RV, Ottensmeier CH, King EV, Abraham MT, Ismail SMB, Lau SH, Kallarakkal TG, Mun KS, Zain RB, Abdul Rahman ZA, Thomas GJ, Cheong SC, Savelyeva N, Lim KP. DNA vaccines targeting novel cancer-associated antigens frequently expressed in head and neck cancer enhance the efficacy of checkpoint inhibitor. Front Immunol. 2021;12:763086. https://​doi.​org/​10.​3389/​fimmu.​2021.​763086.CrossRefPubMedPubMedCentral
73.
74.
go back to reference Jia W, Shen X, Guo Z, Cheng X, Zhao R. The future of cancer vaccines against colorectal cancer. Expert Opin Biol Ther. 2024;24:269–84.PubMedCrossRef Jia W, Shen X, Guo Z, Cheng X, Zhao R. The future of cancer vaccines against colorectal cancer. Expert Opin Biol Ther. 2024;24:269–84.PubMedCrossRef
75.
go back to reference Dersh D, Holly J, Yewdell JW. A few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nat Rev Immunol. 2021;21:116–28.PubMedCrossRef Dersh D, Holly J, Yewdell JW. A few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nat Rev Immunol. 2021;21:116–28.PubMedCrossRef
76.
go back to reference Zhang LX, Xie XX, Liu DQ, Xu ZP, Liu RT. Efficient co-delivery of neo-epitopes using dispersion-stable layered double hydroxide nanoparticles for enhanced melanoma immunotherapy. Biomaterials. 2018;174:54–66.PubMedCrossRef Zhang LX, Xie XX, Liu DQ, Xu ZP, Liu RT. Efficient co-delivery of neo-epitopes using dispersion-stable layered double hydroxide nanoparticles for enhanced melanoma immunotherapy. Biomaterials. 2018;174:54–66.PubMedCrossRef
77.
go back to reference Donaldson B, Al-Barwani F, Pelham SJ, Young K, Ward VK, Young SL. Multi-target chimaeric VLP as a therapeutic vaccine in a model of colorectal cancer. J Immunother Cancer. 2017;5:69.PubMedPubMedCentralCrossRef Donaldson B, Al-Barwani F, Pelham SJ, Young K, Ward VK, Young SL. Multi-target chimaeric VLP as a therapeutic vaccine in a model of colorectal cancer. J Immunother Cancer. 2017;5:69.PubMedPubMedCentralCrossRef
78.
go back to reference Rojas LA, Sethna Z, Soares KC, Olcese C, Pang N, Patterson E, Lihm J, Ceglia N, Guasp P, Chu A, Yu R, Chandra AK, Waters T, Ruan J, Amisaki M, Zebboudj A, Odgerel Z, Payne G, Derhovanessian E, Muller F, Rhee I, Yadav M, Dobrin A, Sadelain M, Luksza M, Cohen N, Tang L, Basturk O, Gonen M, Katz S, Do RK, Epstein AS, Momtaz P, Park W, Sugarman R, Varghese AM, Won E, Desai A, Wei AC, D’Angelica MI, Kingham TP, Mellman I, Merghoub T, Wolchok JD, Sahin U, Tureci O, Greenbaum BD, Jarnagin WR, Drebin J, O’Reilly EM, Balachandran VP. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature. 2023;618:144–50.PubMedPubMedCentralCrossRef Rojas LA, Sethna Z, Soares KC, Olcese C, Pang N, Patterson E, Lihm J, Ceglia N, Guasp P, Chu A, Yu R, Chandra AK, Waters T, Ruan J, Amisaki M, Zebboudj A, Odgerel Z, Payne G, Derhovanessian E, Muller F, Rhee I, Yadav M, Dobrin A, Sadelain M, Luksza M, Cohen N, Tang L, Basturk O, Gonen M, Katz S, Do RK, Epstein AS, Momtaz P, Park W, Sugarman R, Varghese AM, Won E, Desai A, Wei AC, D’Angelica MI, Kingham TP, Mellman I, Merghoub T, Wolchok JD, Sahin U, Tureci O, Greenbaum BD, Jarnagin WR, Drebin J, O’Reilly EM, Balachandran VP. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature. 2023;618:144–50.PubMedPubMedCentralCrossRef
79.
go back to reference Jin L, Yang D, Song Y, Li D, Xu W, Zhu Y, Xu CF, Lu Y, Yang X. In Situ programming of nanovaccines for lymph node-targeted delivery and cancer immunotherapy. ACS Nano. 2022;16:15226–36.PubMedCrossRef Jin L, Yang D, Song Y, Li D, Xu W, Zhu Y, Xu CF, Lu Y, Yang X. In Situ programming of nanovaccines for lymph node-targeted delivery and cancer immunotherapy. ACS Nano. 2022;16:15226–36.PubMedCrossRef
80.
go back to reference Zhang S, Feng Y, Meng M, Li Z, Li H, Lin L, Xu C, Chen J, Hao K, Tang Z, Tian H, Chen X. A generally minimalist strategy of constructing biomineralized high-efficiency personalized nanovaccine combined with immune checkpoint blockade for cancer immunotherapy. Biomaterials. 2022;289: 121794.PubMedCrossRef Zhang S, Feng Y, Meng M, Li Z, Li H, Lin L, Xu C, Chen J, Hao K, Tang Z, Tian H, Chen X. A generally minimalist strategy of constructing biomineralized high-efficiency personalized nanovaccine combined with immune checkpoint blockade for cancer immunotherapy. Biomaterials. 2022;289: 121794.PubMedCrossRef
81.
go back to reference Ding B, Zheng P, Jiang F, Zhao Y, Wang M, Chang M, Ma PA, Lin J. MnOx nanospikes as nanoadjuvants and immunogenic cell death drugs with enhanced antitumor immunity and antimetastatic effect. Angew Chem Int Ed. 2020;59(38):16381–4.CrossRef Ding B, Zheng P, Jiang F, Zhao Y, Wang M, Chang M, Ma PA, Lin J. MnOx nanospikes as nanoadjuvants and immunogenic cell death drugs with enhanced antitumor immunity and antimetastatic effect. Angew Chem Int Ed. 2020;59(38):16381–4.CrossRef
82.
go back to reference Yi Y, Yu M, Li W, Zhu D, Mei L, Ou M. Vaccine-like nanomedicine for cancer immunotherapy. J Control Release. 2023;355:760–78.PubMedCrossRef Yi Y, Yu M, Li W, Zhu D, Mei L, Ou M. Vaccine-like nanomedicine for cancer immunotherapy. J Control Release. 2023;355:760–78.PubMedCrossRef
83.
go back to reference Zhou S, Huang Y, Chen Y, Liu S, Xu M, Jiang T, Song Q, Jiang G, Gu X, Gao X, Chen J. Engineering ApoE3-incorporated biomimetic nanoparticle for efficient vaccine delivery to dendritic cells via macropinocytosis to enhance cancer immunotherapy. Biomaterials. 2020;235: 119795.PubMedCrossRef Zhou S, Huang Y, Chen Y, Liu S, Xu M, Jiang T, Song Q, Jiang G, Gu X, Gao X, Chen J. Engineering ApoE3-incorporated biomimetic nanoparticle for efficient vaccine delivery to dendritic cells via macropinocytosis to enhance cancer immunotherapy. Biomaterials. 2020;235: 119795.PubMedCrossRef
84.
go back to reference Lerner MI, Mikhaylov G, Tsukanov AA, Lozhkomoev AS, Gutmanas E, Gotman I, Bratovs A, Turk V, Turk B, Psakhye SG, Vasiljeva O. Crumpled aluminum hydroxide nanostructures as a microenvironment dysregulation agent for cancer treatment. Nano Lett. 2018;18:5401–10.PubMedCrossRef Lerner MI, Mikhaylov G, Tsukanov AA, Lozhkomoev AS, Gutmanas E, Gotman I, Bratovs A, Turk V, Turk B, Psakhye SG, Vasiljeva O. Crumpled aluminum hydroxide nanostructures as a microenvironment dysregulation agent for cancer treatment. Nano Lett. 2018;18:5401–10.PubMedCrossRef
85.
go back to reference Zhang Y, Ma S, Liu X, Xu Y, Zhao J, Si X, Li H, Huang Z, Wang Z, Tang Z, Song W, Chen X. Supramolecular assembled programmable nanomedicine as in situ cancer vaccine for cancer immunotherapy. Adv Mater. 2021;33: e2007293.PubMedCrossRef Zhang Y, Ma S, Liu X, Xu Y, Zhao J, Si X, Li H, Huang Z, Wang Z, Tang Z, Song W, Chen X. Supramolecular assembled programmable nanomedicine as in situ cancer vaccine for cancer immunotherapy. Adv Mater. 2021;33: e2007293.PubMedCrossRef
86.
go back to reference Zhou J, Ventura CJ, Fang RH, Zhang L. Nanodelivery of STING agonists against cancer and infectious diseases. Mol Aspects Med. 2022;83: 101007.PubMedCrossRef Zhou J, Ventura CJ, Fang RH, Zhang L. Nanodelivery of STING agonists against cancer and infectious diseases. Mol Aspects Med. 2022;83: 101007.PubMedCrossRef
87.
go back to reference Habib A, Anjum KM, Iqbal R, Jaffar G, Ashraf Z, Khalid MS, Taj MU, Zainab SW, Umair M, Zohaib M, Khalid T. Vaccine adjuvants: selection criteria, mechanism of action associated with immune responses and future directions. Iran J Immunol. 2023;20:1–15.PubMed Habib A, Anjum KM, Iqbal R, Jaffar G, Ashraf Z, Khalid MS, Taj MU, Zainab SW, Umair M, Zohaib M, Khalid T. Vaccine adjuvants: selection criteria, mechanism of action associated with immune responses and future directions. Iran J Immunol. 2023;20:1–15.PubMed
88.
go back to reference Zhang X, Yang B, Ni Q, Chen X. Materials engineering strategies for cancer vaccine adjuvant development. Chem Soc Rev. 2023;52:2886–910.PubMedCrossRef Zhang X, Yang B, Ni Q, Chen X. Materials engineering strategies for cancer vaccine adjuvant development. Chem Soc Rev. 2023;52:2886–910.PubMedCrossRef
90.
go back to reference Li X, Zhang Y, Wu X, Chen J, Yang M, Ma F, Shi L. In situ antigen-capturing nanochaperone toward personalized nanovaccine for cancer immunotherapy. Small. 2022;18:e2203100.PubMedCrossRef Li X, Zhang Y, Wu X, Chen J, Yang M, Ma F, Shi L. In situ antigen-capturing nanochaperone toward personalized nanovaccine for cancer immunotherapy. Small. 2022;18:e2203100.PubMedCrossRef
91.
go back to reference Xie X, Feng Y, Zhang H, Su Q, Song T, Yang G, Li N, Wei X, Li T, Qin X, Li S, Wu C, Zhang X, Wang G, Liu Y, Yang H. Remodeling tumor immunosuppressive microenvironment via a novel bioactive nanovaccines potentiates the efficacy of cancer immunotherapy. Bioact Mater. 2022;16:107–19.PubMedPubMedCentral Xie X, Feng Y, Zhang H, Su Q, Song T, Yang G, Li N, Wei X, Li T, Qin X, Li S, Wu C, Zhang X, Wang G, Liu Y, Yang H. Remodeling tumor immunosuppressive microenvironment via a novel bioactive nanovaccines potentiates the efficacy of cancer immunotherapy. Bioact Mater. 2022;16:107–19.PubMedPubMedCentral
92.
go back to reference Lee ES, Shin JM, Son S, Ko H, Um W, Song SH, Lee JA, Park JH. Recent advances in polymeric nanomedicines for cancer immunotherapy. Adv Healthcare Mater. 2019;8: e1801320.CrossRef Lee ES, Shin JM, Son S, Ko H, Um W, Song SH, Lee JA, Park JH. Recent advances in polymeric nanomedicines for cancer immunotherapy. Adv Healthcare Mater. 2019;8: e1801320.CrossRef
93.
go back to reference Zhai Y, He X, Li Y, Han R, Ma Y, Gao P, Qian Z, Gu Y, Li S. A splenic-targeted versatile antigen courier: iPSC wrapped in coalescent erythrocyte-liposome as tumor nanovaccine. Sci Adv. 2021;7(35):6326.CrossRef Zhai Y, He X, Li Y, Han R, Ma Y, Gao P, Qian Z, Gu Y, Li S. A splenic-targeted versatile antigen courier: iPSC wrapped in coalescent erythrocyte-liposome as tumor nanovaccine. Sci Adv. 2021;7(35):6326.CrossRef
94.
go back to reference Kaps L, Limeres MJ, Schneider P, Svensson M, Zeyn Y, Fraude S, Cacicedo ML, Galle PR, Gehring S, Bros M. Liver cell type-specific targeting by nanoformulations for therapeutic applications. Int J Mol Sci. 2023;24(14):11869.PubMedPubMedCentralCrossRef Kaps L, Limeres MJ, Schneider P, Svensson M, Zeyn Y, Fraude S, Cacicedo ML, Galle PR, Gehring S, Bros M. Liver cell type-specific targeting by nanoformulations for therapeutic applications. Int J Mol Sci. 2023;24(14):11869.PubMedPubMedCentralCrossRef
95.
go back to reference Gu W, An J, Li Y, Yang Y, Wang S, Shan H, Li S, Li H, Liu G, Li K, Yin Y. Tuning the organ tropism of polymersome for spleen-selective nanovaccine delivery to boost cancer immunotherapy. Adv Mater. 2023;35(41):2301686.CrossRef Gu W, An J, Li Y, Yang Y, Wang S, Shan H, Li S, Li H, Liu G, Li K, Yin Y. Tuning the organ tropism of polymersome for spleen-selective nanovaccine delivery to boost cancer immunotherapy. Adv Mater. 2023;35(41):2301686.CrossRef
96.
go back to reference Pérez-Ferreiro M, Abelairas MA, Criado A, Gómez IJ, Mosquera J. Dendrimers: exploring their wide structural variety and applications. Polymers. 2023;15(22):4369.PubMedPubMedCentralCrossRef Pérez-Ferreiro M, Abelairas MA, Criado A, Gómez IJ, Mosquera J. Dendrimers: exploring their wide structural variety and applications. Polymers. 2023;15(22):4369.PubMedPubMedCentralCrossRef
97.
go back to reference Afzal O, Altamimi AS, Nadeem MS, Alzarea SI, Almalki WH, Tariq A, Mubeen B, Murtaza BN, Iftikhar S, Riaz N, Kazmi I. Nanoparticles in drug delivery: from history to therapeutic applications. Nanomaterials. 2022;12(24):4494.PubMedPubMedCentralCrossRef Afzal O, Altamimi AS, Nadeem MS, Alzarea SI, Almalki WH, Tariq A, Mubeen B, Murtaza BN, Iftikhar S, Riaz N, Kazmi I. Nanoparticles in drug delivery: from history to therapeutic applications. Nanomaterials. 2022;12(24):4494.PubMedPubMedCentralCrossRef
98.
go back to reference Knauer N, Pashkina E, Aktanova A, Boeva O, Arkhipova V, Barkovskaya M, Meschaninova M, Karpus A, Majoral JP, Kozlov V, Apartsin E. Effects of cationic dendrimers and their complexes with microRNAs on immunocompetent cells. Pharmaceutics. 2022;15(1):148.PubMedPubMedCentralCrossRef Knauer N, Pashkina E, Aktanova A, Boeva O, Arkhipova V, Barkovskaya M, Meschaninova M, Karpus A, Majoral JP, Kozlov V, Apartsin E. Effects of cationic dendrimers and their complexes with microRNAs on immunocompetent cells. Pharmaceutics. 2022;15(1):148.PubMedPubMedCentralCrossRef
99.
go back to reference Chowdhury S, Toth I, Stephenson RJ. Dendrimers in vaccine delivery: recent progress and advances. Biomaterials. 2022;280: 121303.PubMedCrossRef Chowdhury S, Toth I, Stephenson RJ. Dendrimers in vaccine delivery: recent progress and advances. Biomaterials. 2022;280: 121303.PubMedCrossRef
100.
go back to reference Xu J, Wang H, Xu L, Chao Y, Wang C, Han X, Dong Z, Chang H, Peng R, Cheng Y, Liu Z. Nanovaccine based on a protein-delivering dendrimer for effective antigen cross-presentation and cancer immunotherapy. Biomaterials. 2019;207:1–9.PubMedCrossRef Xu J, Wang H, Xu L, Chao Y, Wang C, Han X, Dong Z, Chang H, Peng R, Cheng Y, Liu Z. Nanovaccine based on a protein-delivering dendrimer for effective antigen cross-presentation and cancer immunotherapy. Biomaterials. 2019;207:1–9.PubMedCrossRef
101.
go back to reference Tong W, Maira M, Roychoudhury R, Galan A, Brahimi F, Gilbert M, Cunningham AM, Josephy S, Pirvulescu I, Moffett S, Saragovi HU. Vaccination with tumor-ganglioside glycomimetics activates a selective immunity that affords cancer therapy. Cell Chem Biol. 2019;26(1013–1026):e1014. Tong W, Maira M, Roychoudhury R, Galan A, Brahimi F, Gilbert M, Cunningham AM, Josephy S, Pirvulescu I, Moffett S, Saragovi HU. Vaccination with tumor-ganglioside glycomimetics activates a selective immunity that affords cancer therapy. Cell Chem Biol. 2019;26(1013–1026):e1014.
102.
go back to reference Zhang P, Li Z, Cao W, Tang J, Xia Y, Peng L, Ma J. A PD-L1 antibody-conjugated PAMAM dendrimer nanosystem for simultaneously inhibiting glycolysis and promoting immune response in fighting breast cancer. Adv Mater. 2023;35: e2305215.PubMedCrossRef Zhang P, Li Z, Cao W, Tang J, Xia Y, Peng L, Ma J. A PD-L1 antibody-conjugated PAMAM dendrimer nanosystem for simultaneously inhibiting glycolysis and promoting immune response in fighting breast cancer. Adv Mater. 2023;35: e2305215.PubMedCrossRef
103.
go back to reference Cheng L, Yu J, Hao T, Wang W, Wei M, Li G. Advances in polymeric micelles: responsive and targeting approaches for cancer immunotherapy in the tumor microenvironment. Pharmaceutics. 2023;15(11):2622.PubMedPubMedCentralCrossRef Cheng L, Yu J, Hao T, Wang W, Wei M, Li G. Advances in polymeric micelles: responsive and targeting approaches for cancer immunotherapy in the tumor microenvironment. Pharmaceutics. 2023;15(11):2622.PubMedPubMedCentralCrossRef
104.
go back to reference Ghani L, Kim S, Ehsan M, Lan B, Poulsen IH, Dev C, Katsube S, Byrne B, Guan L, Loland CJ, Liu X, Im W, Chae PS. Melamine-cored glucosides for membrane protein solubilization and stabilization: importance of water-mediated intermolecular hydrogen bonding in detergent performance. Chem Sci. 2023;14:13014–24.PubMedPubMedCentralCrossRef Ghani L, Kim S, Ehsan M, Lan B, Poulsen IH, Dev C, Katsube S, Byrne B, Guan L, Loland CJ, Liu X, Im W, Chae PS. Melamine-cored glucosides for membrane protein solubilization and stabilization: importance of water-mediated intermolecular hydrogen bonding in detergent performance. Chem Sci. 2023;14:13014–24.PubMedPubMedCentralCrossRef
105.
go back to reference Yang J, Shang J, Yang L, Wei D, Wang X, Deng Q, Zhong Z, Ye Y, Zhou M. Nanotechnology-based drug delivery systems for Honokiol: enhancing therapeutic potential and overcoming limitations. Int J Nanomedicine. 2023;18:6639–65.PubMedPubMedCentralCrossRef Yang J, Shang J, Yang L, Wei D, Wang X, Deng Q, Zhong Z, Ye Y, Zhou M. Nanotechnology-based drug delivery systems for Honokiol: enhancing therapeutic potential and overcoming limitations. Int J Nanomedicine. 2023;18:6639–65.PubMedPubMedCentralCrossRef
106.
go back to reference Elsabahy M, Song Y, Eissa NG, Khan S, Hamad MA, Wooley KL. Morphologic design of sugar-based polymer nanoparticles for delivery of antidiabetic peptides. J Control Release. 2021;334:1–10.PubMedCrossRef Elsabahy M, Song Y, Eissa NG, Khan S, Hamad MA, Wooley KL. Morphologic design of sugar-based polymer nanoparticles for delivery of antidiabetic peptides. J Control Release. 2021;334:1–10.PubMedCrossRef
107.
go back to reference Kaur J, Mishra V, Singh SK, Gulati M, Kapoor B, Chellappan DK, Gupta G, Dureja H, Anand K, Dua K, Khatik GL, Gowthamarajan K. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: Breakthroughs and bottlenecks. J Control Release. 2021;334:64–95.PubMedCrossRef Kaur J, Mishra V, Singh SK, Gulati M, Kapoor B, Chellappan DK, Gupta G, Dureja H, Anand K, Dua K, Khatik GL, Gowthamarajan K. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: Breakthroughs and bottlenecks. J Control Release. 2021;334:64–95.PubMedCrossRef
108.
go back to reference Li Y, Wang J, Li Y, Luo J, Liu F, Chen T, Ji Y, Yang H, Wang Z, Zhao Y. Attenuating uncontrolled inflammation by radical trapping chiral polymer micelles. ACS Nano. 2023;17:12127–39.PubMedCrossRef Li Y, Wang J, Li Y, Luo J, Liu F, Chen T, Ji Y, Yang H, Wang Z, Zhao Y. Attenuating uncontrolled inflammation by radical trapping chiral polymer micelles. ACS Nano. 2023;17:12127–39.PubMedCrossRef
109.
go back to reference Ren J, Cao Y, Li L, Wang X, Lu H, Yang J, Wang S. Self-assembled polymeric micelle as a novel mRNA delivery carrier. J Control Release. 2021;338:537–47.PubMedPubMedCentralCrossRef Ren J, Cao Y, Li L, Wang X, Lu H, Yang J, Wang S. Self-assembled polymeric micelle as a novel mRNA delivery carrier. J Control Release. 2021;338:537–47.PubMedPubMedCentralCrossRef
110.
go back to reference Ren H, Li J, Liu G, Sun Y, Yang X, Jiang Z, Zhang J, Lovell JF, Zhang Y. Anticancer vaccination with immunogenic micelles that capture and release pristine CD8(+) T-cell epitopes and adjuvants. ACS Appl Mater Interfaces. 2022;14:2510–21.PubMedCrossRef Ren H, Li J, Liu G, Sun Y, Yang X, Jiang Z, Zhang J, Lovell JF, Zhang Y. Anticancer vaccination with immunogenic micelles that capture and release pristine CD8(+) T-cell epitopes and adjuvants. ACS Appl Mater Interfaces. 2022;14:2510–21.PubMedCrossRef
111.
go back to reference Yaghmur A, Østergaard J, Mu H. Lipid nanoparticles for targeted delivery of anticancer therapeutics: recent advances in development of siRNA and lipoprotein-mimicking nanocarriers. Adv Drug Deliv Rev. 2023;203:115136.PubMedCrossRef Yaghmur A, Østergaard J, Mu H. Lipid nanoparticles for targeted delivery of anticancer therapeutics: recent advances in development of siRNA and lipoprotein-mimicking nanocarriers. Adv Drug Deliv Rev. 2023;203:115136.PubMedCrossRef
112.
go back to reference Chan S, Davidson N, Juozaityte E, Erdkamp F, Pluzanska A, Azarnia N, Lee LW. Phase III trial of liposomal doxorubicin and cyclophosphamide compared with epirubicin and cyclophosphamide as first-line therapy for metastatic breast cancer. Ann Oncol. 2004;15:1527–34.PubMedCrossRef Chan S, Davidson N, Juozaityte E, Erdkamp F, Pluzanska A, Azarnia N, Lee LW. Phase III trial of liposomal doxorubicin and cyclophosphamide compared with epirubicin and cyclophosphamide as first-line therapy for metastatic breast cancer. Ann Oncol. 2004;15:1527–34.PubMedCrossRef
113.
go back to reference Lancet JE, Uy GL, Newell LF, Lin TL, Ritchie EK, Stuart RK, Strickland SA, Hogge D, Solomon SR, Bixby D, Kolitz JE, Schiller GJ, Wieduwilt MJ, Ryan DH, Faderl S, Chang Y-L, Cortes J. Five-year final results of a phase III study of CPX-351 versus 7+3 in older adults with newly diagnosed high-risk/secondary. AML. 2020;38:7510–7510. Lancet JE, Uy GL, Newell LF, Lin TL, Ritchie EK, Stuart RK, Strickland SA, Hogge D, Solomon SR, Bixby D, Kolitz JE, Schiller GJ, Wieduwilt MJ, Ryan DH, Faderl S, Chang Y-L, Cortes J. Five-year final results of a phase III study of CPX-351 versus 7+3 in older adults with newly diagnosed high-risk/secondary. AML. 2020;38:7510–7510.
114.
go back to reference Li M, Wang H, Tian L, Pang Z, Yang Q, Huang T, Fan J, Song L, Tong Y, Fan H. COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduct Target Ther. 2022;7:146.PubMedPubMedCentralCrossRef Li M, Wang H, Tian L, Pang Z, Yang Q, Huang T, Fan J, Song L, Tong Y, Fan H. COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduct Target Ther. 2022;7:146.PubMedPubMedCentralCrossRef
115.
go back to reference Dreno B, Thompson JF, Smithers BM, Santinami M, Jouary T, Gutzmer R, Levchenko E, Rutkowski P, Grob JJ, Korovin S, Drucis K, Grange F, Machet L, Hersey P, Krajsova I, Testori A, Conry R, Guillot B, Kruit WHJ, Kirkwood JM. MAGE-A3 immunotherapeutic as adjuvant therapy for patients with resected, MAGE-A3-positive, stage III melanoma (DERMA): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2018;19:916–29.PubMedCrossRef Dreno B, Thompson JF, Smithers BM, Santinami M, Jouary T, Gutzmer R, Levchenko E, Rutkowski P, Grob JJ, Korovin S, Drucis K, Grange F, Machet L, Hersey P, Krajsova I, Testori A, Conry R, Guillot B, Kruit WHJ, Kirkwood JM. MAGE-A3 immunotherapeutic as adjuvant therapy for patients with resected, MAGE-A3-positive, stage III melanoma (DERMA): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2018;19:916–29.PubMedCrossRef
116.
go back to reference Arabi A, Aria S, Maniaci B, Mann K, Martinson H, Kullberg M. Enhancing T Cell and antibody response in Mucin-1 transgenic mice through co-delivery of tumor-associated Mucin-1 antigen and TLR agonists in C3-liposomes. Pharmaceutics. 2023;15(12):2774.PubMedPubMedCentralCrossRef Arabi A, Aria S, Maniaci B, Mann K, Martinson H, Kullberg M. Enhancing T Cell and antibody response in Mucin-1 transgenic mice through co-delivery of tumor-associated Mucin-1 antigen and TLR agonists in C3-liposomes. Pharmaceutics. 2023;15(12):2774.PubMedPubMedCentralCrossRef
117.
go back to reference Pradyuth KS, Salunkhe SA, Singh AK, Chitkara D, Mittal A. Belinostat loaded lipid-polymer hybrid nanoparticulate delivery system for breast cancer: improved pharmacokinetics and biodistribution in a tumor model. J Mater Chem B. 2023;11:10859–72.PubMedCrossRef Pradyuth KS, Salunkhe SA, Singh AK, Chitkara D, Mittal A. Belinostat loaded lipid-polymer hybrid nanoparticulate delivery system for breast cancer: improved pharmacokinetics and biodistribution in a tumor model. J Mater Chem B. 2023;11:10859–72.PubMedCrossRef
118.
go back to reference Andretto V, Repellin M, Pujol M, Almouazen E, Sidi-Boumedine J, Granjon T, Zhang H, Remaut K, Jordheim LP, Briancon S, Keil IS, Vascotto F, Walzer KC, Sahin U, Haas H, Kryza D, Lollo G. Hybrid core-shell particles for mRNA systemic delivery. J Control Release. 2023;353:1037–49.PubMedCrossRef Andretto V, Repellin M, Pujol M, Almouazen E, Sidi-Boumedine J, Granjon T, Zhang H, Remaut K, Jordheim LP, Briancon S, Keil IS, Vascotto F, Walzer KC, Sahin U, Haas H, Kryza D, Lollo G. Hybrid core-shell particles for mRNA systemic delivery. J Control Release. 2023;353:1037–49.PubMedCrossRef
119.
go back to reference Rajana N, Mounika A, Chary PS, Bhavana V, Urati A, Khatri D, Singh SB, Mehra NK. Multifunctional hybrid nanoparticles in diagnosis and therapy of breast cancer. J Control Release. 2022;352:1024–47.PubMedCrossRef Rajana N, Mounika A, Chary PS, Bhavana V, Urati A, Khatri D, Singh SB, Mehra NK. Multifunctional hybrid nanoparticles in diagnosis and therapy of breast cancer. J Control Release. 2022;352:1024–47.PubMedCrossRef
120.
go back to reference Gajbhiye KR, Salve R, Narwade M, Sheikh A, Kesharwani P, Gajbhiye V. Lipid polymer hybrid nanoparticles: a custom-tailored next-generation approach for cancer therapeutics. Mol Cancer. 2023;22:160.PubMedPubMedCentralCrossRef Gajbhiye KR, Salve R, Narwade M, Sheikh A, Kesharwani P, Gajbhiye V. Lipid polymer hybrid nanoparticles: a custom-tailored next-generation approach for cancer therapeutics. Mol Cancer. 2023;22:160.PubMedPubMedCentralCrossRef
121.
go back to reference Liu C, Chu X, Yan M, Qi J, Liu H, Gao F, Gao R, Ma G, Ma Y. Encapsulation of Poly I: C and the natural phosphodiester CpG ODN enhanced the efficacy of a hyaluronic acid-modified cationic lipid-PLGA hybrid nanoparticle vaccine in TC-1-grafted tumors. Int J Pharm. 2018;553:327–37.PubMedCrossRef Liu C, Chu X, Yan M, Qi J, Liu H, Gao F, Gao R, Ma G, Ma Y. Encapsulation of Poly I: C and the natural phosphodiester CpG ODN enhanced the efficacy of a hyaluronic acid-modified cationic lipid-PLGA hybrid nanoparticle vaccine in TC-1-grafted tumors. Int J Pharm. 2018;553:327–37.PubMedCrossRef
122.
go back to reference Shao Y, Luo W, Guo Q, Li X, Zhang Q, Li J. In vitro and in vivo effect of hyaluronic acid modified, doxorubicin and gallic acid co-delivered lipid-polymeric hybrid nano-system for leukemia therapy. Drug Des Devel Ther. 2019;13:2043–55.PubMedPubMedCentralCrossRef Shao Y, Luo W, Guo Q, Li X, Zhang Q, Li J. In vitro and in vivo effect of hyaluronic acid modified, doxorubicin and gallic acid co-delivered lipid-polymeric hybrid nano-system for leukemia therapy. Drug Des Devel Ther. 2019;13:2043–55.PubMedPubMedCentralCrossRef
123.
go back to reference Zhu D, Hu C, Fan F, Qin Y, Huang C, Zhang Z, Lu L, Wang H, Sun H, Leng X, Wang C, Kong D, Zhang L. Co-delivery of antigen and dual agonists by programmed mannose-targeted cationic lipid-hybrid polymersomes for enhanced vaccination. Biomaterials. 2019;206:25–40.PubMedCrossRef Zhu D, Hu C, Fan F, Qin Y, Huang C, Zhang Z, Lu L, Wang H, Sun H, Leng X, Wang C, Kong D, Zhang L. Co-delivery of antigen and dual agonists by programmed mannose-targeted cationic lipid-hybrid polymersomes for enhanced vaccination. Biomaterials. 2019;206:25–40.PubMedCrossRef
124.
go back to reference Soni KS, Desale SS, Bronich TK. Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation. J Control Release. 2016;240:109–26.PubMedCrossRef Soni KS, Desale SS, Bronich TK. Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation. J Control Release. 2016;240:109–26.PubMedCrossRef
125.
go back to reference Muraoka D, Harada N, Shiku H, Akiyoshi K. Self-assembled polysaccharide nanogel delivery system for overcoming tumor immune resistance. J Control Release. 2022;347:175–82.PubMedCrossRef Muraoka D, Harada N, Shiku H, Akiyoshi K. Self-assembled polysaccharide nanogel delivery system for overcoming tumor immune resistance. J Control Release. 2022;347:175–82.PubMedCrossRef
127.
go back to reference Hu Y, Gao S, Lu H, Tan S, Chen F, Ke Y, Ying JY. A self-immolative DNA nanogel vaccine toward cancer immunotherapy. Nano Lett. 2023;23:9778–87.PubMedCrossRef Hu Y, Gao S, Lu H, Tan S, Chen F, Ke Y, Ying JY. A self-immolative DNA nanogel vaccine toward cancer immunotherapy. Nano Lett. 2023;23:9778–87.PubMedCrossRef
128.
go back to reference Ishikawa T, Kageyama S, Miyahara Y, Okayama T, Kokura S, Wang L, Sato E, Yagita H, Itoh Y, Shiku H. Safety and antibody immune response of CHP-NY-ESO-1 vaccine combined with poly-ICLC in advanced or recurrent esophageal cancer patients. Cancer Immunol Immunother. 2021;70:3081–91.PubMedPubMedCentralCrossRef Ishikawa T, Kageyama S, Miyahara Y, Okayama T, Kokura S, Wang L, Sato E, Yagita H, Itoh Y, Shiku H. Safety and antibody immune response of CHP-NY-ESO-1 vaccine combined with poly-ICLC in advanced or recurrent esophageal cancer patients. Cancer Immunol Immunother. 2021;70:3081–91.PubMedPubMedCentralCrossRef
129.
go back to reference Pang Z, Lu MM, Zhang Y, Gao Y, Bai JJ, Gu JY, Xie L, Wu WZ. Neoantigen-targeted TCR-engineered T cell immunotherapy: current advances and challenges. Biomark Res. 2023;11:104.PubMedPubMedCentralCrossRef Pang Z, Lu MM, Zhang Y, Gao Y, Bai JJ, Gu JY, Xie L, Wu WZ. Neoantigen-targeted TCR-engineered T cell immunotherapy: current advances and challenges. Biomark Res. 2023;11:104.PubMedPubMedCentralCrossRef
132.
go back to reference Huang R, Zhou P, Chen B, Zhu Y, Chen X, Min Y. Stimuli-responsive nanoadjuvant rejuvenates robust immune responses to sensitize cancer immunotherapy. ACS Nano. 2023;17:21455–69.PubMedCrossRef Huang R, Zhou P, Chen B, Zhu Y, Chen X, Min Y. Stimuli-responsive nanoadjuvant rejuvenates robust immune responses to sensitize cancer immunotherapy. ACS Nano. 2023;17:21455–69.PubMedCrossRef
133.
go back to reference Liang Z, Cui X, Yang L, Hu Q, Li D, Zhang X, Han L, Shi S, Shen Y, Zhao W, Ju Q, Deng X, Wu Y, Sheng W. Co-assembled nanocomplexes of peptide neoantigen Adpgk and Toll-like receptor 9 agonist CpG ODN for efficient colorectal cancer immunotherapy. Int J Pharm. 2021;608: 121091.PubMedCrossRef Liang Z, Cui X, Yang L, Hu Q, Li D, Zhang X, Han L, Shi S, Shen Y, Zhao W, Ju Q, Deng X, Wu Y, Sheng W. Co-assembled nanocomplexes of peptide neoantigen Adpgk and Toll-like receptor 9 agonist CpG ODN for efficient colorectal cancer immunotherapy. Int J Pharm. 2021;608: 121091.PubMedCrossRef
135.
go back to reference Richard G, Princiotta MF, Bridon D, Martin WD, Steinberg GD, De Groot AS. Neoantigen-based personalized cancer vaccines: the emergence of precision cancer immunotherapy. Expert Rev Vaccines. 2022;21:173–84.PubMedCrossRef Richard G, Princiotta MF, Bridon D, Martin WD, Steinberg GD, De Groot AS. Neoantigen-based personalized cancer vaccines: the emergence of precision cancer immunotherapy. Expert Rev Vaccines. 2022;21:173–84.PubMedCrossRef
136.
go back to reference Duan Z, Yang D, Yuan P, Dai X, Chen G, Wu D. Advances, opportunities and challenges in developing therapeutic cancer vaccines. Crit Rev Oncol Hematol. 2023;193: 104198.PubMedCrossRef Duan Z, Yang D, Yuan P, Dai X, Chen G, Wu D. Advances, opportunities and challenges in developing therapeutic cancer vaccines. Crit Rev Oncol Hematol. 2023;193: 104198.PubMedCrossRef
137.
go back to reference Wang F, Xie M, Huang Y, Liu Y, Liu X, Zhu L, Zhu X, Guo Y, Zhang C. In situ vaccination with an injectable nucleic acid hydrogel for synergistic cancer immunotherapy. Angew Chem Int Ed. 2024;63(4):e202315282.CrossRef Wang F, Xie M, Huang Y, Liu Y, Liu X, Zhu L, Zhu X, Guo Y, Zhang C. In situ vaccination with an injectable nucleic acid hydrogel for synergistic cancer immunotherapy. Angew Chem Int Ed. 2024;63(4):e202315282.CrossRef
138.
139.
go back to reference Zhang H, Xia X. RNA cancer vaccines: developing mRNA nanovaccine with self-adjuvant property for cancer immunotherapy. Hum Vaccin Immunother. 2021;17:2995–8.PubMedPubMedCentralCrossRef Zhang H, Xia X. RNA cancer vaccines: developing mRNA nanovaccine with self-adjuvant property for cancer immunotherapy. Hum Vaccin Immunother. 2021;17:2995–8.PubMedPubMedCentralCrossRef
140.
go back to reference Gómez-Aguado I, Rodríguez-Castejón J, Vicente-Pascual M, Rodríguez-Gascón A, Solinís MÁ, del Pozo-Rodríguez A. Nanomedicines to deliver mRNA: state of the art and future perspectives. Nanomaterials. 2020;10(2):364.PubMedPubMedCentralCrossRef Gómez-Aguado I, Rodríguez-Castejón J, Vicente-Pascual M, Rodríguez-Gascón A, Solinís MÁ, del Pozo-Rodríguez A. Nanomedicines to deliver mRNA: state of the art and future perspectives. Nanomaterials. 2020;10(2):364.PubMedPubMedCentralCrossRef
141.
go back to reference Rahman MM, Zhou N, Huang J. An overview on the development of mRNA-based vaccines and their formulation strategies for improved antigen expression in vivo. Vaccines. 2021;9(3):244.PubMedPubMedCentralCrossRef Rahman MM, Zhou N, Huang J. An overview on the development of mRNA-based vaccines and their formulation strategies for improved antigen expression in vivo. Vaccines. 2021;9(3):244.PubMedPubMedCentralCrossRef
142.
go back to reference Yoo YJ, Lee CH, Park SH, Lim YT. Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. J Control Release. 2022;343:564–83.PubMedCrossRef Yoo YJ, Lee CH, Park SH, Lim YT. Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. J Control Release. 2022;343:564–83.PubMedCrossRef
143.
go back to reference Zhang Y, Liu F, Tan L, Li X, Dai Z, Cheng Q, Liu J, Wang Y, Huang L, Wang L, Wang Z. LncRNA-edited biomimetic nanovaccines combined with anti-TIM-3 for augmented immune checkpoint blockade immunotherapy. J Control Release. 2023;361:671–80.PubMedCrossRef Zhang Y, Liu F, Tan L, Li X, Dai Z, Cheng Q, Liu J, Wang Y, Huang L, Wang L, Wang Z. LncRNA-edited biomimetic nanovaccines combined with anti-TIM-3 for augmented immune checkpoint blockade immunotherapy. J Control Release. 2023;361:671–80.PubMedCrossRef
144.
go back to reference Nguyen TL, Yin Y, Choi Y, Jeong JH, Kim J. Enhanced cancer DNA vaccine via direct transfection to host dendritic cells recruited in injectable scaffolds. ACS Nano. 2020;14:11623–36.PubMedCrossRef Nguyen TL, Yin Y, Choi Y, Jeong JH, Kim J. Enhanced cancer DNA vaccine via direct transfection to host dendritic cells recruited in injectable scaffolds. ACS Nano. 2020;14:11623–36.PubMedCrossRef
146.
go back to reference González-Ballesteros N, Maietta I, Rey-Méndez R, Rodríguez-Argüelles MC, Lastra-Valdor M, Cavazza A, Grimaldi M, Bigi F, Simón-Vázquez R. Gold nanoparticles synthesized by an aqueous extract of codium tomentosum as potential antitumoral enhancers of gemcitabine. Mar Drugs. 2022;21(1):20.PubMedPubMedCentralCrossRef González-Ballesteros N, Maietta I, Rey-Méndez R, Rodríguez-Argüelles MC, Lastra-Valdor M, Cavazza A, Grimaldi M, Bigi F, Simón-Vázquez R. Gold nanoparticles synthesized by an aqueous extract of codium tomentosum as potential antitumoral enhancers of gemcitabine. Mar Drugs. 2022;21(1):20.PubMedPubMedCentralCrossRef
147.
go back to reference Huang X, Sheng B, Tian H, Chen Q, Yang Y, Bui B, Pi J, Cai H, Chen S, Zhang J, Chen W, Zhou H, Sun P. Real-time SERS monitoring anticancer drug release along with SERS/MR imaging for pH-sensitive chemo-phototherapy. Acta Pharm Sin B. 2023;13:1303–17.PubMedCrossRef Huang X, Sheng B, Tian H, Chen Q, Yang Y, Bui B, Pi J, Cai H, Chen S, Zhang J, Chen W, Zhou H, Sun P. Real-time SERS monitoring anticancer drug release along with SERS/MR imaging for pH-sensitive chemo-phototherapy. Acta Pharm Sin B. 2023;13:1303–17.PubMedCrossRef
148.
go back to reference Wang P, Liang Z, Li Z, Wang D, Ma Q. Plasmonic nanocavity-modulated electrochemiluminescence sensor for gastric cancer exosomal miRNA detection. Biosens Bioelectron. 2023;245: 115847.PubMedCrossRef Wang P, Liang Z, Li Z, Wang D, Ma Q. Plasmonic nanocavity-modulated electrochemiluminescence sensor for gastric cancer exosomal miRNA detection. Biosens Bioelectron. 2023;245: 115847.PubMedCrossRef
149.
go back to reference Bai X, Wang Y, Song Z, Feng Y, Chen Y, Zhang D, Feng L. The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment. Int J Mol Sci. 2020;21(7):2480.PubMedPubMedCentralCrossRef Bai X, Wang Y, Song Z, Feng Y, Chen Y, Zhang D, Feng L. The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment. Int J Mol Sci. 2020;21(7):2480.PubMedPubMedCentralCrossRef
150.
go back to reference Gonzalez-Pastor R, Hernandez Y, Gimeno M, de Martino A, Man YKS, Hallden G, Quintanilla M, de la Fuente JM, Martin-Duque P. Coating an adenovirus with functionalized gold nanoparticles favors uptake, intracellular trafficking and anti-cancer therapeutic efficacy. Acta Biomater. 2021;134:593–604.PubMedCrossRef Gonzalez-Pastor R, Hernandez Y, Gimeno M, de Martino A, Man YKS, Hallden G, Quintanilla M, de la Fuente JM, Martin-Duque P. Coating an adenovirus with functionalized gold nanoparticles favors uptake, intracellular trafficking and anti-cancer therapeutic efficacy. Acta Biomater. 2021;134:593–604.PubMedCrossRef
151.
go back to reference Liu XY, Wang JQ, Ashby CR Jr, Zeng L, Fan YF, Chen ZS. Gold nanoparticles: synthesis, physiochemical properties and therapeutic applications in cancer. Drug Discov Today. 2021;26:1284–92.PubMedCrossRef Liu XY, Wang JQ, Ashby CR Jr, Zeng L, Fan YF, Chen ZS. Gold nanoparticles: synthesis, physiochemical properties and therapeutic applications in cancer. Drug Discov Today. 2021;26:1284–92.PubMedCrossRef
152.
go back to reference Perzanowska O, Majewski M, Strenkowska M, Glowala P, Czarnocki-Cieciura M, Mazur M, Kowalska J, Jemielity J. Nucleotide-decorated AuNPs as probes for nucleotide-binding proteins. Sci Rep. 2021;11:15741.PubMedPubMedCentralCrossRef Perzanowska O, Majewski M, Strenkowska M, Glowala P, Czarnocki-Cieciura M, Mazur M, Kowalska J, Jemielity J. Nucleotide-decorated AuNPs as probes for nucleotide-binding proteins. Sci Rep. 2021;11:15741.PubMedPubMedCentralCrossRef
153.
go back to reference Cai Y, Karmakar B, Babalghith AO, Batiha GE, AlSalem HS, El-Kott AF, Shati AA, Alfaifi MY, Elbehairi SEI. Decorated Au NPs on lignin coated magnetic nanoparticles: Investigation of its catalytic application in the reduction of aromatic nitro compounds and its performance against human lung cancer. Int J Biol Macromol. 2022;223:1067–82.PubMedCrossRef Cai Y, Karmakar B, Babalghith AO, Batiha GE, AlSalem HS, El-Kott AF, Shati AA, Alfaifi MY, Elbehairi SEI. Decorated Au NPs on lignin coated magnetic nanoparticles: Investigation of its catalytic application in the reduction of aromatic nitro compounds and its performance against human lung cancer. Int J Biol Macromol. 2022;223:1067–82.PubMedCrossRef
154.
go back to reference Zhang D, Liu P, Qin X, Cheng L, Wang F, Xiong X, Huang C, Zhang Z. HSA-templated self-generation of gold nanoparticles for tumor vaccine delivery and combinational therapy. J Mater Chem B. 2022;10:8750–9.PubMedCrossRef Zhang D, Liu P, Qin X, Cheng L, Wang F, Xiong X, Huang C, Zhang Z. HSA-templated self-generation of gold nanoparticles for tumor vaccine delivery and combinational therapy. J Mater Chem B. 2022;10:8750–9.PubMedCrossRef
155.
156.
go back to reference Darroudi M, Gholami M, Rezayi M, Khazaei M. An overview and bibliometric analysis on the colorectal cancer therapy by magnetic functionalized nanoparticles for the responsive and targeted drug delivery. J Nanobiotechnology. 2021;19:399.PubMedPubMedCentralCrossRef Darroudi M, Gholami M, Rezayi M, Khazaei M. An overview and bibliometric analysis on the colorectal cancer therapy by magnetic functionalized nanoparticles for the responsive and targeted drug delivery. J Nanobiotechnology. 2021;19:399.PubMedPubMedCentralCrossRef
157.
go back to reference Korakaki E, Simos YV, Karouta N, Spyrou K, Zygouri P, Gournis DP, Tsamis KI, Stamatis H, Dounousi E, Vezyraki P, Peschos D. Effect of highly hydrophilic superparamagnetic iron oxide nanoparticles on macrophage function and survival. J Funct Biomat. 2023;14(10):514.CrossRef Korakaki E, Simos YV, Karouta N, Spyrou K, Zygouri P, Gournis DP, Tsamis KI, Stamatis H, Dounousi E, Vezyraki P, Peschos D. Effect of highly hydrophilic superparamagnetic iron oxide nanoparticles on macrophage function and survival. J Funct Biomat. 2023;14(10):514.CrossRef
158.
go back to reference Peng Y, Li Y, Li L, Xie M, Wang Y, Butch CJ. Coating influence on inner shell water exchange: An underinvestigated major contributor to SPIONs relaxation properties. Nanomedicine. 2023;54: 102713.PubMedCrossRef Peng Y, Li Y, Li L, Xie M, Wang Y, Butch CJ. Coating influence on inner shell water exchange: An underinvestigated major contributor to SPIONs relaxation properties. Nanomedicine. 2023;54: 102713.PubMedCrossRef
159.
go back to reference Pfister F, Dorrie J, Schaft N, Buchele V, Unterweger H, Carnell LR, Schreier P, Stein R, Kubankova M, Guck J, Hackstein H, Alexiou C, Janko C. Human T cells loaded with superparamagnetic iron oxide nanoparticles retain antigen-specific TCR functionality. Front Immunol. 2023;14:1223695.PubMedPubMedCentralCrossRef Pfister F, Dorrie J, Schaft N, Buchele V, Unterweger H, Carnell LR, Schreier P, Stein R, Kubankova M, Guck J, Hackstein H, Alexiou C, Janko C. Human T cells loaded with superparamagnetic iron oxide nanoparticles retain antigen-specific TCR functionality. Front Immunol. 2023;14:1223695.PubMedPubMedCentralCrossRef
160.
go back to reference Sell M, Lopes AR, Escudeiro M, Esteves B, Monteiro AR, Trindade T, Cruz-Lopes L. Application of nanoparticles in cancer treatment: a concise review. Nanomaterials. 2023;13(21):2887.PubMedPubMedCentralCrossRef Sell M, Lopes AR, Escudeiro M, Esteves B, Monteiro AR, Trindade T, Cruz-Lopes L. Application of nanoparticles in cancer treatment: a concise review. Nanomaterials. 2023;13(21):2887.PubMedPubMedCentralCrossRef
161.
go back to reference Verimli N, Gorali SI, Abisoglu B, Altan CL, Sucu BO, Karatas E, Tulek A, Bayraktaroglu C, Beker MC, Erdem SS. Development of light and pH-dual responsive self-quenching theranostic SPION to make EGFR overexpressing micro tumors glow and destroy. J Photochem Photobiol B. 2023;248: 112797.PubMedCrossRef Verimli N, Gorali SI, Abisoglu B, Altan CL, Sucu BO, Karatas E, Tulek A, Bayraktaroglu C, Beker MC, Erdem SS. Development of light and pH-dual responsive self-quenching theranostic SPION to make EGFR overexpressing micro tumors glow and destroy. J Photochem Photobiol B. 2023;248: 112797.PubMedCrossRef
162.
go back to reference Zschiesche L, Janko C, Friedrich B, Frey B, Band J, Lyer S, Alexiou C, Unterweger H. Biocompatibility of Dextran-Coated 30 nm and 80 nm Sized SPIONs towards monocytes, dendritic cells and lymphocytes. Nanomaterials. 2022;13(1):14.PubMedPubMedCentralCrossRef Zschiesche L, Janko C, Friedrich B, Frey B, Band J, Lyer S, Alexiou C, Unterweger H. Biocompatibility of Dextran-Coated 30 nm and 80 nm Sized SPIONs towards monocytes, dendritic cells and lymphocytes. Nanomaterials. 2022;13(1):14.PubMedPubMedCentralCrossRef
163.
go back to reference Zhao Y, Zhao X, Cheng Y, Guo X, Yuan W. Iron oxide nanoparticles-based vaccine delivery for cancer treatment. Mol Pharm. 2018;15:1791–9.PubMedCrossRef Zhao Y, Zhao X, Cheng Y, Guo X, Yuan W. Iron oxide nanoparticles-based vaccine delivery for cancer treatment. Mol Pharm. 2018;15:1791–9.PubMedCrossRef
164.
go back to reference Sanz-Ortega L, Portilla Y, Perez-Yague S, Barber DF. Magnetic targeting of adoptively transferred tumour-specific nanoparticle-loaded CD8(+) T cells does not improve their tumour infiltration in a mouse model of cancer but promotes the retention of these cells in tumour-draining lymph nodes. J Nanobiotechnology. 2019;17:87.PubMedPubMedCentralCrossRef Sanz-Ortega L, Portilla Y, Perez-Yague S, Barber DF. Magnetic targeting of adoptively transferred tumour-specific nanoparticle-loaded CD8(+) T cells does not improve their tumour infiltration in a mouse model of cancer but promotes the retention of these cells in tumour-draining lymph nodes. J Nanobiotechnology. 2019;17:87.PubMedPubMedCentralCrossRef
165.
go back to reference Dias AM, Courteau A, Bellaye PS, Kohli E, Oudot A, Doulain PE, Petitot C, Walker PM, Decréau R, Collin B. Superparamagnetic iron oxide nanoparticles for immunotherapy of cancers through macrophages and magnetic hyperthermia. Pharmaceutics. 2022;14(11):2388.PubMedPubMedCentralCrossRef Dias AM, Courteau A, Bellaye PS, Kohli E, Oudot A, Doulain PE, Petitot C, Walker PM, Decréau R, Collin B. Superparamagnetic iron oxide nanoparticles for immunotherapy of cancers through macrophages and magnetic hyperthermia. Pharmaceutics. 2022;14(11):2388.PubMedPubMedCentralCrossRef
166.
go back to reference Fathy MM, Yassin FM, Elshemey WM, Fahmy HM. Insight on the dependence of the drug delivery applications of mesoporous silica nanoparticles on their physical properties. SILICON. 2022;15:61–70.CrossRef Fathy MM, Yassin FM, Elshemey WM, Fahmy HM. Insight on the dependence of the drug delivery applications of mesoporous silica nanoparticles on their physical properties. SILICON. 2022;15:61–70.CrossRef
167.
go back to reference Álvarez E, González B, Lozano D, Doadrio AL, Colilla M, Izquierdo-Barba I. Nanoantibiotics based in mesoporous silica nanoparticles: new formulations for bacterial infection treatment. Pharmaceutics. 2021;13(12):2033.PubMedPubMedCentralCrossRef Álvarez E, González B, Lozano D, Doadrio AL, Colilla M, Izquierdo-Barba I. Nanoantibiotics based in mesoporous silica nanoparticles: new formulations for bacterial infection treatment. Pharmaceutics. 2021;13(12):2033.PubMedPubMedCentralCrossRef
168.
go back to reference Huang Y, Du Z, Bao G, Fang G, Cappadona M, McClements L, Tuch BE, Lu H, Xu X. Smart drug-delivery system of upconversion nanoparticles coated with mesoporous silica for controlled release. Pharmaceutics. 2022;15(1):89.PubMedPubMedCentralCrossRef Huang Y, Du Z, Bao G, Fang G, Cappadona M, McClements L, Tuch BE, Lu H, Xu X. Smart drug-delivery system of upconversion nanoparticles coated with mesoporous silica for controlled release. Pharmaceutics. 2022;15(1):89.PubMedPubMedCentralCrossRef
169.
go back to reference Chang X, Zhu Z, Weng L, Tang X, Liu T, Zhu M, Liu J, Tang W, Zhang Y, Chen X. Selective manipulation of the mitochondria oxidative stress in different cells using intelligent mesoporous silica nanoparticles to activate on-demand immunotherapy for cancer treatment. Small. 2024;20(16):2307310.CrossRef Chang X, Zhu Z, Weng L, Tang X, Liu T, Zhu M, Liu J, Tang W, Zhang Y, Chen X. Selective manipulation of the mitochondria oxidative stress in different cells using intelligent mesoporous silica nanoparticles to activate on-demand immunotherapy for cancer treatment. Small. 2024;20(16):2307310.CrossRef
170.
171.
go back to reference Lee JY, Kim MK, Nguyen TL, Kim J. Hollow mesoporous silica nanoparticles with extra-large mesopores for enhanced cancer vaccine. ACS Appl Mater Interfaces. 2020;12:34658–66.PubMedCrossRef Lee JY, Kim MK, Nguyen TL, Kim J. Hollow mesoporous silica nanoparticles with extra-large mesopores for enhanced cancer vaccine. ACS Appl Mater Interfaces. 2020;12:34658–66.PubMedCrossRef
172.
go back to reference Cha BG, Jeong JH, Kim J. Extra-large pore mesoporous silica nanoparticles enabling co-delivery of high amounts of protein antigen and toll-like receptor 9 agonist for enhanced cancer vaccine efficacy. ACS Cent Sci. 2018;4:484–92.PubMedPubMedCentralCrossRef Cha BG, Jeong JH, Kim J. Extra-large pore mesoporous silica nanoparticles enabling co-delivery of high amounts of protein antigen and toll-like receptor 9 agonist for enhanced cancer vaccine efficacy. ACS Cent Sci. 2018;4:484–92.PubMedPubMedCentralCrossRef
173.
go back to reference Li J, Huang D, Cheng R, Figueiredo P, Fontana F, Correia A, Wang S, Liu Z, Kemell M, Torrieri G, Makila EM, Salonen JJ, Hirvonen J, Gao Y, Li J, Luo Z, Santos HA, Xia B. Multifunctional biomimetic nanovaccines based on photothermal and weak-immunostimulatory nanoparticulate cores for the immunotherapy of solid tumors. Adv Mater. 2022;34: e2108012.PubMedCrossRef Li J, Huang D, Cheng R, Figueiredo P, Fontana F, Correia A, Wang S, Liu Z, Kemell M, Torrieri G, Makila EM, Salonen JJ, Hirvonen J, Gao Y, Li J, Luo Z, Santos HA, Xia B. Multifunctional biomimetic nanovaccines based on photothermal and weak-immunostimulatory nanoparticulate cores for the immunotherapy of solid tumors. Adv Mater. 2022;34: e2108012.PubMedCrossRef
174.
go back to reference Burkert SC, He X, Shurin GV, Nefedova Y, Kagan VE, Shurin MR, Star A. Nitrogen-doped carbon nanotube cups for cancer therapy. ACS Appl Nano Mater. 2022;5:13685–96.PubMedCrossRef Burkert SC, He X, Shurin GV, Nefedova Y, Kagan VE, Shurin MR, Star A. Nitrogen-doped carbon nanotube cups for cancer therapy. ACS Appl Nano Mater. 2022;5:13685–96.PubMedCrossRef
175.
go back to reference Quagliarini E, Pozzi D, Cardarelli F, Caracciolo G. The influence of protein corona on graphene oxide: implications for biomedical theranostics. J Nanobiotechnology. 2023;21:267.PubMedPubMedCentralCrossRef Quagliarini E, Pozzi D, Cardarelli F, Caracciolo G. The influence of protein corona on graphene oxide: implications for biomedical theranostics. J Nanobiotechnology. 2023;21:267.PubMedPubMedCentralCrossRef
176.
go back to reference Song X, Zhang C, Xing M, He C, Wang D, Chong L, Zhang X, Chen M, Li J. Immunological gadolinium-doped mesoporous carbon nanoparticles for tumor-targeted MRI and photothermal-immune co-therapy. J Mater Chem B. 2023;11:6147–58.PubMedCrossRef Song X, Zhang C, Xing M, He C, Wang D, Chong L, Zhang X, Chen M, Li J. Immunological gadolinium-doped mesoporous carbon nanoparticles for tumor-targeted MRI and photothermal-immune co-therapy. J Mater Chem B. 2023;11:6147–58.PubMedCrossRef
177.
go back to reference Zeng M, Wang Y, Liu M, Wei Y, Wen J, Zhang Y, Chen T, He N, Fan P, Dai X. Potential efficacy of herbal medicine-derived carbon dots in the treatment of diseases: from mechanism to clinic. Int J Nanomedicine. 2023;18:6503–25.PubMedPubMedCentralCrossRef Zeng M, Wang Y, Liu M, Wei Y, Wen J, Zhang Y, Chen T, He N, Fan P, Dai X. Potential efficacy of herbal medicine-derived carbon dots in the treatment of diseases: from mechanism to clinic. Int J Nanomedicine. 2023;18:6503–25.PubMedPubMedCentralCrossRef
178.
go back to reference Kim H, Kim KS, Na K. Nanoparticle platform comprising lipid-tailed pH-sensitive carbon dots with minimal drug loss. J Control Release. 2023;361:373–84.PubMedCrossRef Kim H, Kim KS, Na K. Nanoparticle platform comprising lipid-tailed pH-sensitive carbon dots with minimal drug loss. J Control Release. 2023;361:373–84.PubMedCrossRef
179.
go back to reference Wang T, Zou M, Jiang H, Ji Z, Gao P, Cheng G. Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant. Eur J Pharm Sci. 2011;44:653–9.PubMedCrossRef Wang T, Zou M, Jiang H, Ji Z, Gao P, Cheng G. Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant. Eur J Pharm Sci. 2011;44:653–9.PubMedCrossRef
180.
go back to reference Elhassan E, Devnarain N, Mohammed M, Govender T, Omolo CA. Engineering hybrid nanosystems for efficient and targeted delivery against bacterial infections. J Control Release. 2022;351:598–622.PubMedCrossRef Elhassan E, Devnarain N, Mohammed M, Govender T, Omolo CA. Engineering hybrid nanosystems for efficient and targeted delivery against bacterial infections. J Control Release. 2022;351:598–622.PubMedCrossRef
182.
go back to reference Chen Q, Chen Y, Zhang W, Huang Q, Hu M, Peng D, Peng C, Wang L, Chen W. Acidity and glutathione dual-responsive polydopamine-coated organic-inorganic hybrid hollow mesoporous silica nanoparticles for controlled drug delivery. ChemMedChem. 2020;15:1940–6.PubMedCrossRef Chen Q, Chen Y, Zhang W, Huang Q, Hu M, Peng D, Peng C, Wang L, Chen W. Acidity and glutathione dual-responsive polydopamine-coated organic-inorganic hybrid hollow mesoporous silica nanoparticles for controlled drug delivery. ChemMedChem. 2020;15:1940–6.PubMedCrossRef
183.
go back to reference Zhuang X, Wu T, Zhao Y, Hu X, Bao Y, Guo Y, Song Q, Li G, Tan S, Zhang Z. Lipid-enveloped zinc phosphate hybrid nanoparticles for codelivery of H-2K(b) and H-2D(b)-restricted antigenic peptides and monophosphoryl lipid A to induce antitumor immunity against melanoma. J Control Release. 2016;228:26–37.PubMedCrossRef Zhuang X, Wu T, Zhao Y, Hu X, Bao Y, Guo Y, Song Q, Li G, Tan S, Zhang Z. Lipid-enveloped zinc phosphate hybrid nanoparticles for codelivery of H-2K(b) and H-2D(b)-restricted antigenic peptides and monophosphoryl lipid A to induce antitumor immunity against melanoma. J Control Release. 2016;228:26–37.PubMedCrossRef
184.
go back to reference Dash P, Piras AM, Dash M. Cell membrane coated nanocarriers - an efficient biomimetic platform for targeted therapy. J Control Release. 2020;327:546–70.PubMedCrossRef Dash P, Piras AM, Dash M. Cell membrane coated nanocarriers - an efficient biomimetic platform for targeted therapy. J Control Release. 2020;327:546–70.PubMedCrossRef
185.
go back to reference Fang RH, Gao W, Zhang L. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat Rev Clin Oncol. 2023;20:33–48.PubMedCrossRef Fang RH, Gao W, Zhang L. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat Rev Clin Oncol. 2023;20:33–48.PubMedCrossRef
186.
go back to reference Fang RH, Hu CM, Luk BT, Gao W, Copp JA, Tai Y, O’Connor DE, Zhang L. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014;14:2181–8.PubMedPubMedCentralCrossRef Fang RH, Hu CM, Luk BT, Gao W, Copp JA, Tai Y, O’Connor DE, Zhang L. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014;14:2181–8.PubMedPubMedCentralCrossRef
187.
go back to reference Li Z, Cai H, Li Z, Ren L, Ma X, Zhu H, Gong Q, Zhang H, Gu Z, Luo K. A tumor cell membrane-coated self-amplified nanosystem as a nanovaccine to boost the therapeutic effect of anti-PD-L1 antibody. Bioact Mater. 2023;21:299–312.PubMed Li Z, Cai H, Li Z, Ren L, Ma X, Zhu H, Gong Q, Zhang H, Gu Z, Luo K. A tumor cell membrane-coated self-amplified nanosystem as a nanovaccine to boost the therapeutic effect of anti-PD-L1 antibody. Bioact Mater. 2023;21:299–312.PubMed
188.
go back to reference Zhou F, Zhang D. Recent advance in the development of tuberculosis vaccines in clinical trials and virus-like particle-based vaccine candidates. Front Immunol. 2023;14:1238649.PubMedPubMedCentralCrossRef Zhou F, Zhang D. Recent advance in the development of tuberculosis vaccines in clinical trials and virus-like particle-based vaccine candidates. Front Immunol. 2023;14:1238649.PubMedPubMedCentralCrossRef
189.
go back to reference Chung YH, Ortega-Rivera OA, Volckaert BA, Jung E, Zhao Z, Steinmetz NF. Viral nanoparticle vaccines against S100A9 reduce lung tumor seeding and metastasis. Proc Natl Acad Sci U S A. 2023;120: e2221859120.PubMedPubMedCentralCrossRef Chung YH, Ortega-Rivera OA, Volckaert BA, Jung E, Zhao Z, Steinmetz NF. Viral nanoparticle vaccines against S100A9 reduce lung tumor seeding and metastasis. Proc Natl Acad Sci U S A. 2023;120: e2221859120.PubMedPubMedCentralCrossRef
191.
go back to reference Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, Tao Y, He Z, Chen C, Jiang Y. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. 2020;5:145.PubMedPubMedCentralCrossRef Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, Tao Y, He Z, Chen C, Jiang Y. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. 2020;5:145.PubMedPubMedCentralCrossRef
193.
go back to reference Wu Q, Zhou L, Lv D, Zhu X, Tang H. Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression. J Hematol Oncol. 2019;12:53.PubMedPubMedCentralCrossRef Wu Q, Zhou L, Lv D, Zhu X, Tang H. Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression. J Hematol Oncol. 2019;12:53.PubMedPubMedCentralCrossRef
194.
go back to reference Zhang M, Zang X, Wang M, Li Z, Qiao M, Hu H, Chen D. Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: recent advances and challenges. J Mater Chem B. 2019;7:2421–33.PubMedCrossRef Zhang M, Zang X, Wang M, Li Z, Qiao M, Hu H, Chen D. Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: recent advances and challenges. J Mater Chem B. 2019;7:2421–33.PubMedCrossRef
195.
go back to reference Zuo B, Zhang Y, Zhao K, Wu L, Qi H, Yang R, Gao X, Geng M, Wu Y, Jing R, Zhou Q, Seow Y, Yin H. Universal immunotherapeutic strategy for hepatocellular carcinoma with exosome vaccines that engage adaptive and innate immune responses. J Hematol Oncol. 2022;15:46.PubMedPubMedCentralCrossRef Zuo B, Zhang Y, Zhao K, Wu L, Qi H, Yang R, Gao X, Geng M, Wu Y, Jing R, Zhou Q, Seow Y, Yin H. Universal immunotherapeutic strategy for hepatocellular carcinoma with exosome vaccines that engage adaptive and innate immune responses. J Hematol Oncol. 2022;15:46.PubMedPubMedCentralCrossRef
196.
go back to reference Yao L, Wei B, Wang Y, Xu B, Yang M, Chen X, Chen F. A critical role of outer membrane vesicles in antibiotic resistance in carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob. 2023;22:95.PubMedPubMedCentralCrossRef Yao L, Wei B, Wang Y, Xu B, Yang M, Chen X, Chen F. A critical role of outer membrane vesicles in antibiotic resistance in carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob. 2023;22:95.PubMedPubMedCentralCrossRef
197.
go back to reference Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer. 2021;21:360–78.PubMedCrossRef Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer. 2021;21:360–78.PubMedCrossRef
198.
go back to reference Ma L, Diao L, Peng Z, Jia Y, Xie H, Li B, Ma J, Zhang M, Cheng L, Ding D, Zhang X, Chen H, Mo F, Jiang H, Xu G, Meng F, Zhong Z, Liu M. Immunotherapy and prevention of cancer by nanovaccines loaded with whole-cell components of tumor tissues or cells. Adv Mater. 2021;33: e2104849.PubMedCrossRef Ma L, Diao L, Peng Z, Jia Y, Xie H, Li B, Ma J, Zhang M, Cheng L, Ding D, Zhang X, Chen H, Mo F, Jiang H, Xu G, Meng F, Zhong Z, Liu M. Immunotherapy and prevention of cancer by nanovaccines loaded with whole-cell components of tumor tissues or cells. Adv Mater. 2021;33: e2104849.PubMedCrossRef
199.
go back to reference Berti C, Boarino A, Graciotti M, Bader LPE, Kandalaft LE, Klok HA. Reduction-sensitive protein nanogels enhance uptake of model and tumor lysate antigens in vitro by mouse- and human-derived dendritic cells. ACS Appl Bio Mater. 2021;4:8291–300.PubMedCrossRef Berti C, Boarino A, Graciotti M, Bader LPE, Kandalaft LE, Klok HA. Reduction-sensitive protein nanogels enhance uptake of model and tumor lysate antigens in vitro by mouse- and human-derived dendritic cells. ACS Appl Bio Mater. 2021;4:8291–300.PubMedCrossRef
200.
go back to reference Berti C, Graciotti M, Boarino A, Yakkala C, Kandalaft LE, Klok HA. Polymer nanoparticle-mediated delivery of oxidized tumor lysate-based cancer vaccines. Macromol Biosci. 2022;22: e2100356.PubMedCrossRef Berti C, Graciotti M, Boarino A, Yakkala C, Kandalaft LE, Klok HA. Polymer nanoparticle-mediated delivery of oxidized tumor lysate-based cancer vaccines. Macromol Biosci. 2022;22: e2100356.PubMedCrossRef
203.
go back to reference Eggermont LJ, Paulis LE, Tel J, Figdor CG. Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells. Trends Biotechnol. 2014;32:456–65.PubMedPubMedCentralCrossRef Eggermont LJ, Paulis LE, Tel J, Figdor CG. Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells. Trends Biotechnol. 2014;32:456–65.PubMedPubMedCentralCrossRef
204.
go back to reference Zhang DKY, Cheung AS, Mooney DJ. Activation and expansion of human T cells using artificial antigen-presenting cell scaffolds. Nat Protoc. 2020;15:773–98.PubMedCrossRef Zhang DKY, Cheung AS, Mooney DJ. Activation and expansion of human T cells using artificial antigen-presenting cell scaffolds. Nat Protoc. 2020;15:773–98.PubMedCrossRef
206.
207.
go back to reference Dumauthioz N, Tschumi B, Wenes M, Marti B, Wang H, Franco F, Li W, Lopez-Mejia IC, Fajas L, Ho PC, Donda A, Romero P, Zhang L. Enforced PGC-1alpha expression promotes CD8 T cell fitness, memory formation and antitumor immunity. Cell Mol Immunol. 2021;18:1761–71.PubMedCrossRef Dumauthioz N, Tschumi B, Wenes M, Marti B, Wang H, Franco F, Li W, Lopez-Mejia IC, Fajas L, Ho PC, Donda A, Romero P, Zhang L. Enforced PGC-1alpha expression promotes CD8 T cell fitness, memory formation and antitumor immunity. Cell Mol Immunol. 2021;18:1761–71.PubMedCrossRef
208.
go back to reference Chekaoui A, Ertl HCJ. PPARalpha agonist fenofibrate enhances cancer vaccine efficacy. Cancer Res. 2021;81:4431–40.PubMedCrossRef Chekaoui A, Ertl HCJ. PPARalpha agonist fenofibrate enhances cancer vaccine efficacy. Cancer Res. 2021;81:4431–40.PubMedCrossRef
209.
go back to reference Qin YT, Liu XH, An JX, Liang JL, Li CX, Jin XK, Ji P, Zhang XZ. Dendritic cell-based in situ nanovaccine for reprogramming lipid metabolism to boost tumor immunotherapy. ACS Nano. 2023;17:24947–60.PubMedCrossRef Qin YT, Liu XH, An JX, Liang JL, Li CX, Jin XK, Ji P, Zhang XZ. Dendritic cell-based in situ nanovaccine for reprogramming lipid metabolism to boost tumor immunotherapy. ACS Nano. 2023;17:24947–60.PubMedCrossRef
210.
go back to reference Guo L, Ding J, Zhou W. Converting bacteria into autologous tumor vaccine via surface biomineralization of calcium carbonate for enhanced immunotherapy. Acta Pharm Sin B. 2023;13:5074–90.PubMedPubMedCentralCrossRef Guo L, Ding J, Zhou W. Converting bacteria into autologous tumor vaccine via surface biomineralization of calcium carbonate for enhanced immunotherapy. Acta Pharm Sin B. 2023;13:5074–90.PubMedPubMedCentralCrossRef
211.
go back to reference Portillo AL, Monteiro JK, Rojas EA, Ritchie TM, Gillgrass A, Ashkar AA. Charting a killer course to the solid tumor: strategies to recruit and activate NK cells in the tumor microenvironment. Front Immunol. 2023;14:1286750.PubMedPubMedCentralCrossRef Portillo AL, Monteiro JK, Rojas EA, Ritchie TM, Gillgrass A, Ashkar AA. Charting a killer course to the solid tumor: strategies to recruit and activate NK cells in the tumor microenvironment. Front Immunol. 2023;14:1286750.PubMedPubMedCentralCrossRef
214.
215.
go back to reference Luo L, Li X, Zhang J, Zhu C, Jiang M, Luo Z, Qin B, Wang Y, Chen B, Du Y, Lou Y, You J. Enhanced immune memory through a constant photothermal-metabolism regulation for cancer prevention and treatment. Biomaterials. 2021;270: 120678.PubMedCrossRef Luo L, Li X, Zhang J, Zhu C, Jiang M, Luo Z, Qin B, Wang Y, Chen B, Du Y, Lou Y, You J. Enhanced immune memory through a constant photothermal-metabolism regulation for cancer prevention and treatment. Biomaterials. 2021;270: 120678.PubMedCrossRef
216.
go back to reference Purde M-T, Cupovic J, Palmowski YA, Makky A, Schmidt S, Rochwarger A, Hartmann F, Stemeseder F, Lercher A, Abdou M-T, Bomze D, Besse L, Berner F, Tüting T, Hölzel M, Bergthaler A, Kochanek S, Ludewig B, Lauterbach H, Orlinger KK, Bald T, Schietinger A, Schürch C, Ring SS, Flatz L. A replicating LCMV-based vaccine for the treatment of solid tumors. Mol Therapy. 2023. https://doi.org/10.1016/j.ymthe.2023.11.026.CrossRef Purde M-T, Cupovic J, Palmowski YA, Makky A, Schmidt S, Rochwarger A, Hartmann F, Stemeseder F, Lercher A, Abdou M-T, Bomze D, Besse L, Berner F, Tüting T, Hölzel M, Bergthaler A, Kochanek S, Ludewig B, Lauterbach H, Orlinger KK, Bald T, Schietinger A, Schürch C, Ring SS, Flatz L. A replicating LCMV-based vaccine for the treatment of solid tumors. Mol Therapy. 2023. https://​doi.​org/​10.​1016/​j.​ymthe.​2023.​11.​026.CrossRef
217.
go back to reference Ma S, Li X, Mai Y, Guo J, Zuo W, Yang J. Immunotherapeutic treatment of lung cancer and bone metastasis with a mPLA/mRNA tumor vaccine. Acta Biomater. 2023;169:489–99.PubMedCrossRef Ma S, Li X, Mai Y, Guo J, Zuo W, Yang J. Immunotherapeutic treatment of lung cancer and bone metastasis with a mPLA/mRNA tumor vaccine. Acta Biomater. 2023;169:489–99.PubMedCrossRef
220.
go back to reference Gacche RN. Changing landscape of anti-angiogenic therapy: Novel approaches and clinical perspectives. Biochim Biophys Acta Rev Cancer. 2023;1878: 189020.PubMedCrossRef Gacche RN. Changing landscape of anti-angiogenic therapy: Novel approaches and clinical perspectives. Biochim Biophys Acta Rev Cancer. 2023;1878: 189020.PubMedCrossRef
221.
go back to reference Chehelgerdi M, Chehelgerdi M, Allela OQB, Pecho RDC, Jayasankar N, Rao DP, Thamaraikani T, Vasanthan M, Viktor P, Lakshmaiya N, Saadh MJ, Amajd A, Abo-Zaid MA, Castillo-Acobo RY, Ismail AH, Amin AH, Akhavan-Sigari R. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer. 2023;22:169.PubMedPubMedCentralCrossRef Chehelgerdi M, Chehelgerdi M, Allela OQB, Pecho RDC, Jayasankar N, Rao DP, Thamaraikani T, Vasanthan M, Viktor P, Lakshmaiya N, Saadh MJ, Amajd A, Abo-Zaid MA, Castillo-Acobo RY, Ismail AH, Amin AH, Akhavan-Sigari R. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer. 2023;22:169.PubMedPubMedCentralCrossRef
223.
go back to reference Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 2023;8:198.PubMedPubMedCentralCrossRef Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 2023;8:198.PubMedPubMedCentralCrossRef
224.
go back to reference Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77:1745–70.PubMedCrossRef Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 2020;77:1745–70.PubMedCrossRef
225.
go back to reference Huang N, Liu Y, Fang Y, Zheng S, Wu J, Wang M, Zhong W, Shi M, Xing M, Liao W. Gold nanoparticles induce tumor vessel normalization and impair metastasis by inhibiting endothelial smad2/3 signaling. ACS Nano. 2020;14:7940–58.PubMedCrossRef Huang N, Liu Y, Fang Y, Zheng S, Wu J, Wang M, Zhong W, Shi M, Xing M, Liao W. Gold nanoparticles induce tumor vessel normalization and impair metastasis by inhibiting endothelial smad2/3 signaling. ACS Nano. 2020;14:7940–58.PubMedCrossRef
226.
go back to reference Ugel S, Facciponte JG, De Sanctis F, Facciabene A. Targeting tumor vasculature: expanding the potential of DNA cancer vaccines. Cancer Immunol Immunother. 2015;64:1339–48.PubMedPubMedCentralCrossRef Ugel S, Facciponte JG, De Sanctis F, Facciabene A. Targeting tumor vasculature: expanding the potential of DNA cancer vaccines. Cancer Immunol Immunother. 2015;64:1339–48.PubMedPubMedCentralCrossRef
227.
go back to reference Bansaccal N, Vieugue P, Sarate R, Song Y, Minguijon E, Miroshnikova YA, Zeuschner D, Collin A, Allard J, Engelman D, Delaunois AL, Liagre M, de Groote L, Timmerman E, Van Haver D, Impens F, Salmon I, Wickstrom SA, Sifrim A, Blanpain C. The extracellular matrix dictates regional competence for tumour initiation. Nature. 2023;623:828–35.PubMedPubMedCentralCrossRef Bansaccal N, Vieugue P, Sarate R, Song Y, Minguijon E, Miroshnikova YA, Zeuschner D, Collin A, Allard J, Engelman D, Delaunois AL, Liagre M, de Groote L, Timmerman E, Van Haver D, Impens F, Salmon I, Wickstrom SA, Sifrim A, Blanpain C. The extracellular matrix dictates regional competence for tumour initiation. Nature. 2023;623:828–35.PubMedPubMedCentralCrossRef
228.
go back to reference Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer. 2023;22:48.PubMedPubMedCentralCrossRef Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer. 2023;22:48.PubMedPubMedCentralCrossRef
229.
go back to reference He L, Kang Q, Chan KI, Zhang Y, Zhong Z, Tan W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front Immunol. 2022;13:1093990.PubMedCrossRef He L, Kang Q, Chan KI, Zhang Y, Zhong Z, Tan W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front Immunol. 2022;13:1093990.PubMedCrossRef
230.
go back to reference Zhang W, Wang J, Liu C, Li Y, Sun C, Wu J, Wu Q. Crosstalk and plasticity driving between cancer-associated fibroblasts and tumor microenvironment: significance of breast cancer metastasis. J Transl Med. 2023;21:827.PubMedPubMedCentralCrossRef Zhang W, Wang J, Liu C, Li Y, Sun C, Wu J, Wu Q. Crosstalk and plasticity driving between cancer-associated fibroblasts and tumor microenvironment: significance of breast cancer metastasis. J Transl Med. 2023;21:827.PubMedPubMedCentralCrossRef
231.
go back to reference Hu Y, Lin L, Chen J, Maruyama A, Tian H, Chen X. Synergistic tumor immunological strategy by combining tumor nanovaccine with gene-mediated extracellular matrix scavenger. Biomaterials. 2020;252: 120114.PubMedCrossRef Hu Y, Lin L, Chen J, Maruyama A, Tian H, Chen X. Synergistic tumor immunological strategy by combining tumor nanovaccine with gene-mediated extracellular matrix scavenger. Biomaterials. 2020;252: 120114.PubMedCrossRef
232.
go back to reference Gonzalez-Avila G, Sommer B, Mendoza-Posada DA, Ramos C, Garcia-Hernandez AA, Falfan-Valencia R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol. 2019;137:57–83.PubMedCrossRef Gonzalez-Avila G, Sommer B, Mendoza-Posada DA, Ramos C, Garcia-Hernandez AA, Falfan-Valencia R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol. 2019;137:57–83.PubMedCrossRef
233.
go back to reference Lv Y, Zhao X, Zhu L, Li S, Xiao Q, He W, Yin L. Targeting intracellular MMPs efficiently inhibits tumor metastasis and angiogenesis. Theranostics. 2018;8:2830–45.PubMedPubMedCentralCrossRef Lv Y, Zhao X, Zhu L, Li S, Xiao Q, He W, Yin L. Targeting intracellular MMPs efficiently inhibits tumor metastasis and angiogenesis. Theranostics. 2018;8:2830–45.PubMedPubMedCentralCrossRef
235.
go back to reference Nurmik M, Ullmann P, Rodriguez F, Haan S, Letellier E. In search of definitions: cancer-associated fibroblasts and their markers. Int J Cancer. 2020;146:895–905.PubMedCrossRef Nurmik M, Ullmann P, Rodriguez F, Haan S, Letellier E. In search of definitions: cancer-associated fibroblasts and their markers. Int J Cancer. 2020;146:895–905.PubMedCrossRef
236.
go back to reference Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, Hynes RO. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20(3):174–86.PubMedPubMedCentralCrossRef Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, Hynes RO. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20(3):174–86.PubMedPubMedCentralCrossRef
237.
go back to reference Zhao J, Wang H, Hsiao CH, Chow DS, Koay EJ, Kang Y, Wen X, Huang Q, Ma Y, Bankson JA, Ullrich SE, Overwijk W, Maitra A, Piwnica-Worms D, Fleming JB, Li C. Simultaneous inhibition of hedgehog signaling and tumor proliferation remodels stroma and enhances pancreatic cancer therapy. Biomaterials. 2018;159:215–28.PubMedPubMedCentralCrossRef Zhao J, Wang H, Hsiao CH, Chow DS, Koay EJ, Kang Y, Wen X, Huang Q, Ma Y, Bankson JA, Ullrich SE, Overwijk W, Maitra A, Piwnica-Worms D, Fleming JB, Li C. Simultaneous inhibition of hedgehog signaling and tumor proliferation remodels stroma and enhances pancreatic cancer therapy. Biomaterials. 2018;159:215–28.PubMedPubMedCentralCrossRef
238.
go back to reference Wang Z, Yang Q, Tan Y, Tang Y, Ye J, Yuan B, Yu W. Cancer-associated fibroblasts suppress cancer development: the other side of the coin. Front Cell Dev Biol. 2021;9: 613534.PubMedPubMedCentralCrossRef Wang Z, Yang Q, Tan Y, Tang Y, Ye J, Yuan B, Yu W. Cancer-associated fibroblasts suppress cancer development: the other side of the coin. Front Cell Dev Biol. 2021;9: 613534.PubMedPubMedCentralCrossRef
239.
go back to reference Lang J, Zhao X, Qi Y, Zhang Y, Han X, Ding Y, Guan J, Ji T, Zhao Y, Nie G. Reshaping prostate tumor microenvironment to suppress metastasis via cancer-associated fibroblast inactivation with peptide-assembly-based nanosystem. ACS Nano. 2019;13:12357–71.PubMedCrossRef Lang J, Zhao X, Qi Y, Zhang Y, Han X, Ding Y, Guan J, Ji T, Zhao Y, Nie G. Reshaping prostate tumor microenvironment to suppress metastasis via cancer-associated fibroblast inactivation with peptide-assembly-based nanosystem. ACS Nano. 2019;13:12357–71.PubMedCrossRef
240.
go back to reference Shin H, Kim Y, Jon S. Nanovaccine displaying immunodominant T cell epitopes of fibroblast activation protein is effective against desmoplastic tumors. ACS Nano. 2023;17:10337–52.PubMedCrossRef Shin H, Kim Y, Jon S. Nanovaccine displaying immunodominant T cell epitopes of fibroblast activation protein is effective against desmoplastic tumors. ACS Nano. 2023;17:10337–52.PubMedCrossRef
241.
go back to reference Atiya HI, Gorecki G, Garcia GL, Frisbie LG, Baruwal R, Coffman L. Stromal-modulated epithelial-to-mesenchymal transition in cancer cells. Biomolecules. 2023;13(11):1604.PubMedPubMedCentralCrossRef Atiya HI, Gorecki G, Garcia GL, Frisbie LG, Baruwal R, Coffman L. Stromal-modulated epithelial-to-mesenchymal transition in cancer cells. Biomolecules. 2023;13(11):1604.PubMedPubMedCentralCrossRef
242.
go back to reference Li L, Zheng J, Oltean S. Regulation of epithelial-mesenchymal transitions by alternative splicing: potential new area for cancer therapeutics. Genes. 2023;14(11):2001.PubMedPubMedCentralCrossRef Li L, Zheng J, Oltean S. Regulation of epithelial-mesenchymal transitions by alternative splicing: potential new area for cancer therapeutics. Genes. 2023;14(11):2001.PubMedPubMedCentralCrossRef
243.
go back to reference Schuhwerk H, Brabletz T. Mutual regulation of TGFbeta-induced oncogenic EMT, cell cycle progression and the DDR. Semin Cancer Biol. 2023;97:86–103.PubMedCrossRef Schuhwerk H, Brabletz T. Mutual regulation of TGFbeta-induced oncogenic EMT, cell cycle progression and the DDR. Semin Cancer Biol. 2023;97:86–103.PubMedCrossRef
246.
go back to reference Lei Y, Chen L, Zhang G, Shan A, Ye C, Liang B, Sun J, Liao X, Zhu C, Chen Y, Wang J, Zhang E, Deng L. MicroRNAs target the Wnt/beta-catenin signaling pathway to regulate epithelial-mesenchymal transition in cancer (Review). Oncol Rep. 2020;44:1299–313.PubMedPubMedCentral Lei Y, Chen L, Zhang G, Shan A, Ye C, Liang B, Sun J, Liao X, Zhu C, Chen Y, Wang J, Zhang E, Deng L. MicroRNAs target the Wnt/beta-catenin signaling pathway to regulate epithelial-mesenchymal transition in cancer (Review). Oncol Rep. 2020;44:1299–313.PubMedPubMedCentral
247.
go back to reference Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Diseases. 2024;11(1):103–34.PubMedCrossRef Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Diseases. 2024;11(1):103–34.PubMedCrossRef
248.
go back to reference van Beijnum JR, Huijbers EJM, van Loon K, Blanas A, Akbari P, Roos A, Wong TJ, Denisov SS, Hackeng TM, Jimenez CR, Nowak-Sliwinska P, Griffioen AW. Extracellular vimentin mimics VEGF and is a target for anti-angiogenic immunotherapy. Nat Commun. 2022;13:2842.PubMedPubMedCentralCrossRef van Beijnum JR, Huijbers EJM, van Loon K, Blanas A, Akbari P, Roos A, Wong TJ, Denisov SS, Hackeng TM, Jimenez CR, Nowak-Sliwinska P, Griffioen AW. Extracellular vimentin mimics VEGF and is a target for anti-angiogenic immunotherapy. Nat Commun. 2022;13:2842.PubMedPubMedCentralCrossRef
249.
go back to reference Shang S, Yang C, Chen F, Xiang RS, Zhang H, Dai SY, Liu J, Lv XX, Zhang C, Liu XT, Zhang Q. ID1 expressing macrophages support cancer cell stemness and limit CD8+ T cell infiltration in colorectal cancer. Nat Commun. 2023;14(1):7661.PubMedPubMedCentralCrossRef Shang S, Yang C, Chen F, Xiang RS, Zhang H, Dai SY, Liu J, Lv XX, Zhang C, Liu XT, Zhang Q. ID1 expressing macrophages support cancer cell stemness and limit CD8+ T cell infiltration in colorectal cancer. Nat Commun. 2023;14(1):7661.PubMedPubMedCentralCrossRef
250.
go back to reference Zheng Q, Tang J, Aicher A, Bou Kheir T, Sabanovic B, Ananthanarayanan P, Reina C, Chen M, Gu JM, He B, Alcala S. Inhibiting NR5A2 targets stemness in pancreatic cancer by disrupting SOX2/MYC signaling and restoring chemosensitivity. J Exp Clin Cancer Res. 2023;42(1):323.PubMedPubMedCentralCrossRef Zheng Q, Tang J, Aicher A, Bou Kheir T, Sabanovic B, Ananthanarayanan P, Reina C, Chen M, Gu JM, He B, Alcala S. Inhibiting NR5A2 targets stemness in pancreatic cancer by disrupting SOX2/MYC signaling and restoring chemosensitivity. J Exp Clin Cancer Res. 2023;42(1):323.PubMedPubMedCentralCrossRef
251.
go back to reference Kurtova AV, Xiao J, Mo Q, Pazhanisamy S, Krasnow R, Lerner SP, Chen F, Roh TT, Lay E, Ho PL, Chan KS. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature. 2015;517:209–13.PubMedCrossRef Kurtova AV, Xiao J, Mo Q, Pazhanisamy S, Krasnow R, Lerner SP, Chen F, Roh TT, Lay E, Ho PL, Chan KS. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature. 2015;517:209–13.PubMedCrossRef
252.
253.
go back to reference Ning N, Pan Q, Zheng F, Teitz-Tennenbaum S, Egenti M, Yet J, Li M, Ginestier C, Wicha MS, Moyer JS, Prince ME, Xu Y, Zhang XL, Huang S, Chang AE, Li Q. Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res. 2012;72:1853–64.PubMedPubMedCentralCrossRef Ning N, Pan Q, Zheng F, Teitz-Tennenbaum S, Egenti M, Yet J, Li M, Ginestier C, Wicha MS, Moyer JS, Prince ME, Xu Y, Zhang XL, Huang S, Chang AE, Li Q. Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res. 2012;72:1853–64.PubMedPubMedCentralCrossRef
254.
go back to reference Guo M, Luo B, Pan M, Li M, Zhao F, Dou J. MUC1 plays an essential role in tumor immunity of colorectal cancer stem cell vaccine. Int Immunopharmacol. 2020;85: 106631.PubMedCrossRef Guo M, Luo B, Pan M, Li M, Zhao F, Dou J. MUC1 plays an essential role in tumor immunity of colorectal cancer stem cell vaccine. Int Immunopharmacol. 2020;85: 106631.PubMedCrossRef
256.
go back to reference Zhu P, Lu H, Wang M, Chen K, Chen Z, Yang L. Targeted mechanical forces enhance the effects of tumor immunotherapy by regulating immune cells in the tumor microenvironment. Cancer Biol Med. 2023;20:44–55.PubMedPubMedCentralCrossRef Zhu P, Lu H, Wang M, Chen K, Chen Z, Yang L. Targeted mechanical forces enhance the effects of tumor immunotherapy by regulating immune cells in the tumor microenvironment. Cancer Biol Med. 2023;20:44–55.PubMedPubMedCentralCrossRef
257.
go back to reference Hou L, Liu Q, Shen L, Liu Y, Zhang X, Chen F, Huang L. Nano-delivery of fraxinellone remodels tumor microenvironment and facilitates therapeutic vaccination in desmoplastic melanoma. Theranostics. 2018;8:3781–96.PubMedPubMedCentralCrossRef Hou L, Liu Q, Shen L, Liu Y, Zhang X, Chen F, Huang L. Nano-delivery of fraxinellone remodels tumor microenvironment and facilitates therapeutic vaccination in desmoplastic melanoma. Theranostics. 2018;8:3781–96.PubMedPubMedCentralCrossRef
258.
go back to reference Lin D, Shen L, Luo M, Zhang K, Li J, Yang Q, Zhu F, Zhou D, Zheng S, Chen Y, Zhou J. Circulating tumor cells: biology and clinical significance. Signal Transduct Target Ther. 2021;6:404.PubMedPubMedCentralCrossRef Lin D, Shen L, Luo M, Zhang K, Li J, Yang Q, Zhu F, Zhou D, Zheng S, Chen Y, Zhou J. Circulating tumor cells: biology and clinical significance. Signal Transduct Target Ther. 2021;6:404.PubMedPubMedCentralCrossRef
259.
go back to reference Jacob K, Sollier C, Jabado N. Circulating tumor cells: detection, molecular profiling and future prospects. Expert Rev Proteomics. 2007;4:741–56.PubMedCrossRef Jacob K, Sollier C, Jabado N. Circulating tumor cells: detection, molecular profiling and future prospects. Expert Rev Proteomics. 2007;4:741–56.PubMedCrossRef
260.
go back to reference Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, Picus J, Morse M, Mitchell E, Miller MC, Doyle GV, Tissing H, Terstappen LW, Meropol NJ. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:3213–21.PubMedCrossRef Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, Picus J, Morse M, Mitchell E, Miller MC, Doyle GV, Tissing H, Terstappen LW, Meropol NJ. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:3213–21.PubMedCrossRef
261.
go back to reference Riethdorf S, Fritsche H, Muller V, Rau T, Schindlbeck C, Rack B, Janni W, Coith C, Beck K, Janicke F, Jackson S, Gornet T, Cristofanilli M, Pantel K. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the Cell Search system. Clin Cancer Res. 2007;13:920–8.PubMedCrossRef Riethdorf S, Fritsche H, Muller V, Rau T, Schindlbeck C, Rack B, Janni W, Coith C, Beck K, Janicke F, Jackson S, Gornet T, Cristofanilli M, Pantel K. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the Cell Search system. Clin Cancer Res. 2007;13:920–8.PubMedCrossRef
262.
go back to reference Kinnear C, Moore TL, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. Form follows function: nanoparticle shape and its implications for nanomedicine. Chem Rev. 2017;117:11476–521.PubMedCrossRef Kinnear C, Moore TL, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. Form follows function: nanoparticle shape and its implications for nanomedicine. Chem Rev. 2017;117:11476–521.PubMedCrossRef
263.
264.
go back to reference Yao J, Feng J, Gao X, Wei D, Kang T, Zhu Q, Jiang T, Wei X, Chen J. Neovasculature and circulating tumor cells dual-targeting nanoparticles for the treatment of the highly-invasive breast cancer. Biomaterials. 2017;113:1–17.PubMedCrossRef Yao J, Feng J, Gao X, Wei D, Kang T, Zhu Q, Jiang T, Wei X, Chen J. Neovasculature and circulating tumor cells dual-targeting nanoparticles for the treatment of the highly-invasive breast cancer. Biomaterials. 2017;113:1–17.PubMedCrossRef
265.
go back to reference Mitchell MJ, Chen CS, Ponmudi V, Hughes AD, King MR. E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells. J Control Release. 2012;160:609–17.PubMedPubMedCentralCrossRef Mitchell MJ, Chen CS, Ponmudi V, Hughes AD, King MR. E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells. J Control Release. 2012;160:609–17.PubMedPubMedCentralCrossRef
266.
go back to reference Kaczanowska S, Kaplan RN. Mapping the switch that drives the pre-metastatic niche. Nat Cancer. 2020;1:577–9.PubMedCrossRef Kaczanowska S, Kaplan RN. Mapping the switch that drives the pre-metastatic niche. Nat Cancer. 2020;1:577–9.PubMedCrossRef
268.
go back to reference Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun. 2020;11:5120.PubMedPubMedCentralCrossRef Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun. 2020;11:5120.PubMedPubMedCentralCrossRef
269.
go back to reference Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, Li Y. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther. 2021;6:263.PubMedPubMedCentralCrossRef Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, Li Y. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther. 2021;6:263.PubMedPubMedCentralCrossRef
270.
go back to reference Gong L, Li G, Yi X, Han Q, Wu Q, Ying F, Shen L, Cao Y, Liu X, Gao L, Li W, Wang Z, Cai J. Tumor-derived small extracellular vesicles facilitate omental metastasis of ovarian cancer by triggering activation of mesenchymal stem cells. Cell Commun Signal. 2024;22:47.PubMedPubMedCentralCrossRef Gong L, Li G, Yi X, Han Q, Wu Q, Ying F, Shen L, Cao Y, Liu X, Gao L, Li W, Wang Z, Cai J. Tumor-derived small extracellular vesicles facilitate omental metastasis of ovarian cancer by triggering activation of mesenchymal stem cells. Cell Commun Signal. 2024;22:47.PubMedPubMedCentralCrossRef
271.
go back to reference Orbach SM, DeVaull CY, Bealer EJ, Ross BC, Jeruss JS, Shea LD. An engineered niche delineates metastatic potential of breast cancer. Bioeng Transl Med. 2024;9: e10606.PubMedCrossRef Orbach SM, DeVaull CY, Bealer EJ, Ross BC, Jeruss JS, Shea LD. An engineered niche delineates metastatic potential of breast cancer. Bioeng Transl Med. 2024;9: e10606.PubMedCrossRef
272.
go back to reference K. Wu, Y. Li, Y. Ji, C. Liu, X. Wang, H. Guo, J. Zhang, Y. He, Tumor-Derived RAB21+ABHD12+ sEVs Drive the Premetastatic Microenvironment in the Lung. Cancer Immunol Res, OF1-OF19 (2024). K. Wu, Y. Li, Y. Ji, C. Liu, X. Wang, H. Guo, J. Zhang, Y. He, Tumor-Derived RAB21+ABHD12+ sEVs Drive the Premetastatic Microenvironment in the Lung. Cancer Immunol Res, OF1-OF19 (2024).
273.
go back to reference Lu Z, Zuo B, Jing R, Gao X, Rao Q, Liu Z, Qi H, Guo H, Yin H. Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models. J Hepatol. 2017;67:739–48.PubMedCrossRef Lu Z, Zuo B, Jing R, Gao X, Rao Q, Liu Z, Qi H, Guo H, Yin H. Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models. J Hepatol. 2017;67:739–48.PubMedCrossRef
274.
275.
go back to reference Zhou M, Zuo Q, Huang Y, Li L. Immunogenic hydrogel toolkit disturbing residual tumor “seeds” and pre-metastatic “soil” for inhibition of postoperative tumor recurrence and metastasis. Acta Pharm Sin B. 2022;12:3383–97.PubMedPubMedCentralCrossRef Zhou M, Zuo Q, Huang Y, Li L. Immunogenic hydrogel toolkit disturbing residual tumor “seeds” and pre-metastatic “soil” for inhibition of postoperative tumor recurrence and metastasis. Acta Pharm Sin B. 2022;12:3383–97.PubMedPubMedCentralCrossRef
276.
go back to reference Rygiel KA, Drozd M, Bulas L. Care of cancer patients with liver and bone metastases - the place of pharmaceutical care in a balanced plan, focused on the patient’s needs and goals. Arch Med Sci. 2017;13:1483–92.PubMedCrossRef Rygiel KA, Drozd M, Bulas L. Care of cancer patients with liver and bone metastases - the place of pharmaceutical care in a balanced plan, focused on the patient’s needs and goals. Arch Med Sci. 2017;13:1483–92.PubMedCrossRef
277.
go back to reference Wen J, Wu D, Qin M, Liu C, Wang L, Xu D, Vinters HV, Liu Y, Kranz E, Guan X, Sun G, Sun X, Lee Y, Martinez-Maza O, Widney D, Lu Y, Chen ISY, Kamata M. Sustained delivery and molecular targeting of a therapeutic monoclonal antibody to metastases in the central nervous system of mice. Nat Biomed Eng. 2019;3:706–16.PubMedPubMedCentralCrossRef Wen J, Wu D, Qin M, Liu C, Wang L, Xu D, Vinters HV, Liu Y, Kranz E, Guan X, Sun G, Sun X, Lee Y, Martinez-Maza O, Widney D, Lu Y, Chen ISY, Kamata M. Sustained delivery and molecular targeting of a therapeutic monoclonal antibody to metastases in the central nervous system of mice. Nat Biomed Eng. 2019;3:706–16.PubMedPubMedCentralCrossRef
278.
go back to reference Mei L, Rao J, Liu Y, Li M, Zhang Z, He Q. Effective treatment of the primary tumor and lymph node metastasis by polymeric micelles with variable particle sizes. J Control Release. 2018;292:67–77.PubMedCrossRef Mei L, Rao J, Liu Y, Li M, Zhang Z, He Q. Effective treatment of the primary tumor and lymph node metastasis by polymeric micelles with variable particle sizes. J Control Release. 2018;292:67–77.PubMedCrossRef
279.
go back to reference Liu J, Li HJ, Luo YL, Xu CF, Du XJ, Du JZ, Wang J. Enhanced primary tumor penetration facilitates nanoparticle draining into lymph nodes after systemic injection for tumor metastasis inhibition. ACS Nano. 2019;13:8648–58.PubMedCrossRef Liu J, Li HJ, Luo YL, Xu CF, Du XJ, Du JZ, Wang J. Enhanced primary tumor penetration facilitates nanoparticle draining into lymph nodes after systemic injection for tumor metastasis inhibition. ACS Nano. 2019;13:8648–58.PubMedCrossRef
280.
go back to reference Tian Z, Hu Q, Sun Z, Wang N, He H, Tang Z, Chen W. A booster for radiofrequency ablation: advanced adjuvant therapy via in situ nanovaccine synergized with anti-programmed death ligand 1 immunotherapy for systemically constraining hepatocellular carcinoma. ACS Nano. 2023;17:19441–58.PubMedCrossRef Tian Z, Hu Q, Sun Z, Wang N, He H, Tang Z, Chen W. A booster for radiofrequency ablation: advanced adjuvant therapy via in situ nanovaccine synergized with anti-programmed death ligand 1 immunotherapy for systemically constraining hepatocellular carcinoma. ACS Nano. 2023;17:19441–58.PubMedCrossRef
281.
go back to reference Pitt JM, André F, Amigorena S, Soria JC, Eggermont A, Kroemer G, Zitvogel L. Dendritic cell-derived exosomes for cancer therapy. J Clin Investig. 2016;126:1224–32.PubMedPubMedCentralCrossRef Pitt JM, André F, Amigorena S, Soria JC, Eggermont A, Kroemer G, Zitvogel L. Dendritic cell-derived exosomes for cancer therapy. J Clin Investig. 2016;126:1224–32.PubMedPubMedCentralCrossRef
282.
go back to reference Wang QT, Nie Y, Sun SN, Lin T, Han RJ, Jiang J, Li Z, Li JQ, Xiao YP, Fan YY, Yuan XH, Zhang H, Zhao BB, Zeng M, Li SY, Liao HX, Zhang J, He YW. Tumor-associated antigen-based personalized dendritic cell vaccine in solid tumor patients. Cancer Immunol, Immunotherapy : CII. 2020;69:1375–87.PubMedPubMedCentralCrossRef Wang QT, Nie Y, Sun SN, Lin T, Han RJ, Jiang J, Li Z, Li JQ, Xiao YP, Fan YY, Yuan XH, Zhang H, Zhao BB, Zeng M, Li SY, Liao HX, Zhang J, He YW. Tumor-associated antigen-based personalized dendritic cell vaccine in solid tumor patients. Cancer Immunol, Immunotherapy : CII. 2020;69:1375–87.PubMedPubMedCentralCrossRef
283.
go back to reference Hu JL, Omofoye OA, Rudnick JD, Kim S, Tighiouart M, Phuphanich S, Wang H, Mazer M, Ganaway T, Chu RM, Patil CG, Black KL, Shiao SL, Wang R, Yu JS. A phase I study of autologous dendritic cell vaccine pulsed with allogeneic stem-like cell line lysate in patients with newly diagnosed or recurrent glioblastoma. Clinical Cancer Res : Off J Am Assoc Cancer Res. 2022;28:689–96.CrossRef Hu JL, Omofoye OA, Rudnick JD, Kim S, Tighiouart M, Phuphanich S, Wang H, Mazer M, Ganaway T, Chu RM, Patil CG, Black KL, Shiao SL, Wang R, Yu JS. A phase I study of autologous dendritic cell vaccine pulsed with allogeneic stem-like cell line lysate in patients with newly diagnosed or recurrent glioblastoma. Clinical Cancer Res : Off J Am Assoc Cancer Res. 2022;28:689–96.CrossRef
284.
go back to reference Sánchez Ramírez J, Morera Díaz Y, Bequet-Romero M, Hernández-Bernal F, Martín Bauta Y, Selman-Housein Bernal KH, de la Torre Santos AV, Pérez de la Iglesia M, Trimiño Lorenzo L, Ayala Avila M. Specific humoral response in cancer patients treated with a VEGF-specific active immunotherapy procedure within a compassionate use program. BMC Immunol. 2020;21:12.PubMedPubMedCentralCrossRef Sánchez Ramírez J, Morera Díaz Y, Bequet-Romero M, Hernández-Bernal F, Martín Bauta Y, Selman-Housein Bernal KH, de la Torre Santos AV, Pérez de la Iglesia M, Trimiño Lorenzo L, Ayala Avila M. Specific humoral response in cancer patients treated with a VEGF-specific active immunotherapy procedure within a compassionate use program. BMC Immunol. 2020;21:12.PubMedPubMedCentralCrossRef
285.
go back to reference DeMaria PJ, Lee-Wisdom K, Donahue RN, Madan RA, Karzai F, Schwab A, Palena C, Jochems C, Floudas C, Strauss J, Marté JL, Redman JM, Dombi E, Widemann B, Korchin B, Adams T, Pico-Navarro C, Heery C, Schlom J, Bilusic M. Phase 1 open-label trial of intravenous administration of MVA-BN-brachyury-TRICOM vaccine in patients with advanced cancer. J Immunotherapy Cancer. 2021;9:e003238.CrossRef DeMaria PJ, Lee-Wisdom K, Donahue RN, Madan RA, Karzai F, Schwab A, Palena C, Jochems C, Floudas C, Strauss J, Marté JL, Redman JM, Dombi E, Widemann B, Korchin B, Adams T, Pico-Navarro C, Heery C, Schlom J, Bilusic M. Phase 1 open-label trial of intravenous administration of MVA-BN-brachyury-TRICOM vaccine in patients with advanced cancer. J Immunotherapy Cancer. 2021;9:e003238.CrossRef
286.
go back to reference DeMaria PJ, Lee-Wisdom K, Donahue RN, Madan RA, Karzai F, Schwab A, Palena C, Jochems C, Floudas C, Strauss J, Marte JL, Redman JM, Dombi E, Widemann B, Korchin B, Adams T, Pico-Navarro C, Heery C, Schlom J, Bilusic M. Phase 1 open-label trial of intravenous administration of MVA-BN-brachyury-TRICOM vaccine in patients with advanced cancer. J Immunotherapy Cancer. 2021;9:e003238–e003238.CrossRef DeMaria PJ, Lee-Wisdom K, Donahue RN, Madan RA, Karzai F, Schwab A, Palena C, Jochems C, Floudas C, Strauss J, Marte JL, Redman JM, Dombi E, Widemann B, Korchin B, Adams T, Pico-Navarro C, Heery C, Schlom J, Bilusic M. Phase 1 open-label trial of intravenous administration of MVA-BN-brachyury-TRICOM vaccine in patients with advanced cancer. J Immunotherapy Cancer. 2021;9:e003238–e003238.CrossRef
287.
go back to reference Rojas LA, Sethna Z, Soares KC, Olcese C, Pang N, Patterson E, Lihm J, Ceglia N, Guasp P, Chu A, Yu R, Chandra AK, Waters T, Ruan J, Amisaki M, Zebboudj A, Odgerel Z, Payne G, Derhovanessian E, Balachandran VP. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature. 2023;618:144–50.PubMedPubMedCentralCrossRef Rojas LA, Sethna Z, Soares KC, Olcese C, Pang N, Patterson E, Lihm J, Ceglia N, Guasp P, Chu A, Yu R, Chandra AK, Waters T, Ruan J, Amisaki M, Zebboudj A, Odgerel Z, Payne G, Derhovanessian E, Balachandran VP. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature. 2023;618:144–50.PubMedPubMedCentralCrossRef
288.
go back to reference Weber JS, Carlino MS, Khattak A, Meniawy T, Ansstas G, Taylor MH, Kim KB, McKean M, Long GV, Sullivan RJ, Faries M. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet. 2024;403(10427):632–44.PubMedCrossRef Weber JS, Carlino MS, Khattak A, Meniawy T, Ansstas G, Taylor MH, Kim KB, McKean M, Long GV, Sullivan RJ, Faries M. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet. 2024;403(10427):632–44.PubMedCrossRef
290.
go back to reference Liu C, Liu X, Xiang X, Pang X, Chen S, Zhang Y, Ren E, Zhang L, Liu X, Lv P, Wang X, Luo W, Xia N, Chen X, Liu G. A nanovaccine for antigen self-presentation and immunosuppression reversal as a personalized cancer immunotherapy strategy. Nat Nanotechnol. 2022;17:531–40.PubMedCrossRef Liu C, Liu X, Xiang X, Pang X, Chen S, Zhang Y, Ren E, Zhang L, Liu X, Lv P, Wang X, Luo W, Xia N, Chen X, Liu G. A nanovaccine for antigen self-presentation and immunosuppression reversal as a personalized cancer immunotherapy strategy. Nat Nanotechnol. 2022;17:531–40.PubMedCrossRef
291.
go back to reference Salazar LG, Lu H, Reichow JL, Childs JS, Coveler AL, Higgins DM, Waisman J, Allison KH, Dang Y, Disis ML. Topical imiquimod plus nab-paclitaxel for breast cancer cutaneous metastases: a phase 2 clinical trial. JAMA Oncol. 2017;3:969–73.PubMedPubMedCentralCrossRef Salazar LG, Lu H, Reichow JL, Childs JS, Coveler AL, Higgins DM, Waisman J, Allison KH, Dang Y, Disis ML. Topical imiquimod plus nab-paclitaxel for breast cancer cutaneous metastases: a phase 2 clinical trial. JAMA Oncol. 2017;3:969–73.PubMedPubMedCentralCrossRef
292.
go back to reference Alyamani M, Li J, Patel M, Taylor S, Nakamura F, Berk M, Przybycin C, Posadas EM, Madan RA, Gulley JL, Rini B, Garcia JA, Klein EA, Sharifi N. Deep androgen receptor suppression in prostate cancer exploits sexually dimorphic renal expression for systemic glucocorticoid exposure. Annals Oncol : Off J European Soc Med Oncol. 2020;31:369–76.CrossRef Alyamani M, Li J, Patel M, Taylor S, Nakamura F, Berk M, Przybycin C, Posadas EM, Madan RA, Gulley JL, Rini B, Garcia JA, Klein EA, Sharifi N. Deep androgen receptor suppression in prostate cancer exploits sexually dimorphic renal expression for systemic glucocorticoid exposure. Annals Oncol : Off J European Soc Med Oncol. 2020;31:369–76.CrossRef
293.
go back to reference Schmidt KT, Karzai F, Bilusic M, Cordes LM, Chau CH, Peer CJ, Wroblewski S, Huitema ADR, Schellens JHM, Gulley JL, Dahut WL, Figg WD, Madan RA. A single-arm phase II study combining NLG207, a nanoparticle camptothecin, with enzalutamide in advanced metastatic castration-resistant prostate cancer post-enzalutamide. Oncologist. 2022;27:718-e694.PubMedPubMedCentralCrossRef Schmidt KT, Karzai F, Bilusic M, Cordes LM, Chau CH, Peer CJ, Wroblewski S, Huitema ADR, Schellens JHM, Gulley JL, Dahut WL, Figg WD, Madan RA. A single-arm phase II study combining NLG207, a nanoparticle camptothecin, with enzalutamide in advanced metastatic castration-resistant prostate cancer post-enzalutamide. Oncologist. 2022;27:718-e694.PubMedPubMedCentralCrossRef
294.
go back to reference Ma N, Chen Z, Liu G, Yue Y, Li Y, Cheng K, Ma X, Feng Q, Liang J, Zhang T, Gao X, Wang X, Guo X, Zhu F, Nie G, Zhao X. Normalizing the immune macroenvironment via debulking surgery to strengthen tumor nanovaccine efficacy and eliminate metastasis. ACS Nano. 2023;17:437–52.PubMedCrossRef Ma N, Chen Z, Liu G, Yue Y, Li Y, Cheng K, Ma X, Feng Q, Liang J, Zhang T, Gao X, Wang X, Guo X, Zhu F, Nie G, Zhao X. Normalizing the immune macroenvironment via debulking surgery to strengthen tumor nanovaccine efficacy and eliminate metastasis. ACS Nano. 2023;17:437–52.PubMedCrossRef
295.
go back to reference Liu Q, Chu Y, Shao J, Hanqing Qian J, Yang HS, Cen L, Tian M, Qiuping X, Chen F, Yang Y, Wang W, Wang K, Lixia Y, Wei J, Liu B. Benefits of an immunogenic personalized neoantigen nanovaccine in patients with high‐risk gastric/gastroesophageal junction cancer. Adv Sci. 2022;10(1):e2203298. https://doi.org/10.1002/advs.202203298.CrossRef Liu Q, Chu Y, Shao J, Hanqing Qian J, Yang HS, Cen L, Tian M, Qiuping X, Chen F, Yang Y, Wang W, Wang K, Lixia Y, Wei J, Liu B. Benefits of an immunogenic personalized neoantigen nanovaccine in patients with high‐risk gastric/gastroesophageal junction cancer. Adv Sci. 2022;10(1):e2203298. https://​doi.​org/​10.​1002/​advs.​202203298.CrossRef
296.
go back to reference Meng Z, Zhang Y, Zhou X, Ji J, Liu Z. Nanovaccines with cell-derived components for cancer immunotherapy. Adv Drug Deliv Rev. 2022;182: 114107.PubMedCrossRef Meng Z, Zhang Y, Zhou X, Ji J, Liu Z. Nanovaccines with cell-derived components for cancer immunotherapy. Adv Drug Deliv Rev. 2022;182: 114107.PubMedCrossRef
297.
go back to reference Chen G, Li X, Li R, Wu K, Lei Z, Dai R, Roche K, Wang AZ, Min Y. Chemotherapy-induced neoantigen nanovaccines enhance checkpoint blockade cancer immunotherapy. ACS Nano. 2023;17:18818–31.PubMedCrossRef Chen G, Li X, Li R, Wu K, Lei Z, Dai R, Roche K, Wang AZ, Min Y. Chemotherapy-induced neoantigen nanovaccines enhance checkpoint blockade cancer immunotherapy. ACS Nano. 2023;17:18818–31.PubMedCrossRef
298.
go back to reference Fontana F, Fusciello M, Groeneveldt C, Capasso C, Chiaro J, Feola S, Liu Z, Makila EM, Salonen JJ, Hirvonen JT, Cerullo V, Santos HA. Biohybrid vaccines for improved treatment of aggressive melanoma with checkpoint inhibitor. ACS Nano. 2019;13:6477–90.PubMedPubMedCentralCrossRef Fontana F, Fusciello M, Groeneveldt C, Capasso C, Chiaro J, Feola S, Liu Z, Makila EM, Salonen JJ, Hirvonen JT, Cerullo V, Santos HA. Biohybrid vaccines for improved treatment of aggressive melanoma with checkpoint inhibitor. ACS Nano. 2019;13:6477–90.PubMedPubMedCentralCrossRef
299.
go back to reference Zhao P, Xu Y, Ji W, Li L, Qiu L, Zhou S, Qian Z, Zhang H. Hybrid membrane nanovaccines combined with immune checkpoint blockade to enhance cancer immunotherapy. Int J Nanomedicine. 2022;17:73–89.PubMedPubMedCentralCrossRef Zhao P, Xu Y, Ji W, Li L, Qiu L, Zhou S, Qian Z, Zhang H. Hybrid membrane nanovaccines combined with immune checkpoint blockade to enhance cancer immunotherapy. Int J Nanomedicine. 2022;17:73–89.PubMedPubMedCentralCrossRef
300.
go back to reference Butterfield LH, Najjar YG. Immunotherapy combination approaches: mechanisms, biomarkers and clinical observations. Nat Rev Immunol. 2024;24:399–416.PubMedCrossRef Butterfield LH, Najjar YG. Immunotherapy combination approaches: mechanisms, biomarkers and clinical observations. Nat Rev Immunol. 2024;24:399–416.PubMedCrossRef
301.
go back to reference Picon MA, Wang L, Da Fonseca Ferreira A, Dong C, Marzouka GR. Extracellular vesicles as delivery systems in disease therapy. Int J Mol Sci. 2023;24(24):17134.PubMedPubMedCentralCrossRef Picon MA, Wang L, Da Fonseca Ferreira A, Dong C, Marzouka GR. Extracellular vesicles as delivery systems in disease therapy. Int J Mol Sci. 2023;24(24):17134.PubMedPubMedCentralCrossRef
302.
go back to reference Weng Z, Yang N, Shi S, Xu Z, Chen Z, Liang C, Zhang X, Du X. Outer membrane vesicles from acinetobacter baumannii: biogenesis, functions, and vaccine application. Vaccines. 2023;12(1):49.PubMedPubMedCentralCrossRef Weng Z, Yang N, Shi S, Xu Z, Chen Z, Liang C, Zhang X, Du X. Outer membrane vesicles from acinetobacter baumannii: biogenesis, functions, and vaccine application. Vaccines. 2023;12(1):49.PubMedPubMedCentralCrossRef
303.
go back to reference Meng J, Lv Y, Bao W, Meng Z, Wang S, Wu Y, Li S, Jiao Z, Tian Z, Ma G, Wei W. Generation of whole tumor cell vaccine for on-demand manipulation of immune responses against cancer under near-infrared laser irradiation. Nat Commun. 2023;14:4505.PubMedPubMedCentralCrossRef Meng J, Lv Y, Bao W, Meng Z, Wang S, Wu Y, Li S, Jiao Z, Tian Z, Ma G, Wei W. Generation of whole tumor cell vaccine for on-demand manipulation of immune responses against cancer under near-infrared laser irradiation. Nat Commun. 2023;14:4505.PubMedPubMedCentralCrossRef
304.
go back to reference Xiao P, Wang J, Zhao Z, Liu X, Sun X, Wang D, Li Y. Engineering nanoscale artificial antigen-presenting cells by metabolic dendritic cell labeling to potentiate cancer immunotherapy. Nano Lett. 2021;21:2094–103.PubMedCrossRef Xiao P, Wang J, Zhao Z, Liu X, Sun X, Wang D, Li Y. Engineering nanoscale artificial antigen-presenting cells by metabolic dendritic cell labeling to potentiate cancer immunotherapy. Nano Lett. 2021;21:2094–103.PubMedCrossRef
305.
go back to reference Facciponte JG, Ugel S, De Sanctis F, Li C, Wang L, Nair G, Sehgal S, Raj A, Matthaiou E, Coukos G, Facciabene A. Tumor endothelial marker 1-specific DNA vaccination targets tumor vasculature. J Clin Invest. 2014;124:1497–511.PubMedPubMedCentralCrossRef Facciponte JG, Ugel S, De Sanctis F, Li C, Wang L, Nair G, Sehgal S, Raj A, Matthaiou E, Coukos G, Facciabene A. Tumor endothelial marker 1-specific DNA vaccination targets tumor vasculature. J Clin Invest. 2014;124:1497–511.PubMedPubMedCentralCrossRef
306.
go back to reference Jin M, Huo D, Sun J, Hu J, Liu S, Zhan M, Zhang BZ, Huang JD. Enhancing immune responses of ESC-based TAA cancer vaccines with a novel OMV delivery system. J Nanobiotechnol. 2024;22:15.CrossRef Jin M, Huo D, Sun J, Hu J, Liu S, Zhan M, Zhang BZ, Huang JD. Enhancing immune responses of ESC-based TAA cancer vaccines with a novel OMV delivery system. J Nanobiotechnol. 2024;22:15.CrossRef
307.
go back to reference Jin WJ, Jagodinsky JC, Vera JM, Clark PA, Zuleger CL, Erbe AK, Ong IM, Le T, Tetreault K, Berg T, Rakhmilevich AL, Kim K, Newton MA, Albertini MR, Sondel PM, Morris ZS. NK cells propagate T cell immunity following in situ tumor vaccination. Cell Rep. 2023;42: 113556.PubMedPubMedCentralCrossRef Jin WJ, Jagodinsky JC, Vera JM, Clark PA, Zuleger CL, Erbe AK, Ong IM, Le T, Tetreault K, Berg T, Rakhmilevich AL, Kim K, Newton MA, Albertini MR, Sondel PM, Morris ZS. NK cells propagate T cell immunity following in situ tumor vaccination. Cell Rep. 2023;42: 113556.PubMedPubMedCentralCrossRef
308.
go back to reference Li J, Huang D, Cheng R, Figueiredo P, Fontana F, Correia A, Wang S, Liu Z, Kemell M, Torrieri G, Mäkilä EM, Salonen JJ, Hirvonen J, Gao Y, Li J, Luo Z, Santos HA, Xia B. Multifunctional biomimetic nanovaccines based on photothermal and weak-immunostimulatory nanoparticulate cores for the immunotherapy of solid tumors. Adv Mater. 2022;34: e2108012.PubMedCrossRef Li J, Huang D, Cheng R, Figueiredo P, Fontana F, Correia A, Wang S, Liu Z, Kemell M, Torrieri G, Mäkilä EM, Salonen JJ, Hirvonen J, Gao Y, Li J, Luo Z, Santos HA, Xia B. Multifunctional biomimetic nanovaccines based on photothermal and weak-immunostimulatory nanoparticulate cores for the immunotherapy of solid tumors. Adv Mater. 2022;34: e2108012.PubMedCrossRef
309.
go back to reference Hung SI, Chu MT, Hou MM, Lee YS, Yang CK, Chu SY, Liu FY, Hsu HC, Pao SC, Teng YC, Chen CB, Chao A, Chung WH, Chang JW, Lai CH. Personalized neoantigen-based T cell therapy triggers cytotoxic lymphocytes expressing polyclonal TCR against metastatic ovarian cancer. Biomed Pharmacother. 2023;169: 115928.PubMedCrossRef Hung SI, Chu MT, Hou MM, Lee YS, Yang CK, Chu SY, Liu FY, Hsu HC, Pao SC, Teng YC, Chen CB, Chao A, Chung WH, Chang JW, Lai CH. Personalized neoantigen-based T cell therapy triggers cytotoxic lymphocytes expressing polyclonal TCR against metastatic ovarian cancer. Biomed Pharmacother. 2023;169: 115928.PubMedCrossRef
310.
go back to reference Carter JA, Matta B, Battaglia J, Somerville C, Harris BD, LaPan M, Atwal GS, Barnes BJ. Identification of pan-cancer/testis genes and validation of therapeutic targeting in triple-negative breast cancer: Lin28a-based and Siglece-based vaccination induces antitumor immunity and inhibits metastasis. J Immunotherapy Cancer. 2023;11(12): e007935.CrossRef Carter JA, Matta B, Battaglia J, Somerville C, Harris BD, LaPan M, Atwal GS, Barnes BJ. Identification of pan-cancer/testis genes and validation of therapeutic targeting in triple-negative breast cancer: Lin28a-based and Siglece-based vaccination induces antitumor immunity and inhibits metastasis. J Immunotherapy Cancer. 2023;11(12): e007935.CrossRef
311.
go back to reference Chen G, Gupta R, Petrik S, Laiko M, Leatherman JM, Asquith JM, Daphtary MM, Garrett-Mayer E, Davidson NE, Hirt K, Berg M, Uram JN, Dauses T, Fetting J, Duus EM, Atay-Rosenthal S, Ye X, Wolff AC, Stearns V, Emens LA. A feasibility study of cyclophosphamide, trastuzumab, and an allogeneic GM-CSF-secreting breast tumor vaccine for HER2+ metastatic breast cancer. Cancer Immunol Res. 2014;2:949–61.PubMedPubMedCentralCrossRef Chen G, Gupta R, Petrik S, Laiko M, Leatherman JM, Asquith JM, Daphtary MM, Garrett-Mayer E, Davidson NE, Hirt K, Berg M, Uram JN, Dauses T, Fetting J, Duus EM, Atay-Rosenthal S, Ye X, Wolff AC, Stearns V, Emens LA. A feasibility study of cyclophosphamide, trastuzumab, and an allogeneic GM-CSF-secreting breast tumor vaccine for HER2+ metastatic breast cancer. Cancer Immunol Res. 2014;2:949–61.PubMedPubMedCentralCrossRef
312.
go back to reference Vincent BG, File DM, McKinnon KP, Moore DT, Frelinger JA, Collins EJ, Ibrahim JG, Bixby L, Reisdorf S, Laurie SJ, Park YA, Anders CK, Collichio FA, Muss HB, Carey LA, van Deventer HW, Dees EC, Serody JS. Efficacy of a dual-epitope dendritic cell vaccine as part of combined immunotherapy for HER2-expressing breast tumors. J Immunol Baltimore Md. 2023;1950(211):219–28. Vincent BG, File DM, McKinnon KP, Moore DT, Frelinger JA, Collins EJ, Ibrahim JG, Bixby L, Reisdorf S, Laurie SJ, Park YA, Anders CK, Collichio FA, Muss HB, Carey LA, van Deventer HW, Dees EC, Serody JS. Efficacy of a dual-epitope dendritic cell vaccine as part of combined immunotherapy for HER2-expressing breast tumors. J Immunol Baltimore Md. 2023;1950(211):219–28.
313.
go back to reference Zheng L, Edil BH, Soares KC, El-Shami K, Uram JN, Judkins C, Zhang Z, Onners B, Laheru D, Pardoll D, Jaffee EM, Schulick RD. A safety and feasibility study of an allogeneic colon cancer cell vaccine administered with a granulocyte-macrophage colony stimulating factor-producing bystander cell line in patients with metastatic colorectal cancer. Ann Surg Oncol. 2014;21:3931–7.PubMedPubMedCentralCrossRef Zheng L, Edil BH, Soares KC, El-Shami K, Uram JN, Judkins C, Zhang Z, Onners B, Laheru D, Pardoll D, Jaffee EM, Schulick RD. A safety and feasibility study of an allogeneic colon cancer cell vaccine administered with a granulocyte-macrophage colony stimulating factor-producing bystander cell line in patients with metastatic colorectal cancer. Ann Surg Oncol. 2014;21:3931–7.PubMedPubMedCentralCrossRef
314.
go back to reference Le DT, Picozzi VJ, Ko AH, Wainberg ZA, Kindler H, Wang-Gillam A, Oberstein P, Morse MA, Zeh HJ 3rd, Weekes C, Reid T, Borazanci E, Crocenzi T, LoConte NK, Musher B, Laheru D, Murphy A, Whiting C, Nair N, Jaffee EM. Results from a phase IIb, randomized, multicenter study of GVAX pancreas and CRS-207 compared with chemotherapy in adults with previously treated metastatic pancreatic adenocarcinoma (ECLIPSE Study). Clinical Cancer Res: Off J Am Assoc Cancer Res. 2019;25:5493–502.CrossRef Le DT, Picozzi VJ, Ko AH, Wainberg ZA, Kindler H, Wang-Gillam A, Oberstein P, Morse MA, Zeh HJ 3rd, Weekes C, Reid T, Borazanci E, Crocenzi T, LoConte NK, Musher B, Laheru D, Murphy A, Whiting C, Nair N, Jaffee EM. Results from a phase IIb, randomized, multicenter study of GVAX pancreas and CRS-207 compared with chemotherapy in adults with previously treated metastatic pancreatic adenocarcinoma (ECLIPSE Study). Clinical Cancer Res: Off J Am Assoc Cancer Res. 2019;25:5493–502.CrossRef
315.
go back to reference Hamilton E, Blackwell K, Hobeika AC, Clay TM, Broadwater G, Ren XR, Chen W, Castro H, Lehmann F, Spector N, Wei J, Osada T, Lyerly HK, Morse MA. Phase 1 clinical trial of HER2-specific immunotherapy with concomitant HER2 kinase inhibition [corrected]. J Transl Med. 2012;10:28.PubMedPubMedCentralCrossRef Hamilton E, Blackwell K, Hobeika AC, Clay TM, Broadwater G, Ren XR, Chen W, Castro H, Lehmann F, Spector N, Wei J, Osada T, Lyerly HK, Morse MA. Phase 1 clinical trial of HER2-specific immunotherapy with concomitant HER2 kinase inhibition [corrected]. J Transl Med. 2012;10:28.PubMedPubMedCentralCrossRef
316.
go back to reference Adotévi O, Vernerey D, Jacoulet P, Meurisse A, Laheurte C, Almotlak H, Jacquin M, Kaulek V, Boullerot L, Malfroy M, Orillard E, Eberst G, Lagrange A, Favier L, Gainet-Brun M, Doucet L, Teixeira L, Ghrieb Z, Clairet AL, Westeel V. Safety, immunogenicity, and 1-year efficacy of universal cancer peptide-based vaccine in patients with refractory advanced non-small-cell lung cancer: a phase Ib/Phase IIa de-escalation study. J Clin Oncol : Off J Am Soc Clin Oncol. 2023;41:373–84.CrossRef Adotévi O, Vernerey D, Jacoulet P, Meurisse A, Laheurte C, Almotlak H, Jacquin M, Kaulek V, Boullerot L, Malfroy M, Orillard E, Eberst G, Lagrange A, Favier L, Gainet-Brun M, Doucet L, Teixeira L, Ghrieb Z, Clairet AL, Westeel V. Safety, immunogenicity, and 1-year efficacy of universal cancer peptide-based vaccine in patients with refractory advanced non-small-cell lung cancer: a phase Ib/Phase IIa de-escalation study. J Clin Oncol : Off J Am Soc Clin Oncol. 2023;41:373–84.CrossRef
317.
go back to reference Pol JG, Acuna SA, Yadollahi B, Tang N, Stephenson KB, Atherton MJ, Hanwell D, El-Warrak A, Goldstein A, Moloo B, Turner PV. Preclinical evaluation of a MAGE-A3 vaccination utilizing the oncolytic Maraba virus currently in first-in-human trials. Oncoimmunology. 2019;8(1): e1512329.PubMedCrossRef Pol JG, Acuna SA, Yadollahi B, Tang N, Stephenson KB, Atherton MJ, Hanwell D, El-Warrak A, Goldstein A, Moloo B, Turner PV. Preclinical evaluation of a MAGE-A3 vaccination utilizing the oncolytic Maraba virus currently in first-in-human trials. Oncoimmunology. 2019;8(1): e1512329.PubMedCrossRef
Metadata
Title
Personalized nanovaccines for treating solid cancer metastases
Authors
Tang Feng
Jia Hu
Jirui Wen
Zhiyong Qian
Guowei Che
Qinghua Zhou
Lingling Zhu
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Metastasis
Published in
Journal of Hematology & Oncology / Issue 1/2024
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-024-01628-4
SPONSORED

Recent advances in the use of CAR T-cell therapies in relapsed/refractory diffuse large B-cell lymphoma and follicular lymphoma

In this webinar, Professor Martin Dreyling and an esteemed international panel of CAR T-cell therapy experts discuss the latest data on the safety, efficacy, and clinical impact of CAR T-cell therapies in the treatment of r/r DLBCL and r/r FL.

Please note, this webinar is not intended for healthcare professionals based in the US and UK.

Sponsored by:
  • Novartis Pharma AG
Chaired by: Prof. Martin Dreyling
Developed by: Springer Healthcare
Watch now