Skip to main content
Top
Published in:

Open Access 17-07-2024 | Magnetic Resonance Imaging | Head-Neck-ENT Radiology

Fully automated segmentation and volumetric measurement of ocular adnexal lymphoma by deep learning-based self-configuring nnU-net on multi-sequence MRI: a multi-center study

Authors: Guorong Wang, Bingbing Yang, Xiaoxia Qu, Jian Guo, Yongheng Luo, Xiaoquan Xu, Feiyun Wu, Xiaoxue Fan, Yang Hou, Song Tian, Sicong Huang, Junfang Xian

Published in: Neuroradiology | Issue 10/2024

Login to get access

Abstract

Purpose

To evaluate nnU-net’s performance in automatically segmenting and volumetrically measuring ocular adnexal lymphoma (OAL) on multi-sequence MRI.

Methods

We collected T1-weighted (T1), T2-weighted and T1-weighted contrast-enhanced images with/without fat saturation (T2_FS/T2_nFS, T1c_FS/T1c_nFS) of OAL from four institutions. Two radiologists manually annotated lesions as the ground truth using ITK-SNAP. A deep learning framework, nnU-net, was developed and trained using two models. Model 1 was trained on T1, T2, and T1c, while Model 2 was trained exclusively on T1 and T2. A 5-fold cross-validation was utilized in the training process. Segmentation performance was evaluated using the Dice similarity coefficient (DSC), sensitivity, and positive prediction value (PPV). Volumetric assessment was performed using Bland-Altman plots and Lin’s concordance correlation coefficient (CCC).

Results

A total of 147 patients from one center were selected as training set and 33 patients from three centers were regarded as test set. For both Model 1 and 2, nnU-net demonstrated outstanding segmentation performance on T2_FS with DSC of 0.80–0.82, PPV of 84.5–86.1%, and sensitivity of 77.6–81.2%, respectively. Model 2 failed to detect 19 cases of T1c, whereas the DSC, PPV, and sensitivity for T1_nFS were 0.59, 91.2%, and 51.4%, respectively. Bland–Altman plots revealed minor tumor volume differences with 0.22–1.24 cm3 between nnU-net prediction and ground truth on T2_FS. The CCC were 0.96 and 0.93 in Model 1 and 2 for T2_FS images, respectively.

Conclusion

The nnU-net offered excellent performance in automated segmentation and volumetric assessment in MRI of OAL, particularly on T2_FS images.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kirkegaard MK (2022) Ocular adnexal lymphoma: subtype-specific clinical and genetic features. Acta Ophthalmol 100 Suppl 270:3–37CrossRef Kirkegaard MK (2022) Ocular adnexal lymphoma: subtype-specific clinical and genetic features. Acta Ophthalmol 100 Suppl 270:3–37CrossRef
2.
go back to reference Yen MT, Bilyk JR, Wladis EJ, Bradley EA, Mawn LA (2018) Treatments for ocular adnexal lymphoma: a report by the American Academy of Ophthalmology. Ophthalmology 125:127–136CrossRefPubMed Yen MT, Bilyk JR, Wladis EJ, Bradley EA, Mawn LA (2018) Treatments for ocular adnexal lymphoma: a report by the American Academy of Ophthalmology. Ophthalmology 125:127–136CrossRefPubMed
4.
go back to reference Darwich R, Ghazawi FM, Rahme E, Alghazawi N, Zubarev A, Moreau L, Sasseville D, Burnier MN Jr., Litvinov IV (2020) Epidemiology of ophthalmic lymphoma in Canada during 1992–2010. Br J Ophthalmol 104:1176–1180CrossRefPubMed Darwich R, Ghazawi FM, Rahme E, Alghazawi N, Zubarev A, Moreau L, Sasseville D, Burnier MN Jr., Litvinov IV (2020) Epidemiology of ophthalmic lymphoma in Canada during 1992–2010. Br J Ophthalmol 104:1176–1180CrossRefPubMed
6.
go back to reference Holm F, Mikkelsen LH, Kamper P, Rasmussen PK, Larsen TS, Sjö LD, Heegaard S (2021) Ocular adnexal lymphoma in Denmark: a nationwide study of 387 cases from 1980 to 2017. Br J Ophthalmol 105:914–920CrossRefPubMed Holm F, Mikkelsen LH, Kamper P, Rasmussen PK, Larsen TS, Sjö LD, Heegaard S (2021) Ocular adnexal lymphoma in Denmark: a nationwide study of 387 cases from 1980 to 2017. Br J Ophthalmol 105:914–920CrossRefPubMed
7.
go back to reference Rehn S, Elsayad K, Oertel M, Baehr A, Eter N, Haverkamp U, Lenz G, Eich HT (2020) Radiotherapy Dose and volume de-escalation in Ocular Adnexal Lymphoma. Anticancer Res 40:4041–4046CrossRefPubMed Rehn S, Elsayad K, Oertel M, Baehr A, Eter N, Haverkamp U, Lenz G, Eich HT (2020) Radiotherapy Dose and volume de-escalation in Ocular Adnexal Lymphoma. Anticancer Res 40:4041–4046CrossRefPubMed
8.
go back to reference Yang X, Wang R, Yuan X, Yao S, Wang C, Cheng J (2022) Ultra-low-dose radiotherapy in the treatment of ocular adnexal lymphoma: a prospective study. Radiat Oncol 17:208CrossRefPubMedPubMedCentral Yang X, Wang R, Yuan X, Yao S, Wang C, Cheng J (2022) Ultra-low-dose radiotherapy in the treatment of ocular adnexal lymphoma: a prospective study. Radiat Oncol 17:208CrossRefPubMedPubMedCentral
9.
go back to reference Pereira-Da Silva MV, Di Nicola ML, Altomare F, Xu W, Tsang R, Laperriere N, Krema H (2023) Radiation therapy for primary orbital and ocular adnexal lymphoma. Clin Transl Radiat Oncol 38:15–20PubMed Pereira-Da Silva MV, Di Nicola ML, Altomare F, Xu W, Tsang R, Laperriere N, Krema H (2023) Radiation therapy for primary orbital and ocular adnexal lymphoma. Clin Transl Radiat Oncol 38:15–20PubMed
10.
go back to reference Unkelbach J, Bortfeld T, Cardenas CE, Gregoire V, Hager W, Heijmen B, Jeraj R, Korreman SS, Ludwig R, Pouymayou B, Shusharina N, Söderberg J, Toma-Dasu I, Troost EGC, Vasquez Osorio E (2020) The role of computational methods for automating and improving clinical target volume definition. Radiother Oncol 153:15–25CrossRefPubMed Unkelbach J, Bortfeld T, Cardenas CE, Gregoire V, Hager W, Heijmen B, Jeraj R, Korreman SS, Ludwig R, Pouymayou B, Shusharina N, Söderberg J, Toma-Dasu I, Troost EGC, Vasquez Osorio E (2020) The role of computational methods for automating and improving clinical target volume definition. Radiother Oncol 153:15–25CrossRefPubMed
11.
go back to reference Almeida G, Tavares J (2020) Deep learning in Radiation Oncology Treatment planning for prostate Cancer: a systematic review. J Med Syst 44:179CrossRefPubMed Almeida G, Tavares J (2020) Deep learning in Radiation Oncology Treatment planning for prostate Cancer: a systematic review. J Med Syst 44:179CrossRefPubMed
12.
go back to reference Otazo R, Lambin P, Pignol JP, Ladd ME, Schlemmer HP, Baumann M, Hricak H (2021) MRI-guided Radiation Therapy: an emerging paradigm in adaptive Radiation Oncology. Radiology 298:248–260CrossRefPubMed Otazo R, Lambin P, Pignol JP, Ladd ME, Schlemmer HP, Baumann M, Hricak H (2021) MRI-guided Radiation Therapy: an emerging paradigm in adaptive Radiation Oncology. Radiology 298:248–260CrossRefPubMed
13.
go back to reference Moore-Palhares D, Ho L, Lu L, Chugh B, Vesprini D, Karam I, Soliman H, Symons S, Leung E, Loblaw A, Myrehaug S, Stanisz G, Sahgal A, Czarnota GJ (2023) Clinical implementation of magnetic resonance imaging simulation for radiation oncology planning: 5 year experience. Radiat Oncol 18:27CrossRefPubMedPubMedCentral Moore-Palhares D, Ho L, Lu L, Chugh B, Vesprini D, Karam I, Soliman H, Symons S, Leung E, Loblaw A, Myrehaug S, Stanisz G, Sahgal A, Czarnota GJ (2023) Clinical implementation of magnetic resonance imaging simulation for radiation oncology planning: 5 year experience. Radiat Oncol 18:27CrossRefPubMedPubMedCentral
14.
go back to reference Lecler A, Duron L, Charlson E, Kolseth C, Kossler AL, Wintermark M, Moulin K, Rutt B (2022) Comparison between 7 Tesla and 3 Tesla MRI for characterizing orbital lesions. Diagn Interv Imaging 103:433–439CrossRefPubMed Lecler A, Duron L, Charlson E, Kolseth C, Kossler AL, Wintermark M, Moulin K, Rutt B (2022) Comparison between 7 Tesla and 3 Tesla MRI for characterizing orbital lesions. Diagn Interv Imaging 103:433–439CrossRefPubMed
15.
go back to reference Fei Y, Zhan B, Hong M, Wu X, Zhou J, Wang Y (2021) Deep learning-based multi-modal computing with feature disentanglement for MRI image synthesis. Med Phys 48:3778–3789CrossRefPubMed Fei Y, Zhan B, Hong M, Wu X, Zhou J, Wang Y (2021) Deep learning-based multi-modal computing with feature disentanglement for MRI image synthesis. Med Phys 48:3778–3789CrossRefPubMed
16.
go back to reference Xiang Y, Zeng C, Liu B, Tan W, Wu J, Hu X, Han Y, Luo Q, Gong J, Liu J, Li Y (2022) Deep learning-enabled identification of autoimmune encephalitis on 3D Multi-sequence MRI. J Magn Reson Imaging 55:1082–1092CrossRefPubMed Xiang Y, Zeng C, Liu B, Tan W, Wu J, Hu X, Han Y, Luo Q, Gong J, Liu J, Li Y (2022) Deep learning-enabled identification of autoimmune encephalitis on 3D Multi-sequence MRI. J Magn Reson Imaging 55:1082–1092CrossRefPubMed
17.
go back to reference Xia Y, Ravikumar N, Lassila T, Frangi AF (2023) Virtual high-resolution MR Angiography from non-angiographic multi-contrast MRIs: synthetic vascular model populations for in-silico trials. Med Image Anal 87:102814CrossRefPubMed Xia Y, Ravikumar N, Lassila T, Frangi AF (2023) Virtual high-resolution MR Angiography from non-angiographic multi-contrast MRIs: synthetic vascular model populations for in-silico trials. Med Image Anal 87:102814CrossRefPubMed
18.
go back to reference Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18:203–211CrossRefPubMed Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18:203–211CrossRefPubMed
19.
go back to reference Gibson E, Li W, Sudre C, Fidon L, Shakir DI, Wang G, Eaton-Rosen Z, Gray R, Doel T, Hu Y, Whyntie T, Nachev P, Modat M, Barratt DC, Ourselin S, Cardoso MJ, Vercauteren T (2018) NiftyNet: a deep-learning platform for medical imaging. Comput Methods Programs Biomed 158:113–122CrossRefPubMedPubMedCentral Gibson E, Li W, Sudre C, Fidon L, Shakir DI, Wang G, Eaton-Rosen Z, Gray R, Doel T, Hu Y, Whyntie T, Nachev P, Modat M, Barratt DC, Ourselin S, Cardoso MJ, Vercauteren T (2018) NiftyNet: a deep-learning platform for medical imaging. Comput Methods Programs Biomed 158:113–122CrossRefPubMedPubMedCentral
20.
go back to reference Doss DJ, Johnson GW, Narasimhan S, Shless JS, Jiang JW, González HFJ, Paulo DL, Lucas A, Davis KA, Chang C, Morgan VL, Constantinidis C, Dawant BM, Englot DJ (2023) Deep learning segmentation of the Nucleus Basalis of meynert on 3T MRI. AJNR Am J Neuroradiol 44:1020–1025CrossRefPubMedPubMedCentral Doss DJ, Johnson GW, Narasimhan S, Shless JS, Jiang JW, González HFJ, Paulo DL, Lucas A, Davis KA, Chang C, Morgan VL, Constantinidis C, Dawant BM, Englot DJ (2023) Deep learning segmentation of the Nucleus Basalis of meynert on 3T MRI. AJNR Am J Neuroradiol 44:1020–1025CrossRefPubMedPubMedCentral
21.
go back to reference Cuocolo R, Comelli A, Stefano A, Benfante V, Dahiya N, Stanzione A, Castaldo A, De Lucia DR, Yezzi A, Imbriaco M (2021) Deep learning whole-gland and zonal prostate segmentation on a public MRI dataset. J Magn Reson Imaging 54:452–459CrossRefPubMed Cuocolo R, Comelli A, Stefano A, Benfante V, Dahiya N, Stanzione A, Castaldo A, De Lucia DR, Yezzi A, Imbriaco M (2021) Deep learning whole-gland and zonal prostate segmentation on a public MRI dataset. J Magn Reson Imaging 54:452–459CrossRefPubMed
22.
go back to reference Sengupta PP, Shrestha S, Berthon B, Messas E, Donal E, Tison GH, Min JK, D’Hooge J, Voigt JU, Dudley J, Verjans JW, Shameer K, Johnson K, Lovstakken L, Tabassian M, Piccirilli M, Pernot M, Yanamala N, Duchateau N, Kagiyama N, Bernard O, Slomka P, Deo R, Arnaout R (2020) Proposed requirements for Cardiovascular Imaging-Related machine learning evaluation (PRIME): a checklist: reviewed by the American College of Cardiology Healthcare Innovation Council. JACC Cardiovasc Imaging 13:2017–2035CrossRefPubMedPubMedCentral Sengupta PP, Shrestha S, Berthon B, Messas E, Donal E, Tison GH, Min JK, D’Hooge J, Voigt JU, Dudley J, Verjans JW, Shameer K, Johnson K, Lovstakken L, Tabassian M, Piccirilli M, Pernot M, Yanamala N, Duchateau N, Kagiyama N, Bernard O, Slomka P, Deo R, Arnaout R (2020) Proposed requirements for Cardiovascular Imaging-Related machine learning evaluation (PRIME): a checklist: reviewed by the American College of Cardiology Healthcare Innovation Council. JACC Cardiovasc Imaging 13:2017–2035CrossRefPubMedPubMedCentral
23.
go back to reference Zhou W, Yang Y, Yu C, Liu J, Duan X, Weng Z, Chen D, Liang Q, Fang Q, Zhou J, Ju H, Luo Z, Guo W, Ma X, Xie X, Wang R, Zhou L (2021) Ensembled deep learning model outperforms human experts in diagnosing biliary atresia from sonographic gallbladder images. Nat Commun 12:1259CrossRefPubMedPubMedCentral Zhou W, Yang Y, Yu C, Liu J, Duan X, Weng Z, Chen D, Liang Q, Fang Q, Zhou J, Ju H, Luo Z, Guo W, Ma X, Xie X, Wang R, Zhou L (2021) Ensembled deep learning model outperforms human experts in diagnosing biliary atresia from sonographic gallbladder images. Nat Commun 12:1259CrossRefPubMedPubMedCentral
24.
go back to reference McBride G (2005) A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. NIWA Client Report: HAM2005-062 45:307–310 McBride G (2005) A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. NIWA Client Report: HAM2005-062 45:307–310
25.
go back to reference Bischoff LM, Peeters JM, Weinhold L, Krausewitz P, Ellinger J, Katemann C, Isaak A, Weber OM, Kuetting D, Attenberger U, Pieper CC, Sprinkart AM, Luetkens JA (2023) Deep Learning Super-resolution Reconstruction for fast and motion-robust T2-weighted prostate MRI. Radiology 308:e230427CrossRefPubMed Bischoff LM, Peeters JM, Weinhold L, Krausewitz P, Ellinger J, Katemann C, Isaak A, Weber OM, Kuetting D, Attenberger U, Pieper CC, Sprinkart AM, Luetkens JA (2023) Deep Learning Super-resolution Reconstruction for fast and motion-robust T2-weighted prostate MRI. Radiology 308:e230427CrossRefPubMed
26.
go back to reference Xie X, Yang L, Zhao F, Wang D, Zhang H, He X, Cao X, Yi H, He X, Hou Y (2022) A deep learning model combining multimodal radiomics, clinical and imaging features for differentiating ocular adnexal lymphoma from idiopathic orbital inflammation. Eur Radiol 32:6922–6932CrossRefPubMed Xie X, Yang L, Zhao F, Wang D, Zhang H, He X, Cao X, Yi H, He X, Hou Y (2022) A deep learning model combining multimodal radiomics, clinical and imaging features for differentiating ocular adnexal lymphoma from idiopathic orbital inflammation. Eur Radiol 32:6922–6932CrossRefPubMed
27.
go back to reference Veiga-Canuto D, Cerdà-Alberich L, Jiménez-Pastor A, Carot Sierra JM, Gomis-Maya A, Sangüesa-Nebot C, Fernández-Patón M, Martínez de Las Heras B, Taschner-Mandl S, Düster V, Pötschger U, Simon T, Neri E, Alberich-Bayarri Á, Cañete A, Hero B, Ladenstein R, Martí-Bonmatí L (2023) Independent validation of a Deep Learning Nnu-Net Tool for Neuroblastoma Detection and Segmentation in MR images. Cancers (Basel) 15 Veiga-Canuto D, Cerdà-Alberich L, Jiménez-Pastor A, Carot Sierra JM, Gomis-Maya A, Sangüesa-Nebot C, Fernández-Patón M, Martínez de Las Heras B, Taschner-Mandl S, Düster V, Pötschger U, Simon T, Neri E, Alberich-Bayarri Á, Cañete A, Hero B, Ladenstein R, Martí-Bonmatí L (2023) Independent validation of a Deep Learning Nnu-Net Tool for Neuroblastoma Detection and Segmentation in MR images. Cancers (Basel) 15
28.
go back to reference Zhang G, Yang Z, Huo B, Chai S, Jiang S (2021) Automatic segmentation of organs at risk and tumors in CT images of lung cancer from partially labelled datasets with a semi-supervised conditional nnu-net. Comput Methods Programs Biomed 211:106419CrossRefPubMed Zhang G, Yang Z, Huo B, Chai S, Jiang S (2021) Automatic segmentation of organs at risk and tumors in CT images of lung cancer from partially labelled datasets with a semi-supervised conditional nnu-net. Comput Methods Programs Biomed 211:106419CrossRefPubMed
30.
go back to reference Kang H, Witanto JN, Pratama K, Lee D, Choi KS, Choi SH, Kim KM, Kim MS, Kim JW, Kim YH, Park SJ, Park CK (2023) Fully automated MRI segmentation and volumetric measurement of Intracranial Meningioma using deep learning. J Magn Reson Imaging 57:871–881CrossRefPubMed Kang H, Witanto JN, Pratama K, Lee D, Choi KS, Choi SH, Kim KM, Kim MS, Kim JW, Kim YH, Park SJ, Park CK (2023) Fully automated MRI segmentation and volumetric measurement of Intracranial Meningioma using deep learning. J Magn Reson Imaging 57:871–881CrossRefPubMed
31.
go back to reference Zhou M, Wang J, Shi J, Zhai G, Zhou X, Ye L, Li L, Hu M, Zhou Y (2024) Prediction model of radiotherapy outcome for ocular adnexal lymphoma using informative features selected by chemometric algorithms. Comput Biol Med 170:108067CrossRefPubMed Zhou M, Wang J, Shi J, Zhai G, Zhou X, Ye L, Li L, Hu M, Zhou Y (2024) Prediction model of radiotherapy outcome for ocular adnexal lymphoma using informative features selected by chemometric algorithms. Comput Biol Med 170:108067CrossRefPubMed
32.
go back to reference Hoffmann C, Mohr C, Johansson P, Eckstein A, Huettmann A, von Tresckow J, Göricke S, Deuschl C, Poettgen C, Gauler T, Guberina N, Moliavi S, Bechrakis N, Stuschke M, Guberina M (2023) MRI-based long-term follow-up of indolent orbital lymphomas after curative radiotherapy: imaging remission criteria and volumetric regression kinetics. Sci Rep 13:4792CrossRefPubMedPubMedCentral Hoffmann C, Mohr C, Johansson P, Eckstein A, Huettmann A, von Tresckow J, Göricke S, Deuschl C, Poettgen C, Gauler T, Guberina N, Moliavi S, Bechrakis N, Stuschke M, Guberina M (2023) MRI-based long-term follow-up of indolent orbital lymphomas after curative radiotherapy: imaging remission criteria and volumetric regression kinetics. Sci Rep 13:4792CrossRefPubMedPubMedCentral
Metadata
Title
Fully automated segmentation and volumetric measurement of ocular adnexal lymphoma by deep learning-based self-configuring nnU-net on multi-sequence MRI: a multi-center study
Authors
Guorong Wang
Bingbing Yang
Xiaoxia Qu
Jian Guo
Yongheng Luo
Xiaoquan Xu
Feiyun Wu
Xiaoxue Fan
Yang Hou
Song Tian
Sicong Huang
Junfang Xian
Publication date
17-07-2024
Publisher
Springer Berlin Heidelberg
Published in
Neuroradiology / Issue 10/2024
Print ISSN: 0028-3940
Electronic ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-024-03429-5

How can you integrate PET into your practice? (Link opens in a new window)

PET imaging is playing an increasingly critical role in managing AD. Our expert-led program will empower you with practical strategies and real-world case studies to effectively integrate it into clinical practice.

This content is intended for healthcare professionals outside of the UK.

Supported by:
  • Lilly
Developed by: Springer Healthcare IME
Register your interest

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the systemic effects of menopause, so you can help patients in your clinics through the transition.   

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Watch now
Video