Skip to main content
Top
Published in:

Open Access 01-12-2023 | Metastasis | Review

Flavonoids target different molecules of autophagic and metastatic pathways in cancer cells

Authors: Aysooda Hosseinzadeh, Faezeh Poursoleiman, Akram Naghdipour Biregani, Ahmad Esmailzadeh

Published in: Cancer Cell International | Issue 1/2023

Login to get access

Abstract

Despite the success of cancer therapy, it has encountered a major obstacle due to the complicated nature of cancer, namely resistance. The recurrence and metastasis of cancer occur when anti-cancer therapeutic agents fail to eradicate all cancer cells. Cancer therapy aims to find the best agent that targets all cancer cells, including those sensitive or resistant to treatment. Flavonoids, natural products from our diet, show anti-cancer effects in different studies. They can inhibit metastasis and the recurrence of cancers. This review discusses metastasis, autophagy, anoikis in cancer cells, and their dynamic relationship. We present evidence that flavonoids can block metastasis and induce cell death in cancer cells. Our research suggests that flavonoids can serve as potential therapeutic agents in cancer therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kumar S, Pandey AK. Chemistry and Biological Activities of Flavonoids: An Overview. Sci World J. 2013;2013. Kumar S, Pandey AK. Chemistry and Biological Activities of Flavonoids: An Overview. Sci World J. 2013;2013.
2.
go back to reference Wang T-y, Li Q, Bi K-s. Bioactive flavonoids in medicinal plants: structure, activity and biological fate. Asian J Pharm Sci. 2018;13(1):12–23.PubMedCrossRef Wang T-y, Li Q, Bi K-s. Bioactive flavonoids in medicinal plants: structure, activity and biological fate. Asian J Pharm Sci. 2018;13(1):12–23.PubMedCrossRef
5.
go back to reference Singh M, Yelle N, Venugopal C, Singh SK. EMT: mechanisms and therapeutic implications. Pharmacol Ther. 2018;182:80–94.PubMedCrossRef Singh M, Yelle N, Venugopal C, Singh SK. EMT: mechanisms and therapeutic implications. Pharmacol Ther. 2018;182:80–94.PubMedCrossRef
6.
go back to reference Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, et al. editors. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin Cancer Biol; 2015: Elsevier. Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, et al. editors. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin Cancer Biol; 2015: Elsevier.
7.
go back to reference Babaei G, Aziz SG-G, Jaghi NZZ. EMT, cancer stem cells and autophagy; the three main axes of metastasis. Biomed Pharmacother. 2021;133:110909.PubMedCrossRef Babaei G, Aziz SG-G, Jaghi NZZ. EMT, cancer stem cells and autophagy; the three main axes of metastasis. Biomed Pharmacother. 2021;133:110909.PubMedCrossRef
8.
go back to reference Huang F, Wang B-R, Wang Y-G. Role of autophagy in tumorigenesis, metastasis, targeted therapy and drug resistance of hepatocellular carcinoma. World J Gastroenterol. 2018;24(41):4643.PubMedPubMedCentralCrossRef Huang F, Wang B-R, Wang Y-G. Role of autophagy in tumorigenesis, metastasis, targeted therapy and drug resistance of hepatocellular carcinoma. World J Gastroenterol. 2018;24(41):4643.PubMedPubMedCentralCrossRef
9.
10.
go back to reference Farhan M, Silva M, Li S, Yan F, Fang J, Peng T, et al. The role of FOXOs and autophagy in cancer and metastasis—implications in therapeutic development. Med Res Rev. 2020;40(6):2089–113.PubMedPubMedCentralCrossRef Farhan M, Silva M, Li S, Yan F, Fang J, Peng T, et al. The role of FOXOs and autophagy in cancer and metastasis—implications in therapeutic development. Med Res Rev. 2020;40(6):2089–113.PubMedPubMedCentralCrossRef
11.
go back to reference Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17(9):528–42.PubMedCrossRef Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17(9):528–42.PubMedCrossRef
15.
go back to reference Ke B, Tian M, Li J, Liu B, He G. Targeting programmed cell death using small-molecule compounds to improve potential cancer therapy. Med Res Rev. 2016;36(6):983–1035.PubMedCrossRef Ke B, Tian M, Li J, Liu B, He G. Targeting programmed cell death using small-molecule compounds to improve potential cancer therapy. Med Res Rev. 2016;36(6):983–1035.PubMedCrossRef
17.
go back to reference Zhu Y, Zhao L, Liu L, Gao P, Tian W, Wang X, et al. Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis. Protein Cell. 2010;1(5):468–77.PubMedPubMedCentralCrossRef Zhu Y, Zhao L, Liu L, Gao P, Tian W, Wang X, et al. Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis. Protein Cell. 2010;1(5):468–77.PubMedPubMedCentralCrossRef
18.
go back to reference Zhu X, Huang L, Gong J, Shi C, Wang Z, Ye B, et al. NF-κB pathway link with ER stress-induced autophagy and apoptosis in cervical tumor cells. Cell Death Discov. 2017;3(1):1–8.CrossRef Zhu X, Huang L, Gong J, Shi C, Wang Z, Ye B, et al. NF-κB pathway link with ER stress-induced autophagy and apoptosis in cervical tumor cells. Cell Death Discov. 2017;3(1):1–8.CrossRef
19.
go back to reference Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I, et al. Caspase-mediated cleavage of Beclin-1 inactivates beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis. 2010;1(1):e18–e.PubMedPubMedCentralCrossRef Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I, et al. Caspase-mediated cleavage of Beclin-1 inactivates beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis. 2010;1(1):e18–e.PubMedPubMedCentralCrossRef
20.
go back to reference Puissant A, Auberger P. AMPK-and p62/SQSTM1-dependent autophagy mediate resveratrol-induced cell death in chronic myelogenous leukemia. Autophagy. 2010;6(5):655–7.PubMedCrossRef Puissant A, Auberger P. AMPK-and p62/SQSTM1-dependent autophagy mediate resveratrol-induced cell death in chronic myelogenous leukemia. Autophagy. 2010;6(5):655–7.PubMedCrossRef
21.
go back to reference Chatterjee SJ, Pandey S. Chemo-resistant melanoma sensitized by tamoxifen to low dose curcumin treatment through induction of apoptosis and autophagy. Cancer Biol Ther. 2011;11(2):216–28.PubMedCrossRef Chatterjee SJ, Pandey S. Chemo-resistant melanoma sensitized by tamoxifen to low dose curcumin treatment through induction of apoptosis and autophagy. Cancer Biol Ther. 2011;11(2):216–28.PubMedCrossRef
22.
go back to reference Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol. 2007;72(1):29–39.PubMedCrossRef Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol. 2007;72(1):29–39.PubMedCrossRef
23.
go back to reference Zhang L, Cheng X, Gao Y, Zheng J, Xu Q, Sun Y, et al. Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells. Food Funct. 2015;6(11):3464–72.PubMedCrossRef Zhang L, Cheng X, Gao Y, Zheng J, Xu Q, Sun Y, et al. Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells. Food Funct. 2015;6(11):3464–72.PubMedCrossRef
24.
go back to reference Lin C-M, Chen H-H, Lin C-A, Wu H-C, Sheu JJ-C, Chen H-J. Apigenin-induced lysosomal degradation of β-catenin in Wnt/β-catenin signaling. Sci Rep. 2017;7(1):1–17. Lin C-M, Chen H-H, Lin C-A, Wu H-C, Sheu JJ-C, Chen H-J. Apigenin-induced lysosomal degradation of β-catenin in Wnt/β-catenin signaling. Sci Rep. 2017;7(1):1–17.
25.
go back to reference Lang F, Qin Z, Li F, Zhang H, Fang Z, Hao E. Apoptotic cell death induced by resveratrol is partially mediated by the autophagy pathway in human ovarian cancer cells. PLoS ONE. 2015;10(6):e0129196.PubMedPubMedCentralCrossRef Lang F, Qin Z, Li F, Zhang H, Fang Z, Hao E. Apoptotic cell death induced by resveratrol is partially mediated by the autophagy pathway in human ovarian cancer cells. PLoS ONE. 2015;10(6):e0129196.PubMedPubMedCentralCrossRef
26.
go back to reference Suh Y, Afaq F, Khan N, Johnson JJ, Khusro FH, Mukhtar H. Fisetin induces autophagic cell death through suppression of mTOR signaling pathway in prostate cancer cells. Carcinogenesis. 2010;31(8):1424–33.PubMedPubMedCentralCrossRef Suh Y, Afaq F, Khan N, Johnson JJ, Khusro FH, Mukhtar H. Fisetin induces autophagic cell death through suppression of mTOR signaling pathway in prostate cancer cells. Carcinogenesis. 2010;31(8):1424–33.PubMedPubMedCentralCrossRef
27.
go back to reference Jia S, Xu X, Zhou S, Chen Y, Ding G, Cao L. Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress-and mitochondrial stress-dependent pathways. Cell Death Dis. 2019;10(2):1–15.CrossRef Jia S, Xu X, Zhou S, Chen Y, Ding G, Cao L. Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress-and mitochondrial stress-dependent pathways. Cell Death Dis. 2019;10(2):1–15.CrossRef
28.
go back to reference Zheng N, Zhang P, Huang H, Liu W, Hayashi T, Zang L, et al. ERα down-regulation plays a key role in silibinin-induced autophagy and apoptosis in human breast cancer MCF-7 cells. J Pharmacol Sci. 2015;128(3):97–107.PubMedCrossRef Zheng N, Zhang P, Huang H, Liu W, Hayashi T, Zang L, et al. ERα down-regulation plays a key role in silibinin-induced autophagy and apoptosis in human breast cancer MCF-7 cells. J Pharmacol Sci. 2015;128(3):97–107.PubMedCrossRef
29.
go back to reference Li F, Ma Z, Guan Z, Chen Y, Wu K, Guo P, et al. Autophagy induction by silibinin positively contributes to its anti-metastatic capacity via AMPK/mTOR pathway in renal cell carcinoma. Int J Mol Sci. 2015;16(4):8415–29.PubMedPubMedCentralCrossRef Li F, Ma Z, Guan Z, Chen Y, Wu K, Guo P, et al. Autophagy induction by silibinin positively contributes to its anti-metastatic capacity via AMPK/mTOR pathway in renal cell carcinoma. Int J Mol Sci. 2015;16(4):8415–29.PubMedPubMedCentralCrossRef
30.
go back to reference Mowers EE, Sharifi MN, Macleod KF. Autophagy in cancer metastasis. Oncogene. 2017;36(12):1619–30.PubMedCrossRef Mowers EE, Sharifi MN, Macleod KF. Autophagy in cancer metastasis. Oncogene. 2017;36(12):1619–30.PubMedCrossRef
31.
go back to reference Su Z, Yang Z, Xu Y, Chen Y, Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer. 2015;14(1):1–14.CrossRef Su Z, Yang Z, Xu Y, Chen Y, Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer. 2015;14(1):1–14.CrossRef
32.
go back to reference Dower CM, Wills CA, Frisch SM, Wang H-G. Mechanisms and context underlying the role of autophagy in cancer metastasis. Autophagy. 2018;14(7):1110–28.PubMedPubMedCentralCrossRef Dower CM, Wills CA, Frisch SM, Wang H-G. Mechanisms and context underlying the role of autophagy in cancer metastasis. Autophagy. 2018;14(7):1110–28.PubMedPubMedCentralCrossRef
33.
go back to reference Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13(1):1–16.CrossRef Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13(1):1–16.CrossRef
34.
go back to reference Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, et al. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 2021;6(1):1–24.PubMedPubMedCentral Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, et al. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 2021;6(1):1–24.PubMedPubMedCentral
35.
36.
go back to reference Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang T, et al. Targeting wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci. 2013;110(50):20224–9.PubMedPubMedCentralCrossRef Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang T, et al. Targeting wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci. 2013;110(50):20224–9.PubMedPubMedCentralCrossRef
37.
go back to reference Ghedalia-Peled NB, Cohen-Erez I, Rapaport H, Vago R. Aggressiveness of 4T1 breast cancer cells hampered by wnt production-2 inhibitor nanoparticles: an in vitro study. Int J Pharm. 2021;596:120208.PubMedCrossRef Ghedalia-Peled NB, Cohen-Erez I, Rapaport H, Vago R. Aggressiveness of 4T1 breast cancer cells hampered by wnt production-2 inhibitor nanoparticles: an in vitro study. Int J Pharm. 2021;596:120208.PubMedCrossRef
38.
go back to reference Do M, Wu CC, Sonavane PR, Juarez EF, Adams SR, Ross J, et al. A FZD7-specific antibody–drug Conjugate induces ovarian Tumor Regression in Preclinical Models. Mol Cancer Ther. 2022;21(1):113–24.PubMedCrossRef Do M, Wu CC, Sonavane PR, Juarez EF, Adams SR, Ross J, et al. A FZD7-specific antibody–drug Conjugate induces ovarian Tumor Regression in Preclinical Models. Mol Cancer Ther. 2022;21(1):113–24.PubMedCrossRef
39.
go back to reference Kamran MZ, Patil P, Gude RP. Role of STAT3 in cancer metastasis and translational advances. Biomed Res Int. 2013;2013. Kamran MZ, Patil P, Gude RP. Role of STAT3 in cancer metastasis and translational advances. Biomed Res Int. 2013;2013.
40.
go back to reference Thilakasiri PS, Dmello RS, Nero TL, Parker MW, Ernst M, Chand AL, editors. Repurposing of drugs as STAT3 inhibitors for cancer therapy. Semin Cancer Biol; 2021: Elsevier. Thilakasiri PS, Dmello RS, Nero TL, Parker MW, Ernst M, Chand AL, editors. Repurposing of drugs as STAT3 inhibitors for cancer therapy. Semin Cancer Biol; 2021: Elsevier.
41.
go back to reference Liu Y, Liao S, Bennett S, Tang H, Song D, Wood D, et al. STAT3 and its targeting inhibitors in osteosarcoma. Cell Prolif. 2021;54(2):e12974.PubMedCrossRef Liu Y, Liao S, Bennett S, Tang H, Song D, Wood D, et al. STAT3 and its targeting inhibitors in osteosarcoma. Cell Prolif. 2021;54(2):e12974.PubMedCrossRef
42.
go back to reference Abdin SM, Tolba MF, Zaher DM, Omar HA. Nuclear factor-κB signaling inhibitors revert multidrug-resistance in breast cancer cells. Chem Biol Interact. 2021;340:109450.PubMedCrossRef Abdin SM, Tolba MF, Zaher DM, Omar HA. Nuclear factor-κB signaling inhibitors revert multidrug-resistance in breast cancer cells. Chem Biol Interact. 2021;340:109450.PubMedCrossRef
43.
go back to reference Tajbakhsh A, Rivandi M, Abedini S, Pasdar A, Sahebkar A. Regulators and mechanisms of anoikis in triple-negative breast cancer (TNBC): a review. Crit Rev Oncol Hematol. 2019;140:17–27.PubMedCrossRef Tajbakhsh A, Rivandi M, Abedini S, Pasdar A, Sahebkar A. Regulators and mechanisms of anoikis in triple-negative breast cancer (TNBC): a review. Crit Rev Oncol Hematol. 2019;140:17–27.PubMedCrossRef
44.
go back to reference Suhail M, Tarique M, Muhammad N, Naz H, Hafeez A, Zughaibi TA, et al. A critical transcription factor NF-κB as a cancer therapeutic target and its inhibitors as cancer treatment options. Curr Med Chem. 2021;28(21):4117–32.PubMedCrossRef Suhail M, Tarique M, Muhammad N, Naz H, Hafeez A, Zughaibi TA, et al. A critical transcription factor NF-κB as a cancer therapeutic target and its inhibitors as cancer treatment options. Curr Med Chem. 2021;28(21):4117–32.PubMedCrossRef
45.
go back to reference Miller SC, Huang R, Sakamuru S, Shukla SJ, Attene-Ramos MS, Shinn P, et al. Identification of known drugs that act as inhibitors of NF-κB signaling and their mechanism of action. Biochem Pharmacol. 2010;79(9):1272–80.PubMedPubMedCentralCrossRef Miller SC, Huang R, Sakamuru S, Shukla SJ, Attene-Ramos MS, Shinn P, et al. Identification of known drugs that act as inhibitors of NF-κB signaling and their mechanism of action. Biochem Pharmacol. 2010;79(9):1272–80.PubMedPubMedCentralCrossRef
46.
go back to reference Murtaza I, Adhami VM, Hafeez BB, Saleem M, Mukhtar H. Fisetin, a natural flavonoid, targets chemoresistant human pancreatic cancer AsPC-1 cells through DR3‐mediated inhibition of NF‐κB. Int J Cancer. 2009;125(10):2465–73.PubMedPubMedCentralCrossRef Murtaza I, Adhami VM, Hafeez BB, Saleem M, Mukhtar H. Fisetin, a natural flavonoid, targets chemoresistant human pancreatic cancer AsPC-1 cells through DR3‐mediated inhibition of NF‐κB. Int J Cancer. 2009;125(10):2465–73.PubMedPubMedCentralCrossRef
47.
go back to reference Zhang X-J, Jia S-S. Fisetin inhibits laryngeal carcinoma through regulation of AKT/NF-κB/mTOR and ERK1/2 signaling pathways. Biomed Pharmacother. 2016;83:1164–74.PubMedCrossRef Zhang X-J, Jia S-S. Fisetin inhibits laryngeal carcinoma through regulation of AKT/NF-κB/mTOR and ERK1/2 signaling pathways. Biomed Pharmacother. 2016;83:1164–74.PubMedCrossRef
48.
go back to reference Khan N, Asim M, Afaq F, Zaid MA, Mukhtar H. A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic nude mice. Cancer Res. 2008;68(20):8555–63.PubMedPubMedCentralCrossRef Khan N, Asim M, Afaq F, Zaid MA, Mukhtar H. A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic nude mice. Cancer Res. 2008;68(20):8555–63.PubMedPubMedCentralCrossRef
49.
go back to reference Jeng LB, Kumar Velmurugan B, Chen MC, Hsu HH, Ho TJ, Day CH, et al. Fisetin mediated apoptotic cell death in parental and Oxaliplatin/irinotecan resistant colorectal cancer cells in vitro and in vivo. J Cell Physiol. 2018;233(9):7134–42.PubMedCrossRef Jeng LB, Kumar Velmurugan B, Chen MC, Hsu HH, Ho TJ, Day CH, et al. Fisetin mediated apoptotic cell death in parental and Oxaliplatin/irinotecan resistant colorectal cancer cells in vitro and in vivo. J Cell Physiol. 2018;233(9):7134–42.PubMedCrossRef
50.
go back to reference Lin M-T, Lin C-L, Lin T-Y, Cheng C-W, Yang S-F, Lin C-L, et al. Synergistic effect of fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway. Tumor Biol. 2016;37(5):6987–96.CrossRef Lin M-T, Lin C-L, Lin T-Y, Cheng C-W, Yang S-F, Lin C-L, et al. Synergistic effect of fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway. Tumor Biol. 2016;37(5):6987–96.CrossRef
51.
go back to reference Casella ML, Parody JP, Ceballos MP, Quiroga AD, Ronco MT, Francés DE, et al. Quercetin prevents liver carcinogenesis by inducing cell cycle arrest, decreasing cell proliferation and enhancing apoptosis. Mol Nutr Food Res. 2014;58(2):289–300.PubMedCrossRef Casella ML, Parody JP, Ceballos MP, Quiroga AD, Ronco MT, Francés DE, et al. Quercetin prevents liver carcinogenesis by inducing cell cycle arrest, decreasing cell proliferation and enhancing apoptosis. Mol Nutr Food Res. 2014;58(2):289–300.PubMedCrossRef
52.
go back to reference Pratheeshkumar P, Budhraja A, Son Y-O, Wang X, Zhang Z, Ding S et al. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR-2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS ONE. 2012;7(10). Pratheeshkumar P, Budhraja A, Son Y-O, Wang X, Zhang Z, Ding S et al. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR-2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS ONE. 2012;7(10).
53.
go back to reference Rivera AR, Castillo-Pichardo L, Gerena Y, Dharmawardhane S. Anti-breast cancer potential of quercetin via the Akt/AMPK/mammalian target of rapamycin (mTOR) signaling cascade. PLoS ONE. 2016;11(6). Rivera AR, Castillo-Pichardo L, Gerena Y, Dharmawardhane S. Anti-breast cancer potential of quercetin via the Akt/AMPK/mammalian target of rapamycin (mTOR) signaling cascade. PLoS ONE. 2016;11(6).
54.
go back to reference Mouria M, Gukovskaya AS, Jung Y, Buechler P, Hines OJ, Reber HA, et al. Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. Int J Cancer. 2002;98(5):761–9.PubMedCrossRef Mouria M, Gukovskaya AS, Jung Y, Buechler P, Hines OJ, Reber HA, et al. Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. Int J Cancer. 2002;98(5):761–9.PubMedCrossRef
55.
go back to reference Jung M, Bu SY, Tak K-H, Park J-E, Kim E. Anticarcinogenic effect of quercetin by inhibition of insulin-like growth factor (IGF)-1 signaling in mouse skin cancer. Nutr Res Pract. 2013;7(6):439–45.PubMedPubMedCentralCrossRef Jung M, Bu SY, Tak K-H, Park J-E, Kim E. Anticarcinogenic effect of quercetin by inhibition of insulin-like growth factor (IGF)-1 signaling in mouse skin cancer. Nutr Res Pract. 2013;7(6):439–45.PubMedPubMedCentralCrossRef
56.
go back to reference Wu K, Ning Z, Zeng J, Fan J, Zhou J, Zhang T, et al. Silibinin inhibits β-catenin/ZEB1 signaling and suppresses bladder cancer metastasis via dual-blocking epithelial–mesenchymal transition and stemness. Cell Signal. 2013;25(12):2625–33.PubMedCrossRef Wu K, Ning Z, Zeng J, Fan J, Zhou J, Zhang T, et al. Silibinin inhibits β-catenin/ZEB1 signaling and suppresses bladder cancer metastasis via dual-blocking epithelial–mesenchymal transition and stemness. Cell Signal. 2013;25(12):2625–33.PubMedCrossRef
57.
go back to reference Sancho P, Burgos-Ramos E, Tavera A, Kheir TB, Jagust P, Schoenhals M, et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab. 2015;22(4):590–605.PubMedCrossRef Sancho P, Burgos-Ramos E, Tavera A, Kheir TB, Jagust P, Schoenhals M, et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab. 2015;22(4):590–605.PubMedCrossRef
58.
go back to reference Seo H-S, Jo JK, Ku JM, Choi H-S, Choi YK, Woo J-K et al. Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells. Biosci Rep. 2015;35(6). Seo H-S, Jo JK, Ku JM, Choi H-S, Choi YK, Woo J-K et al. Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells. Biosci Rep. 2015;35(6).
59.
go back to reference Liu X, Li L, Lv L, Chen D, Shen L, Xie Z. Apigenin inhibits the proliferation and invasion of osteosarcoma cells by suppressing the Wnt/β-catenin signaling pathway. Oncol Rep. 2015;34(2):1035–41.PubMedCrossRef Liu X, Li L, Lv L, Chen D, Shen L, Xie Z. Apigenin inhibits the proliferation and invasion of osteosarcoma cells by suppressing the Wnt/β-catenin signaling pathway. Oncol Rep. 2015;34(2):1035–41.PubMedCrossRef
60.
go back to reference Zhao G, Han X, Zheng S, Li Z, Sha Y, Ni J, et al. Curcumin induces autophagy, inhibits proliferation and invasion by downregulating AKT/mTOR signaling pathway in human melanoma cells. Oncol Rep. 2016;35(2):1065–74.PubMedCrossRef Zhao G, Han X, Zheng S, Li Z, Sha Y, Ni J, et al. Curcumin induces autophagy, inhibits proliferation and invasion by downregulating AKT/mTOR signaling pathway in human melanoma cells. Oncol Rep. 2016;35(2):1065–74.PubMedCrossRef
61.
go back to reference Masuelli L, Benvenuto M, Di Stefano E, Mattera R, Fantini M, De Feudis G, et al. Curcumin blocks autophagy and activates apoptosis of malignant mesothelioma cell lines and increases the survival of mice intraperitoneally transplanted with a malignant mesothelioma cell line. Oncotarget. 2017;8(21):34405.PubMedPubMedCentralCrossRef Masuelli L, Benvenuto M, Di Stefano E, Mattera R, Fantini M, De Feudis G, et al. Curcumin blocks autophagy and activates apoptosis of malignant mesothelioma cell lines and increases the survival of mice intraperitoneally transplanted with a malignant mesothelioma cell line. Oncotarget. 2017;8(21):34405.PubMedPubMedCentralCrossRef
62.
go back to reference Khan N, Adhami VM, Afaq F, Mukhtar H. Butein induces apoptosis and inhibits prostate tumor growth in vitro and in vivo. Antioxid Redox Signal. 2012;16(11):1195–204.PubMedPubMedCentralCrossRef Khan N, Adhami VM, Afaq F, Mukhtar H. Butein induces apoptosis and inhibits prostate tumor growth in vitro and in vivo. Antioxid Redox Signal. 2012;16(11):1195–204.PubMedPubMedCentralCrossRef
63.
go back to reference Wani ZA, Guru SK, Rao AS, Sharma S, Mahajan G, Behl A, et al. A novel quinazolinone chalcone derivative induces mitochondrial dependent apoptosis and inhibits PI3K/Akt/mTOR signaling pathway in human colon cancer HCT-116 cells. Food Chem Toxicol. 2016;87:1–11.PubMedCrossRef Wani ZA, Guru SK, Rao AS, Sharma S, Mahajan G, Behl A, et al. A novel quinazolinone chalcone derivative induces mitochondrial dependent apoptosis and inhibits PI3K/Akt/mTOR signaling pathway in human colon cancer HCT-116 cells. Food Chem Toxicol. 2016;87:1–11.PubMedCrossRef
64.
go back to reference Lin D, Kuang G, Wan J, Zhang X, Li H, Gong X, et al. Luteolin suppresses the metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via downregulation of β-catenin expression. Oncol Rep. 2017;37(2):895–902.PubMedCrossRef Lin D, Kuang G, Wan J, Zhang X, Li H, Gong X, et al. Luteolin suppresses the metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via downregulation of β-catenin expression. Oncol Rep. 2017;37(2):895–902.PubMedCrossRef
65.
go back to reference Yao Y, Rao C, Zheng G, Wang S. Luteolin suppresses colorectal cancer cell metastasis via regulation of the miR–384/pleiotrophin axis. Oncol Rep. 2019;42(1):131–41.PubMedPubMedCentralCrossRef Yao Y, Rao C, Zheng G, Wang S. Luteolin suppresses colorectal cancer cell metastasis via regulation of the miR–384/pleiotrophin axis. Oncol Rep. 2019;42(1):131–41.PubMedPubMedCentralCrossRef
66.
go back to reference Frey RS, Singletary KW. Genistein activates p38 mitogen-activated protein kinase, inactivates ERK1/ERK2 and decreases Cdc25C expression in immortalized human mammary epithelial cells. J Nutr. 2003;133(1):226–31.PubMedCrossRef Frey RS, Singletary KW. Genistein activates p38 mitogen-activated protein kinase, inactivates ERK1/ERK2 and decreases Cdc25C expression in immortalized human mammary epithelial cells. J Nutr. 2003;133(1):226–31.PubMedCrossRef
67.
go back to reference Wang H, Luo Y, Qiao T, Wu Z, Huang Z. Luteolin sensitizes the antitumor effect of cisplatin in drug-resistant ovarian cancer via induction of apoptosis and inhibition of cell migration and invasion. J Ovarian Res. 2018;11(1):93.PubMedPubMedCentralCrossRef Wang H, Luo Y, Qiao T, Wu Z, Huang Z. Luteolin sensitizes the antitumor effect of cisplatin in drug-resistant ovarian cancer via induction of apoptosis and inhibition of cell migration and invasion. J Ovarian Res. 2018;11(1):93.PubMedPubMedCentralCrossRef
68.
go back to reference Liu H, Zeng Z, Wang S, Li T, Mastriani E, Li Q-H, et al. Main components of pomegranate, ellagic acid and luteolin, inhibit metastasis of ovarian cancer by down-regulating MMP2 and MMP9. Cancer Biol Ther. 2017;18(12):990–9.PubMedPubMedCentralCrossRef Liu H, Zeng Z, Wang S, Li T, Mastriani E, Li Q-H, et al. Main components of pomegranate, ellagic acid and luteolin, inhibit metastasis of ovarian cancer by down-regulating MMP2 and MMP9. Cancer Biol Ther. 2017;18(12):990–9.PubMedPubMedCentralCrossRef
69.
go back to reference Bartmańska A, Tronina T, Popłoński J, Milczarek M, Filip-Psurska B, Wietrzyk J. Highly cancer selective antiproliferative activity of natural prenylated flavonoids. Molecules. 2018;23(11):2922.PubMedPubMedCentralCrossRef Bartmańska A, Tronina T, Popłoński J, Milczarek M, Filip-Psurska B, Wietrzyk J. Highly cancer selective antiproliferative activity of natural prenylated flavonoids. Molecules. 2018;23(11):2922.PubMedPubMedCentralCrossRef
70.
go back to reference Khan N, Afaq F, Syed DN, Mukhtar H. Fisetin, a novel dietary flavonoid, causes apoptosis and cell cycle arrest in human prostate cancer LNCaP cells. Carcinogenesis. 2008;29(5):1049–56.PubMedPubMedCentralCrossRef Khan N, Afaq F, Syed DN, Mukhtar H. Fisetin, a novel dietary flavonoid, causes apoptosis and cell cycle arrest in human prostate cancer LNCaP cells. Carcinogenesis. 2008;29(5):1049–56.PubMedPubMedCentralCrossRef
71.
go back to reference Shimizu M, Deguchi A, Lim JT, Moriwaki H, Kopelovich L, Weinstein IB. (–)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clin Cancer Res. 2005;11(7):2735–46.PubMedCrossRef Shimizu M, Deguchi A, Lim JT, Moriwaki H, Kopelovich L, Weinstein IB. (–)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clin Cancer Res. 2005;11(7):2735–46.PubMedCrossRef
72.
go back to reference Li S, Yuan S, Zhao Q, Wang B, Wang X, Li K. Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it. Biomed Pharmacother. 2018;100:441–7.PubMedCrossRef Li S, Yuan S, Zhao Q, Wang B, Wang X, Li K. Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it. Biomed Pharmacother. 2018;100:441–7.PubMedCrossRef
73.
go back to reference Alataki A, Dowsett M. Human epidermal growth factor receptor-2 and endocrine resistance in hormone-dependent breast cancer. Endocr Relat Cancer. 2022;1(aop). Alataki A, Dowsett M. Human epidermal growth factor receptor-2 and endocrine resistance in hormone-dependent breast cancer. Endocr Relat Cancer. 2022;1(aop).
74.
go back to reference Girisa S, Saikia Q, Bordoloi D, Banik K, Monisha J, Daimary UD, et al. Xanthohumol from hop: hope for cancer prevention and treatment. IUBMB Life. 2021;73(8):1016–44.PubMedCrossRef Girisa S, Saikia Q, Bordoloi D, Banik K, Monisha J, Daimary UD, et al. Xanthohumol from hop: hope for cancer prevention and treatment. IUBMB Life. 2021;73(8):1016–44.PubMedCrossRef
75.
go back to reference Vanhoecke BW, Delporte F, Van Braeckel E, Heyerick A, Depypere HT, Nuytinck M, et al. A safety study of oral tangeretin and xanthohumol administration to laboratory mice. In vivo. 2005;19(1):103–7.PubMed Vanhoecke BW, Delporte F, Van Braeckel E, Heyerick A, Depypere HT, Nuytinck M, et al. A safety study of oral tangeretin and xanthohumol administration to laboratory mice. In vivo. 2005;19(1):103–7.PubMed
76.
go back to reference Kumar NB, Pow-Sang J, Spiess PE, Park J, Salup R, Williams CR, et al. Randomized, placebo-controlled trial evaluating the safety of one-year administration of green tea catechins. Oncotarget. 2016;7(43):70794.PubMedPubMedCentralCrossRef Kumar NB, Pow-Sang J, Spiess PE, Park J, Salup R, Williams CR, et al. Randomized, placebo-controlled trial evaluating the safety of one-year administration of green tea catechins. Oncotarget. 2016;7(43):70794.PubMedPubMedCentralCrossRef
77.
go back to reference Kumar NB, Pow-Sang J, Egan KM, Spiess PE, Dickinson S, Salup R, et al. Randomized, Placebo-Controlled Trial of Green Tea catechins for prostate Cancer PreventionGreen Tea catechins and prostate Cancer. Cancer Prev Res. 2015;8(10):879–87.CrossRef Kumar NB, Pow-Sang J, Egan KM, Spiess PE, Dickinson S, Salup R, et al. Randomized, Placebo-Controlled Trial of Green Tea catechins for prostate Cancer PreventionGreen Tea catechins and prostate Cancer. Cancer Prev Res. 2015;8(10):879–87.CrossRef
78.
go back to reference Zhu W, Mei H, Jia L, Zhao H, Li X, Meng X, et al. Epigallocatechin-3-gallate mouthwash protects mucosa from radiation-induced mucositis in head and neck cancer patients: a prospective, non-randomised, phase 1 trial. Invest New Drugs. 2020;38:1129–36.PubMedCrossRef Zhu W, Mei H, Jia L, Zhao H, Li X, Meng X, et al. Epigallocatechin-3-gallate mouthwash protects mucosa from radiation-induced mucositis in head and neck cancer patients: a prospective, non-randomised, phase 1 trial. Invest New Drugs. 2020;38:1129–36.PubMedCrossRef
79.
go back to reference Zhao H, Zhu W, Jia L, Sun X, Chen G, Zhao X, et al. Phase I study of topical epigallocatechin-3-gallate (EGCG) in patients with breast cancer receiving adjuvant radiotherapy. Br J Radiol. 2016;89(1058):20150665.PubMedCrossRef Zhao H, Zhu W, Jia L, Sun X, Chen G, Zhao X, et al. Phase I study of topical epigallocatechin-3-gallate (EGCG) in patients with breast cancer receiving adjuvant radiotherapy. Br J Radiol. 2016;89(1058):20150665.PubMedCrossRef
80.
go back to reference Trudel D, Labbé DP, Araya-Farias M, Doyen A, Bazinet L, Duchesne T, et al. A two-stage, single-arm, phase II study of EGCG-enriched green tea drink as a maintenance therapy in women with advanced stage ovarian cancer. Gynecol Oncol. 2013;131(2):357–61.PubMedCrossRef Trudel D, Labbé DP, Araya-Farias M, Doyen A, Bazinet L, Duchesne T, et al. A two-stage, single-arm, phase II study of EGCG-enriched green tea drink as a maintenance therapy in women with advanced stage ovarian cancer. Gynecol Oncol. 2013;131(2):357–61.PubMedCrossRef
81.
go back to reference Zhao H, Zhu W, Xie P, Li H, Zhang X, Sun X, et al. A phase I study of concurrent chemotherapy and thoracic radiotherapy with oral epigallocatechin-3-gallate protection in patients with locally advanced stage III non-small-cell lung cancer. Radiother Oncol. 2014;110(1):132–6.PubMedCrossRef Zhao H, Zhu W, Xie P, Li H, Zhang X, Sun X, et al. A phase I study of concurrent chemotherapy and thoracic radiotherapy with oral epigallocatechin-3-gallate protection in patients with locally advanced stage III non-small-cell lung cancer. Radiother Oncol. 2014;110(1):132–6.PubMedCrossRef
82.
go back to reference Almatroodi SA, Almatroudi A, Khan AA, Alhumaydhi FA, Alsahli MA, Rahmani AH. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules. 2020;25(14):3146.PubMedPubMedCentralCrossRef Almatroodi SA, Almatroudi A, Khan AA, Alhumaydhi FA, Alsahli MA, Rahmani AH. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules. 2020;25(14):3146.PubMedPubMedCentralCrossRef
83.
go back to reference Jing-Jing L, Qi-Hua G, Min L, Hua-Ping Y, Li-Ming C, Cheng-Ping H. Role of Ku70 and bax in epigallocatechin-3-gallate–induced apoptosis of A549 cells in vivo. Oncol Lett. 2013;5(1):101–6.CrossRef Jing-Jing L, Qi-Hua G, Min L, Hua-Ping Y, Li-Ming C, Cheng-Ping H. Role of Ku70 and bax in epigallocatechin-3-gallate–induced apoptosis of A549 cells in vivo. Oncol Lett. 2013;5(1):101–6.CrossRef
84.
go back to reference Kausar H, Jeyabalan J, Aqil F, Chabba D, Sidana J, Singh IP, et al. Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells. Cancer Lett. 2012;325(1):54–62.PubMedCrossRef Kausar H, Jeyabalan J, Aqil F, Chabba D, Sidana J, Singh IP, et al. Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells. Cancer Lett. 2012;325(1):54–62.PubMedCrossRef
85.
go back to reference Martínez-Pérez C, Ward C, Turnbull AK, Mullen P, Cook G, Meehan J, et al. Antitumour activity of the novel flavonoid oncamex in preclinical breast cancer models. Br J Cancer. 2016;114(8):905–16.PubMedPubMedCentralCrossRef Martínez-Pérez C, Ward C, Turnbull AK, Mullen P, Cook G, Meehan J, et al. Antitumour activity of the novel flavonoid oncamex in preclinical breast cancer models. Br J Cancer. 2016;114(8):905–16.PubMedPubMedCentralCrossRef
86.
go back to reference Chien M-H, Lin Y-W, Wen Y-C, Yang Y-C, Hsiao M, Chang J-L, et al. Targeting the SPOCK1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis. J Exp Clin Cancer Res. 2019;38(1):1–17.CrossRef Chien M-H, Lin Y-W, Wen Y-C, Yang Y-C, Hsiao M, Chang J-L, et al. Targeting the SPOCK1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis. J Exp Clin Cancer Res. 2019;38(1):1–17.CrossRef
87.
go back to reference Wei R, Cortez Penso NE, Hackman RM, Wang Y, Mackenzie GG. Epigallocatechin-3-gallate (EGCG) suppresses pancreatic cancer cell growth, invasion, and migration partly through the inhibition of akt pathway and epithelial–mesenchymal transition: enhanced efficacy when combined with gemcitabine. Nutrients. 2019;11(8):1856.PubMedPubMedCentralCrossRef Wei R, Cortez Penso NE, Hackman RM, Wang Y, Mackenzie GG. Epigallocatechin-3-gallate (EGCG) suppresses pancreatic cancer cell growth, invasion, and migration partly through the inhibition of akt pathway and epithelial–mesenchymal transition: enhanced efficacy when combined with gemcitabine. Nutrients. 2019;11(8):1856.PubMedPubMedCentralCrossRef
88.
go back to reference Falzone L, Salomone S, Libra M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front Pharmacol. 2018:1300. Falzone L, Salomone S, Libra M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front Pharmacol. 2018:1300.
89.
go back to reference Liskova A, Samec M, Koklesova L, Brockmueller A, Zhai K, Abdellatif B, et al. Flavonoids as an effective sensitizer for anti-cancer therapy: insights into multi-faceted mechanisms and applicability towards individualized patient profiles. EPMA J. 2021;12(2):155–76.PubMedPubMedCentralCrossRef Liskova A, Samec M, Koklesova L, Brockmueller A, Zhai K, Abdellatif B, et al. Flavonoids as an effective sensitizer for anti-cancer therapy: insights into multi-faceted mechanisms and applicability towards individualized patient profiles. EPMA J. 2021;12(2):155–76.PubMedPubMedCentralCrossRef
90.
go back to reference Tiwari P, Mishra KP. Flavonoids sensitize tumor cells to radiation: molecular mechanisms and relevance to cancer radiotherapy. Int J Radiat Biol. 2020;96(3):360–9.PubMedCrossRef Tiwari P, Mishra KP. Flavonoids sensitize tumor cells to radiation: molecular mechanisms and relevance to cancer radiotherapy. Int J Radiat Biol. 2020;96(3):360–9.PubMedCrossRef
91.
go back to reference Lu X, Yang F, Chen D, Zhao Q, Chen D, Ping H, et al. Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways. Int J Biol Sci. 2020;16(7):1121.PubMedPubMedCentralCrossRef Lu X, Yang F, Chen D, Zhao Q, Chen D, Ping H, et al. Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways. Int J Biol Sci. 2020;16(7):1121.PubMedPubMedCentralCrossRef
92.
go back to reference Huang S, Yu M, Shi N, Zhou Y, Li F, Li X, et al. Apigenin and Abivertinib, a novel BTK inhibitor synergize to inhibit diffuse large B-cell lymphoma in vivo and vitro. J Cancer. 2020;11(8):2123.PubMedPubMedCentralCrossRef Huang S, Yu M, Shi N, Zhou Y, Li F, Li X, et al. Apigenin and Abivertinib, a novel BTK inhibitor synergize to inhibit diffuse large B-cell lymphoma in vivo and vitro. J Cancer. 2020;11(8):2123.PubMedPubMedCentralCrossRef
93.
go back to reference Medhat AM, Azab KS, Said MM, El Fatih NM, El Bakary NM. Antitumor and radiosensitizing synergistic effects of apigenin and cryptotanshinone against solid Ehrlich carcinoma in female mice. Tumor Biol. 2017;39(10):1010428317728480.CrossRef Medhat AM, Azab KS, Said MM, El Fatih NM, El Bakary NM. Antitumor and radiosensitizing synergistic effects of apigenin and cryptotanshinone against solid Ehrlich carcinoma in female mice. Tumor Biol. 2017;39(10):1010428317728480.CrossRef
94.
go back to reference Lin C, Yu Y, Zhao H-g, Yang A, Yan H, Cui Y. Combination of quercetin with radiotherapy enhances tumor radiosensitivity in vitro and in vivo. Radiother Oncol. 2012;104(3):395–400.PubMedCrossRef Lin C, Yu Y, Zhao H-g, Yang A, Yan H, Cui Y. Combination of quercetin with radiotherapy enhances tumor radiosensitivity in vitro and in vivo. Radiother Oncol. 2012;104(3):395–400.PubMedCrossRef
95.
go back to reference Navarra M, Femia AP, Romagnoli A, Tortora K, Luceri C, Cirmi S, et al. A flavonoid-rich extract from bergamot juice prevents carcinogenesis in a genetic model of colorectal cancer, the Pirc rat (F344/NTac-Apcam1137). Eur J Nutr. 2020;59(3):885–94.PubMedCrossRef Navarra M, Femia AP, Romagnoli A, Tortora K, Luceri C, Cirmi S, et al. A flavonoid-rich extract from bergamot juice prevents carcinogenesis in a genetic model of colorectal cancer, the Pirc rat (F344/NTac-Apcam1137). Eur J Nutr. 2020;59(3):885–94.PubMedCrossRef
96.
go back to reference Pendleton JM, Tan WW, Anai S, Chang M, Hou W, Shiverick KT, et al. Phase II trial of isoflavone in prostate-specific antigen recurrent prostate cancer after previous local therapy. BMC Cancer. 2008;8(1):1–10.CrossRef Pendleton JM, Tan WW, Anai S, Chang M, Hou W, Shiverick KT, et al. Phase II trial of isoflavone in prostate-specific antigen recurrent prostate cancer after previous local therapy. BMC Cancer. 2008;8(1):1–10.CrossRef
97.
go back to reference Shanafelt TD, Call TG, Zent CS, Leis JF, LaPlant B, Bowen DA, et al. Phase 2 trial of daily, oral Polyphenon E in patients with asymptomatic, Rai stage 0 to II chronic lymphocytic leukemia. Cancer. 2013;119(2):363–70.PubMedCrossRef Shanafelt TD, Call TG, Zent CS, Leis JF, LaPlant B, Bowen DA, et al. Phase 2 trial of daily, oral Polyphenon E in patients with asymptomatic, Rai stage 0 to II chronic lymphocytic leukemia. Cancer. 2013;119(2):363–70.PubMedCrossRef
98.
go back to reference Amawi H, Ashby CR Jr, Tiwari AK. Cancer chemoprevention through dietary flavonoids: what’s limiting? Cancer Commun. 2017;36(1):1–13. Amawi H, Ashby CR Jr, Tiwari AK. Cancer chemoprevention through dietary flavonoids: what’s limiting? Cancer Commun. 2017;36(1):1–13.
100.
go back to reference Hollman P, Katan M. Dietary flavonoids: intake, health effects and bioavailability. Food Chem Toxicol. 1999;37(9–10):937–42.PubMedCrossRef Hollman P, Katan M. Dietary flavonoids: intake, health effects and bioavailability. Food Chem Toxicol. 1999;37(9–10):937–42.PubMedCrossRef
101.
go back to reference VISKUPIČOVÁ J, ONDREJOVIČ M. ŠTURDÍK E. Bioavailability and metabolism of flavonoids. J Food Nutr Res. 2008;47(4). VISKUPIČOVÁ J, ONDREJOVIČ M. ŠTURDÍK E. Bioavailability and metabolism of flavonoids. J Food Nutr Res. 2008;47(4).
102.
go back to reference Zhou D, Bai Z, Guo T, Li J, Li Y, Hou Y et al. Dietary flavonoids and human top-ranked diseases: the perspective of in vivo bioactivity and bioavailability. Trends Food Sci Technol. 2022. Zhou D, Bai Z, Guo T, Li J, Li Y, Hou Y et al. Dietary flavonoids and human top-ranked diseases: the perspective of in vivo bioactivity and bioavailability. Trends Food Sci Technol. 2022.
103.
go back to reference Chaurasia S, Patel RR, Vure P, Mishra B. Potential of cationic-polymeric nanoparticles for oral delivery of naringenin: in vitro and in vivo investigations. J Pharm Sci. 2018;107(2):706–16.PubMedCrossRef Chaurasia S, Patel RR, Vure P, Mishra B. Potential of cationic-polymeric nanoparticles for oral delivery of naringenin: in vitro and in vivo investigations. J Pharm Sci. 2018;107(2):706–16.PubMedCrossRef
104.
go back to reference Li H, Li M, Fu J, Ao H, Wang W, Wang X. Enhancement of oral bioavailability of quercetin by metabolic inhibitory nanosuspensions compared to conventional nanosuspensions. Drug Deliv. 2021;28(1):1226–36.PubMedPubMedCentralCrossRef Li H, Li M, Fu J, Ao H, Wang W, Wang X. Enhancement of oral bioavailability of quercetin by metabolic inhibitory nanosuspensions compared to conventional nanosuspensions. Drug Deliv. 2021;28(1):1226–36.PubMedPubMedCentralCrossRef
105.
go back to reference Bhia M, Motallebi M, Abadi B, Zarepour A, Pereira-Silva M, Saremnejad F, et al. Naringenin nano-delivery systems and their therapeutic applications. Pharmaceutics. 2021;13(2):291.PubMedPubMedCentralCrossRef Bhia M, Motallebi M, Abadi B, Zarepour A, Pereira-Silva M, Saremnejad F, et al. Naringenin nano-delivery systems and their therapeutic applications. Pharmaceutics. 2021;13(2):291.PubMedPubMedCentralCrossRef
106.
go back to reference Zhang Z, Huang Y, Gao F, Gao Z, Bu H, Gu W, et al. A self-assembled nanodelivery system enhances the oral bioavailability of daidzein: in vitro characteristics and in vivo performance. Nanomedicine. 2011;6(8):1365–79.PubMedCrossRef Zhang Z, Huang Y, Gao F, Gao Z, Bu H, Gu W, et al. A self-assembled nanodelivery system enhances the oral bioavailability of daidzein: in vitro characteristics and in vivo performance. Nanomedicine. 2011;6(8):1365–79.PubMedCrossRef
107.
go back to reference Shen Q, Li X, Li W, Zhao X. Enhanced intestinal absorption of daidzein by borneol/menthol eutectic mixture and microemulsion. AAPS PharmSciTech. 2011;12(4):1044–9.PubMedPubMedCentralCrossRef Shen Q, Li X, Li W, Zhao X. Enhanced intestinal absorption of daidzein by borneol/menthol eutectic mixture and microemulsion. AAPS PharmSciTech. 2011;12(4):1044–9.PubMedPubMedCentralCrossRef
108.
go back to reference Cao H, Jing X, Wu D, Shi Y. Methylation of genistein and kaempferol improves their affinities for proteins. Int J Food Sci. 2013;64(4):437–43.CrossRef Cao H, Jing X, Wu D, Shi Y. Methylation of genistein and kaempferol improves their affinities for proteins. Int J Food Sci. 2013;64(4):437–43.CrossRef
109.
go back to reference Walle T. Methylation of dietary flavones greatly improves their hepatic metabolic stability and intestinal absorption. Mol Pharm. 2007;4(6):826–32.PubMedCrossRef Walle T. Methylation of dietary flavones greatly improves their hepatic metabolic stability and intestinal absorption. Mol Pharm. 2007;4(6):826–32.PubMedCrossRef
111.
go back to reference Rakha A, Umar N, Rabail R, Butt MS, Kieliszek M, Hassoun A, et al. Anti-inflammatory and anti-allergic potential of dietary flavonoids: a review. Biomed Pharmacother. 2022;156:113945.PubMedCrossRef Rakha A, Umar N, Rabail R, Butt MS, Kieliszek M, Hassoun A, et al. Anti-inflammatory and anti-allergic potential of dietary flavonoids: a review. Biomed Pharmacother. 2022;156:113945.PubMedCrossRef
112.
go back to reference Hoensch HP, Oertel R. Emerging role of bioflavonoids in gastroenterology: especially their effects on intestinal neoplasia. World J Gastrointest Oncol. 2011;3(5):71.PubMedPubMedCentralCrossRef Hoensch HP, Oertel R. Emerging role of bioflavonoids in gastroenterology: especially their effects on intestinal neoplasia. World J Gastrointest Oncol. 2011;3(5):71.PubMedPubMedCentralCrossRef
114.
go back to reference Zhu J, Chen C, Zhang B, Huang Q. The inhibitory effects of flavonoids on α-amylase and α-glucosidase. Crit Rev Food Sci Nutr. 2020;60(4):695–708.PubMedCrossRef Zhu J, Chen C, Zhang B, Huang Q. The inhibitory effects of flavonoids on α-amylase and α-glucosidase. Crit Rev Food Sci Nutr. 2020;60(4):695–708.PubMedCrossRef
115.
go back to reference Wang M, Firrman J, Liu L, Yam K. A review on flavonoid apigenin: Dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. Biomed Res Int. 2019;2019. Wang M, Firrman J, Liu L, Yam K. A review on flavonoid apigenin: Dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. Biomed Res Int. 2019;2019.
116.
go back to reference Skibola CF, Smith MT. Potential health impacts of excessive flavonoid intake. Free Radic Biol Med. 2000;29(3–4):375–83.PubMedCrossRef Skibola CF, Smith MT. Potential health impacts of excessive flavonoid intake. Free Radic Biol Med. 2000;29(3–4):375–83.PubMedCrossRef
117.
go back to reference Eghbaliferiz S, Iranshahi M. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: updated review of mechanisms and catalyzing metals. Phytother Res. 2016;30(9):1379–91.PubMedCrossRef Eghbaliferiz S, Iranshahi M. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: updated review of mechanisms and catalyzing metals. Phytother Res. 2016;30(9):1379–91.PubMedCrossRef
118.
go back to reference Syed DN, Afaq F, Maddodi N, Johnson JJ, Sarfaraz S, Ahmad A, et al. Inhibition of human melanoma cell growth by the dietary flavonoid fisetin is associated with disruption of Wnt/β-catenin signaling and decreased Mitf levels. J Invest Dermatol. 2011;131(6):1291–9.PubMedPubMedCentralCrossRef Syed DN, Afaq F, Maddodi N, Johnson JJ, Sarfaraz S, Ahmad A, et al. Inhibition of human melanoma cell growth by the dietary flavonoid fisetin is associated with disruption of Wnt/β-catenin signaling and decreased Mitf levels. J Invest Dermatol. 2011;131(6):1291–9.PubMedPubMedCentralCrossRef
119.
go back to reference Suh Y, Afaq F, Johnson JJ, Mukhtar H. A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF-κB-signaling pathways. Carcinogenesis. 2009;30(2):300–7.PubMedCrossRef Suh Y, Afaq F, Johnson JJ, Mukhtar H. A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF-κB-signaling pathways. Carcinogenesis. 2009;30(2):300–7.PubMedCrossRef
120.
go back to reference Sung B, Pandey MK, Aggarwal BB. Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-κB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IκBα kinase activation. Mol Pharmacol. 2007;71(6):1703–14.PubMedCrossRef Sung B, Pandey MK, Aggarwal BB. Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-κB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IκBα kinase activation. Mol Pharmacol. 2007;71(6):1703–14.PubMedCrossRef
121.
go back to reference Zhang L, Huang Y, Zhuo W, Zhu Y, Zhu B, Chen Z. Fisetin, a dietary phytochemical, overcomes Erlotinib-resistance of lung adenocarcinoma cells through inhibition of MAPK and AKT pathways. Am J Transl Res. 2016;8(11):4857.PubMedPubMedCentral Zhang L, Huang Y, Zhuo W, Zhu Y, Zhu B, Chen Z. Fisetin, a dietary phytochemical, overcomes Erlotinib-resistance of lung adenocarcinoma cells through inhibition of MAPK and AKT pathways. Am J Transl Res. 2016;8(11):4857.PubMedPubMedCentral
122.
go back to reference Klimaszewska-Wiśniewska A, Hałas-Wiśniewska M, Grzanka A, Grzanka D. Evaluation of anti-metastatic potential of the combination of fisetin with paclitaxel on A549 non-small cell lung cancer cells. Int J Mol Sci. 2018;19(3):661.PubMedPubMedCentralCrossRef Klimaszewska-Wiśniewska A, Hałas-Wiśniewska M, Grzanka A, Grzanka D. Evaluation of anti-metastatic potential of the combination of fisetin with paclitaxel on A549 non-small cell lung cancer cells. Int J Mol Sci. 2018;19(3):661.PubMedPubMedCentralCrossRef
123.
go back to reference Seo H-S, Ku JM, Choi H-S, Choi YK, Woo J-K, Kim M, et al. Quercetin induces caspase-dependent extrinsic apoptosis through inhibition of signal transducer and activator of transcription 3 signaling in HER2-overexpressing BT-474 breast cancer cells. Oncol Rep. 2016;36(1):31–42.PubMedPubMedCentralCrossRef Seo H-S, Ku JM, Choi H-S, Choi YK, Woo J-K, Kim M, et al. Quercetin induces caspase-dependent extrinsic apoptosis through inhibition of signal transducer and activator of transcription 3 signaling in HER2-overexpressing BT-474 breast cancer cells. Oncol Rep. 2016;36(1):31–42.PubMedPubMedCentralCrossRef
124.
go back to reference Ranganathan S, Halagowder D, Sivasithambaram ND. Quercetin suppresses twist to induce apoptosis in MCF-7 breast cancer cells. PLoS ONE. 2015;10(10):e0141370.PubMedPubMedCentralCrossRef Ranganathan S, Halagowder D, Sivasithambaram ND. Quercetin suppresses twist to induce apoptosis in MCF-7 breast cancer cells. PLoS ONE. 2015;10(10):e0141370.PubMedPubMedCentralCrossRef
125.
go back to reference Lee Y-K, Park SY, Kim Y-M, Lee WS, Park OJ. AMP kinase/cyclooxygenase-2 pathway regulates proliferation and apoptosis of cancer cells treated with quercetin. Exp Mol Med. 2009;41(3):201–7.PubMedPubMedCentralCrossRef Lee Y-K, Park SY, Kim Y-M, Lee WS, Park OJ. AMP kinase/cyclooxygenase-2 pathway regulates proliferation and apoptosis of cancer cells treated with quercetin. Exp Mol Med. 2009;41(3):201–7.PubMedPubMedCentralCrossRef
126.
go back to reference Lin C-W, Hou W-C, Shen S-C, Juan S-H, Ko C-H, Wang L-M, et al. Quercetin inhibition of tumor invasion via suppressing PKCδ/ERK/AP-1-dependent matrix metalloproteinase-9 activation in breast carcinoma cells. Carcinogenesis. 2008;29(9):1807–15.PubMedCrossRef Lin C-W, Hou W-C, Shen S-C, Juan S-H, Ko C-H, Wang L-M, et al. Quercetin inhibition of tumor invasion via suppressing PKCδ/ERK/AP-1-dependent matrix metalloproteinase-9 activation in breast carcinoma cells. Carcinogenesis. 2008;29(9):1807–15.PubMedCrossRef
127.
go back to reference Granato M, Rizzello C, Montani MSG, Cuomo L, Vitillo M, Santarelli R, et al. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J Nutr Biochem. 2017;41:124–36.PubMedCrossRef Granato M, Rizzello C, Montani MSG, Cuomo L, Vitillo M, Santarelli R, et al. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J Nutr Biochem. 2017;41:124–36.PubMedCrossRef
128.
go back to reference Mojsin M, Vicentic JM, Schwirtlich M, Topalovic V, Stevanovic M. Quercetin reduces pluripotency, migration and adhesion of human teratocarcinoma cell line NT2/D1 by inhibiting Wnt/β-catenin signaling. Food Funct. 2014;5(10):2564–73.PubMedCrossRef Mojsin M, Vicentic JM, Schwirtlich M, Topalovic V, Stevanovic M. Quercetin reduces pluripotency, migration and adhesion of human teratocarcinoma cell line NT2/D1 by inhibiting Wnt/β-catenin signaling. Food Funct. 2014;5(10):2564–73.PubMedCrossRef
129.
go back to reference Chang J-H, Lai S-L, Chen W-S, Hung W-Y, Chow J-M, Hsiao M, et al. Quercetin suppresses the metastatic ability of lung cancer through inhibiting snail-dependent akt activation and snail-independent ADAM9 expression pathways. Biochim Biophys Acta Mol Cell Res. 2017;1864(10):1746–58.PubMedCrossRef Chang J-H, Lai S-L, Chen W-S, Hung W-Y, Chow J-M, Hsiao M, et al. Quercetin suppresses the metastatic ability of lung cancer through inhibiting snail-dependent akt activation and snail-independent ADAM9 expression pathways. Biochim Biophys Acta Mol Cell Res. 2017;1864(10):1746–58.PubMedCrossRef
130.
go back to reference Priyadarsini RV, Murugan RS, Maitreyi S, Ramalingam K, Karunagaran D, Nagini S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur J Pharmacol. 2010;649(1–3):84–91.CrossRef Priyadarsini RV, Murugan RS, Maitreyi S, Ramalingam K, Karunagaran D, Nagini S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur J Pharmacol. 2010;649(1–3):84–91.CrossRef
131.
go back to reference Park CH, Chang JY, Hahm ER, Park S, Kim H-K, Yang CH. Quercetin, a potent inhibitor against β-catenin/Tcf signaling in SW480 colon cancer cells. Biochem Biophys Res Commun. 2005;328(1):227–34.PubMedCrossRef Park CH, Chang JY, Hahm ER, Park S, Kim H-K, Yang CH. Quercetin, a potent inhibitor against β-catenin/Tcf signaling in SW480 colon cancer cells. Biochem Biophys Res Commun. 2005;328(1):227–34.PubMedCrossRef
132.
go back to reference Shukla S, Gupta S. Molecular mechanisms for apigenin-induced cell‐cycle arrest and apoptosis of hormone refractory human prostate carcinoma DU145 cells. Mol Carcinog. 2004;39(2):114–26.PubMedCrossRef Shukla S, Gupta S. Molecular mechanisms for apigenin-induced cell‐cycle arrest and apoptosis of hormone refractory human prostate carcinoma DU145 cells. Mol Carcinog. 2004;39(2):114–26.PubMedCrossRef
133.
go back to reference Seo HS, Ku JM, Choi HS, Woo JK, Jang BH, Go H, et al. Apigenin induces caspase-dependent apoptosis by inhibiting signal transducer and activator of transcription 3 signaling in HER2-overexpressing SKBR3 breast cancer cells. Mol Med Rep. 2015;12(2):2977–84.PubMedCrossRef Seo HS, Ku JM, Choi HS, Woo JK, Jang BH, Go H, et al. Apigenin induces caspase-dependent apoptosis by inhibiting signal transducer and activator of transcription 3 signaling in HER2-overexpressing SKBR3 breast cancer cells. Mol Med Rep. 2015;12(2):2977–84.PubMedCrossRef
134.
go back to reference Chang J-H, Cheng C-W, Yang Y-C, Chen W-S, Hung W-Y, Chow J-M, et al. Downregulating CD26/DPPIV by apigenin modulates the interplay between akt and Snail/Slug signaling to restrain metastasis of lung cancer with multiple EGFR statuses. J Exp Clin Cancer Res. 2018;37(1):1–16.CrossRef Chang J-H, Cheng C-W, Yang Y-C, Chen W-S, Hung W-Y, Chow J-M, et al. Downregulating CD26/DPPIV by apigenin modulates the interplay between akt and Snail/Slug signaling to restrain metastasis of lung cancer with multiple EGFR statuses. J Exp Clin Cancer Res. 2018;37(1):1–16.CrossRef
135.
go back to reference Zhou Z, Tang M, Liu Y, Zhang Z, Lu R, Lu J. Apigenin inhibits cell proliferation, migration, and invasion by targeting akt in the A549 human lung cancer cell line. Anticancer Drugs. 2017;28(4):446–56.PubMedCrossRef Zhou Z, Tang M, Liu Y, Zhang Z, Lu R, Lu J. Apigenin inhibits cell proliferation, migration, and invasion by targeting akt in the A549 human lung cancer cell line. Anticancer Drugs. 2017;28(4):446–56.PubMedCrossRef
136.
go back to reference Xu M, Wang S, Song Y, Yao J, Huang K, Zhu X. Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/β-catenin signaling pathway. Oncol lett. 2016;11(5):3075–80.PubMedPubMedCentralCrossRef Xu M, Wang S, Song Y, Yao J, Huang K, Zhu X. Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/β-catenin signaling pathway. Oncol lett. 2016;11(5):3075–80.PubMedPubMedCentralCrossRef
137.
go back to reference Tsai P-H, Cheng C-H, Lin C-Y, Huang Y-T, Lee L-T, Kandaswami CC, et al. Dietary flavonoids luteolin and quercetin suppressed cancer stem cell properties and metastatic potential of isolated prostate cancer cells. Anticancer Res. 2016;36(12):6367–80.PubMedCrossRef Tsai P-H, Cheng C-H, Lin C-Y, Huang Y-T, Lee L-T, Kandaswami CC, et al. Dietary flavonoids luteolin and quercetin suppressed cancer stem cell properties and metastatic potential of isolated prostate cancer cells. Anticancer Res. 2016;36(12):6367–80.PubMedCrossRef
138.
go back to reference Huang X, Dai S, Dai J, Xiao Y, Bai Y, Chen B, et al. Luteolin decreases invasiveness, deactivates STAT3 signaling, and reverses interleukin-6 induced epithelial–mesenchymal transition and matrix metalloproteinase secretion of pancreatic cancer cells. OncoTargets Ther. 2015;8:2989.CrossRef Huang X, Dai S, Dai J, Xiao Y, Bai Y, Chen B, et al. Luteolin decreases invasiveness, deactivates STAT3 signaling, and reverses interleukin-6 induced epithelial–mesenchymal transition and matrix metalloproteinase secretion of pancreatic cancer cells. OncoTargets Ther. 2015;8:2989.CrossRef
139.
go back to reference Wang Q, Wang H, Jia Y, Ding H, Zhang L, Pan H. Luteolin reduces migration of human glioblastoma cell lines via inhibition of the p–IGF–1R/PI3K/AKT/mTOR signaling pathway. Oncol Lett. 2017;14(3):3545–51.PubMedPubMedCentralCrossRef Wang Q, Wang H, Jia Y, Ding H, Zhang L, Pan H. Luteolin reduces migration of human glioblastoma cell lines via inhibition of the p–IGF–1R/PI3K/AKT/mTOR signaling pathway. Oncol Lett. 2017;14(3):3545–51.PubMedPubMedCentralCrossRef
140.
go back to reference Liang L, Li L, Zeng J, Gao Y, Chen Y-L, Wang Z-Q, et al. Inhibitory effect of silibinin on EGFR signal-induced renal cell carcinoma progression via suppression of the EGFR/MMP-9 signaling pathway. Oncol Rep. 2012;28(3):999–1005.PubMed Liang L, Li L, Zeng J, Gao Y, Chen Y-L, Wang Z-Q, et al. Inhibitory effect of silibinin on EGFR signal-induced renal cell carcinoma progression via suppression of the EGFR/MMP-9 signaling pathway. Oncol Rep. 2012;28(3):999–1005.PubMed
141.
go back to reference Shinojima N, Yokoyama T, Kondo Y, Kondo S. Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy. 2007;3(6):635–7.PubMedCrossRef Shinojima N, Yokoyama T, Kondo Y, Kondo S. Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy. 2007;3(6):635–7.PubMedCrossRef
142.
go back to reference Siwak DR, Shishodia S, Aggarwal BB, Kurzrock R. Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IκB kinase and nuclear factor κB activity and are independent of the B‐Raf/mitogen‐activated/extracellular signal‐regulated protein kinase pathway and the akt pathway. Cancer. 2005;104(4):879–90.PubMedCrossRef Siwak DR, Shishodia S, Aggarwal BB, Kurzrock R. Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IκB kinase and nuclear factor κB activity and are independent of the B‐Raf/mitogen‐activated/extracellular signal‐regulated protein kinase pathway and the akt pathway. Cancer. 2005;104(4):879–90.PubMedCrossRef
143.
go back to reference Liu S-C, Chen C, Chung C-H, Wang P-C, Wu N-L, Cheng J-K, et al. Inhibitory effects of butein on cancer metastasis and bioenergetic modulation. J Agric Food Chem. 2014;62(37):9109–17.PubMedCrossRef Liu S-C, Chen C, Chung C-H, Wang P-C, Wu N-L, Cheng J-K, et al. Inhibitory effects of butein on cancer metastasis and bioenergetic modulation. J Agric Food Chem. 2014;62(37):9109–17.PubMedCrossRef
144.
go back to reference Buhrmann C, Shayan P, Goel A, Shakibaei M. Resveratrol regulates colorectal cancer cell invasion by modulation of focal adhesion molecules. Nutrients. 2017;9(10):1073.PubMedPubMedCentralCrossRef Buhrmann C, Shayan P, Goel A, Shakibaei M. Resveratrol regulates colorectal cancer cell invasion by modulation of focal adhesion molecules. Nutrients. 2017;9(10):1073.PubMedPubMedCentralCrossRef
145.
go back to reference Wee LH, Morad NA, Aan GJ, Makpol S, Ngah WZW, Yusof YAM. Mechanism of chemoprevention against colon cancer cells using combined Gelam honey and ginger extract via mTOR and Wnt/β-catenin pathways. Asian Pac J Cancer Prev. 2015;16(15):6549–56.PubMedCrossRef Wee LH, Morad NA, Aan GJ, Makpol S, Ngah WZW, Yusof YAM. Mechanism of chemoprevention against colon cancer cells using combined Gelam honey and ginger extract via mTOR and Wnt/β-catenin pathways. Asian Pac J Cancer Prev. 2015;16(15):6549–56.PubMedCrossRef
146.
go back to reference Hastak K, Gupta S, Ahmad N, Agarwal MK, Agarwal ML, Mukhtar H. Role of p53 and NF-κ B in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene. 2003;22(31):4851–9.PubMedCrossRef Hastak K, Gupta S, Ahmad N, Agarwal MK, Agarwal ML, Mukhtar H. Role of p53 and NF-κ B in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene. 2003;22(31):4851–9.PubMedCrossRef
147.
go back to reference An H, Yu X, Xiang C, Zhang Y, Xia J, Wang Y, Baicalein. U0126 suppress human breast cancer cell line MCF-7 through regulating MAPK signaling pathway. Int J Clin Exp Pathol. 2016;9(10):10266–73. An H, Yu X, Xiang C, Zhang Y, Xia J, Wang Y, Baicalein. U0126 suppress human breast cancer cell line MCF-7 through regulating MAPK signaling pathway. Int J Clin Exp Pathol. 2016;9(10):10266–73.
148.
go back to reference Shrivastava S, Jeengar MK, Thummuri D, Koval A, Katanaev VL, Marepally S, et al. Cardamonin, a chalcone, inhibits human triple negative breast cancer cell invasiveness by downregulation of Wnt/β-catenin signaling cascades and reversal of epithelial–mesenchymal transition. BioFactors. 2017;43(2):152–69.PubMedCrossRef Shrivastava S, Jeengar MK, Thummuri D, Koval A, Katanaev VL, Marepally S, et al. Cardamonin, a chalcone, inhibits human triple negative breast cancer cell invasiveness by downregulation of Wnt/β-catenin signaling cascades and reversal of epithelial–mesenchymal transition. BioFactors. 2017;43(2):152–69.PubMedCrossRef
Metadata
Title
Flavonoids target different molecules of autophagic and metastatic pathways in cancer cells
Authors
Aysooda Hosseinzadeh
Faezeh Poursoleiman
Akram Naghdipour Biregani
Ahmad Esmailzadeh
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2023
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-023-02960-4

Other articles of this Issue 1/2023

Cancer Cell International 1/2023 Go to the issue

2024 ESMO Congress

Recent advances in the use of CAR T-cell therapies in relapsed/refractory diffuse large B-cell lymphoma and follicular lymphoma

  • Webinar | 01-10-2024 | 12:30 (CEST)

Live event concluded

In this webinar, Professor Martin Dreyling and an esteemed, international panel of CAR-T experts discuss the latest data on the safety, efficacy, and clinical impact of CAR T-cell therapies in the treatment of r/r DLBCL and r/r FL.

Please note, this webinar is not intended for healthcare professionals based in the US and UK.

Sponsored by: Novartis Pharma AG

Chaired by: Prof. Martin Dreyling
Developed by: Springer Healthcare
Get a reminder for the on-demand version