Skip to main content
Top
Published in:

Open Access 09-07-2024 | Magnetic Resonance Imaging | Review Article

Cartilage compositional MRI—a narrative review of technical development and clinical applications over the past three decades

Authors: Xiaojuan Li, Jeehun Kim, Mingrui Yang, Ahmet H. Ok, Štefan Zbýň, Thomas M. Link, Sharmilar Majumdar, C. Benjamin Ma, Kurt P. Spindler, Carl S. Winalski

Published in: Skeletal Radiology | Issue 9/2024

Login to get access

Abstract

Articular cartilage damage and degeneration are among hallmark manifestations of joint injuries and arthritis, classically osteoarthritis. Cartilage compositional MRI (Cart-C MRI), a quantitative technique, which aims to detect early-stage cartilage matrix changes that precede macroscopic alterations, began development in the 1990s. However, despite the significant advancements over the past three decades, Cart-C MRI remains predominantly a research tool, hindered by various technical and clinical hurdles. This paper will review the technical evolution of Cart-C MRI, delve into its clinical applications, and conclude by identifying the existing gaps and challenges that need to be addressed to enable even broader clinical application of Cart-C MRI.
Literature
1.
go back to reference Winalski CS, Rajiah P. The evolution of articular cartilage imaging and its impact on clinical practice. Skeletal Radiol. 2011;40(9):1197–222.PubMedCrossRef Winalski CS, Rajiah P. The evolution of articular cartilage imaging and its impact on clinical practice. Skeletal Radiol. 2011;40(9):1197–222.PubMedCrossRef
2.
go back to reference Wirth W, Ladel C, Maschek S, Wisser A, Eckstein F, Roemer F. Quantitative measurement of cartilage morphology in osteoarthritis: current knowledge and future directions. Skeletal Radiol. 2023;52(11):2107–22.PubMedCrossRef Wirth W, Ladel C, Maschek S, Wisser A, Eckstein F, Roemer F. Quantitative measurement of cartilage morphology in osteoarthritis: current knowledge and future directions. Skeletal Radiol. 2023;52(11):2107–22.PubMedCrossRef
3.
go back to reference Brandt KD, Doherty M, Lohmander LS. Osteoarthritis. New York: Oxford University Press Inc; 1998. Brandt KD, Doherty M, Lohmander LS. Osteoarthritis. New York: Oxford University Press Inc; 1998.
4.
go back to reference Li X, Majumdar S. Quantitative MRI of articular cartilage and its clinical applications. J Magn Reson Imaging. 2013;38(5):991–1008.PubMedCrossRef Li X, Majumdar S. Quantitative MRI of articular cartilage and its clinical applications. J Magn Reson Imaging. 2013;38(5):991–1008.PubMedCrossRef
5.
go back to reference Guermazi A, Alizai H, Crema MD, Trattnig S, Regatte RR, Roemer FW. Compositional MRI techniques for evaluation of cartilage degeneration in osteoarthritis. Osteoarthr Cartil. 2015;23(10):1639–53.CrossRef Guermazi A, Alizai H, Crema MD, Trattnig S, Regatte RR, Roemer FW. Compositional MRI techniques for evaluation of cartilage degeneration in osteoarthritis. Osteoarthr Cartil. 2015;23(10):1639–53.CrossRef
6.
go back to reference Zibetti MVW, Menon RG, de Moura HL, Zhang X, Kijowski R, Regatte RR. Updates on compositional MRI mapping of the cartilage: emerging techniques and applications. J Magn Reson Imaging. 2023;58(1):44–60.PubMedCrossRefPubMedCentral Zibetti MVW, Menon RG, de Moura HL, Zhang X, Kijowski R, Regatte RR. Updates on compositional MRI mapping of the cartilage: emerging techniques and applications. J Magn Reson Imaging. 2023;58(1):44–60.PubMedCrossRefPubMedCentral
7.
go back to reference Xia Y, Farquhar T, Burton-Wurster N, Lust G. Origin of cartilage laminae in MRI. J Magn Reson Imaging. 1997;7(5):887–94.PubMedCrossRef Xia Y, Farquhar T, Burton-Wurster N, Lust G. Origin of cartilage laminae in MRI. J Magn Reson Imaging. 1997;7(5):887–94.PubMedCrossRef
8.
go back to reference Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB. Spatial variation of T2 in human articular cartilage. Radiology. 1997;205(2):546–50.PubMedCrossRef Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB. Spatial variation of T2 in human articular cartilage. Radiology. 1997;205(2):546–50.PubMedCrossRef
9.
go back to reference Duvvuri U, Reddy R, Patel SD, Kaufman JH, Kneeland JB, Leigh JS. T1rho-relaxation in articular cartilage: effects of enzymatic degradation. Magn Reson Med. 1997;38(6):863–7.PubMedCrossRef Duvvuri U, Reddy R, Patel SD, Kaufman JH, Kneeland JB, Leigh JS. T1rho-relaxation in articular cartilage: effects of enzymatic degradation. Magn Reson Med. 1997;38(6):863–7.PubMedCrossRef
10.
go back to reference Regatte RR, Akella SV, Borthakur A, Kneeland JB, Reddy R, Duvvuri U, et al. In vivo proton MR three-dimensional T1rho mapping of human articular cartilage: initial experience. Radiology. 2003;229(1):269–74.PubMedCrossRef Regatte RR, Akella SV, Borthakur A, Kneeland JB, Reddy R, Duvvuri U, et al. In vivo proton MR three-dimensional T1rho mapping of human articular cartilage: initial experience. Radiology. 2003;229(1):269–74.PubMedCrossRef
11.
go back to reference Li X, Han E, Busse R, Majumdar S. In vivo T1rho mapping in cartilage using 3D magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots (3D MAPSS). Magn Reson Med. 2008;59(2):298–307.PubMedCrossRefPubMedCentral Li X, Han E, Busse R, Majumdar S. In vivo T1rho mapping in cartilage using 3D magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots (3D MAPSS). Magn Reson Med. 2008;59(2):298–307.PubMedCrossRefPubMedCentral
12.
go back to reference Qian Y, Boada FE. Acquisition-weighted stack of spirals for fast high-resolution three-dimensional ultra-short echo time MR imaging. Magn Reson Med. 2008;60(1):135–45.PubMedCrossRef Qian Y, Boada FE. Acquisition-weighted stack of spirals for fast high-resolution three-dimensional ultra-short echo time MR imaging. Magn Reson Med. 2008;60(1):135–45.PubMedCrossRef
13.
go back to reference Bashir A, Gray ML, Burstein D. Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med. 1996;36(5):665–73.PubMedCrossRef Bashir A, Gray ML, Burstein D. Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med. 1996;36(5):665–73.PubMedCrossRef
14.
go back to reference Gray ML, Burstein D, Kim YJ, Maroudas A. 2007 Elizabeth Winston Lanier Award Winner. Magnetic resonance imaging of cartilage glycosaminoglycan: basic principles, imaging technique, and clinical applications. J Orthop Res. 2008;26(3):281–91.PubMedCrossRef Gray ML, Burstein D, Kim YJ, Maroudas A. 2007 Elizabeth Winston Lanier Award Winner. Magnetic resonance imaging of cartilage glycosaminoglycan: basic principles, imaging technique, and clinical applications. J Orthop Res. 2008;26(3):281–91.PubMedCrossRef
15.
go back to reference Burstein D, Gray ML, Hartman AL, Gipe R, Foy BD. Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. J Orthop Res. 1993;11(4):465–78.PubMedCrossRef Burstein D, Gray ML, Hartman AL, Gipe R, Foy BD. Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. J Orthop Res. 1993;11(4):465–78.PubMedCrossRef
16.
go back to reference Raya JG, Horng A, Dietrich O, Krasnokutsky S, Beltran LS, Storey P, et al. Articular cartilage: in vivo diffusion-tensor imaging. Radiology. 2012;262(2):550–9.PubMedCrossRef Raya JG, Horng A, Dietrich O, Krasnokutsky S, Beltran LS, Storey P, et al. Articular cartilage: in vivo diffusion-tensor imaging. Radiology. 2012;262(2):550–9.PubMedCrossRef
17.
go back to reference Wolff SD, Chesnick S, Frank JA, Lim KO, Balaban RS. Magnetization transfer contrast: MR imaging of the knee. Radiology. 1991;179(3):623–8.PubMedCrossRef Wolff SD, Chesnick S, Frank JA, Lim KO, Balaban RS. Magnetization transfer contrast: MR imaging of the knee. Radiology. 1991;179(3):623–8.PubMedCrossRef
18.
go back to reference Stikov N, Keenan KE, Pauly JM, Smith RL, Dougherty RF, Gold GE. Cross-relaxation imaging of human articular cartilage. Magn Reson Med. 2011;66(3):725–34.PubMedCrossRefPubMedCentral Stikov N, Keenan KE, Pauly JM, Smith RL, Dougherty RF, Gold GE. Cross-relaxation imaging of human articular cartilage. Magn Reson Med. 2011;66(3):725–34.PubMedCrossRefPubMedCentral
19.
go back to reference Ling W, Regatte RR, Navon G, Jerschow A. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A. 2008;105(7):2266–70.PubMedCrossRefPubMedCentral Ling W, Regatte RR, Navon G, Jerschow A. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A. 2008;105(7):2266–70.PubMedCrossRefPubMedCentral
20.
go back to reference Lesperance LM, Gray ML, Burstein D. Determination of fixed charge density in cartilage using nuclear magnetic resonance. J Orthop Res. 1992;10(1):1–13.PubMedCrossRef Lesperance LM, Gray ML, Burstein D. Determination of fixed charge density in cartilage using nuclear magnetic resonance. J Orthop Res. 1992;10(1):1–13.PubMedCrossRef
21.
go back to reference Reddy R, Insko EK, Noyszewski EA, Dandora R, Kneeland JB, Leigh JS. Sodium MRI of human articular cartilage in vivo. Magn Reson Med. 1998;39(5):697–701.PubMedCrossRef Reddy R, Insko EK, Noyszewski EA, Dandora R, Kneeland JB, Leigh JS. Sodium MRI of human articular cartilage in vivo. Magn Reson Med. 1998;39(5):697–701.PubMedCrossRef
22.
go back to reference Li X, Winalski C. MRI relaxometry: applications in musculoskeletal systems. In: Seiberlich N, Gulani V, Calamante F, Campbell-Washburn A, Doneva M, Hu H, et al., eds. Quantitative Magnetic Resonance Imaging: Academic Press; 2020;185–214. Li X, Winalski C. MRI relaxometry: applications in musculoskeletal systems. In: Seiberlich N, Gulani V, Calamante F, Campbell-Washburn A, Doneva M, Hu H, et al., eds. Quantitative Magnetic Resonance Imaging: Academic Press; 2020;185–214.
23.
go back to reference Radunsky D, Stern N, Nassar J, Tsarfaty G, Blumenfeld-Katzir T, Ben-Eliezer N. Quantitative platform for accurate and reproducible assessment of transverse (T(2)) relaxation time. NMR Biomed. 2021;34(8):e4537.PubMedCrossRef Radunsky D, Stern N, Nassar J, Tsarfaty G, Blumenfeld-Katzir T, Ben-Eliezer N. Quantitative platform for accurate and reproducible assessment of transverse (T(2)) relaxation time. NMR Biomed. 2021;34(8):e4537.PubMedCrossRef
24.
go back to reference Foltz W, Stainsby J, Wright G. T2 accuracy on a whole-body imager. Magn Reson Med. 1997;38(5):759–68.PubMedCrossRef Foltz W, Stainsby J, Wright G. T2 accuracy on a whole-body imager. Magn Reson Med. 1997;38(5):759–68.PubMedCrossRef
25.
go back to reference Sveinsson B, Chaudhari AS, Gold GE, Hargreaves BA. A simple analytic method for estimating T2 in the knee from DESS. Magn Reson Imaging. 2017;38:63–70.PubMedCrossRef Sveinsson B, Chaudhari AS, Gold GE, Hargreaves BA. A simple analytic method for estimating T2 in the knee from DESS. Magn Reson Imaging. 2017;38:63–70.PubMedCrossRef
26.
go back to reference Cheng CC, Mei CS, Duryea J, Chung HW, Chao TC, Panych LP, et al. Dual-pathway multi-echo sequence for simultaneous frequency and T2 mapping. J Magn Reson. 2016;265:177–87.PubMedCrossRefPubMedCentral Cheng CC, Mei CS, Duryea J, Chung HW, Chao TC, Panych LP, et al. Dual-pathway multi-echo sequence for simultaneous frequency and T2 mapping. J Magn Reson. 2016;265:177–87.PubMedCrossRefPubMedCentral
27.
go back to reference Heule R, Ganter C, Bieri O. Triple echo steady-state (TESS) relaxometry. Magn Reson Med. 2014;71(1):230–7.PubMedCrossRef Heule R, Ganter C, Bieri O. Triple echo steady-state (TESS) relaxometry. Magn Reson Med. 2014;71(1):230–7.PubMedCrossRef
28.
go back to reference Zijlstra F, Seevinck PR. Multiple-echo steady-state (MESS): extending DESS for joint T2 mapping and chemical-shift corrected water-fat separation. Magn Reson Med. 2021;86(6):3156–65.PubMedCrossRefPubMedCentral Zijlstra F, Seevinck PR. Multiple-echo steady-state (MESS): extending DESS for joint T2 mapping and chemical-shift corrected water-fat separation. Magn Reson Med. 2021;86(6):3156–65.PubMedCrossRefPubMedCentral
29.
go back to reference Tsai PH, Wong CC, Chan WP, Lu TW. The value of MR T2* measurements in normal and osteoarthritic knee cartilage: effects of age, sex, and location. Eur Radiol. 2019;29(8):4514–22.PubMedCrossRef Tsai PH, Wong CC, Chan WP, Lu TW. The value of MR T2* measurements in normal and osteoarthritic knee cartilage: effects of age, sex, and location. Eur Radiol. 2019;29(8):4514–22.PubMedCrossRef
30.
go back to reference Ellermann J, Ziegler C, Nissi MJ, Goebel R, Hughes J, Benson M, et al. Acetabular cartilage assessment in patients with femoroacetabular impingement by using T2* mapping with arthroscopic verification. Radiology. 2014;271(2):512–23.PubMedCrossRef Ellermann J, Ziegler C, Nissi MJ, Goebel R, Hughes J, Benson M, et al. Acetabular cartilage assessment in patients with femoroacetabular impingement by using T2* mapping with arthroscopic verification. Radiology. 2014;271(2):512–23.PubMedCrossRef
31.
go back to reference Qian Y, Williams AA, Chu CR, Boada FE. Multicomponent T2* mapping of knee cartilage: technical feasibility ex vivo. Magn Reson Med. 2010;64(5):1426–31.PubMedCrossRefPubMedCentral Qian Y, Williams AA, Chu CR, Boada FE. Multicomponent T2* mapping of knee cartilage: technical feasibility ex vivo. Magn Reson Med. 2010;64(5):1426–31.PubMedCrossRefPubMedCentral
32.
go back to reference Shao H, Chang EY, Pauli C, Zanganeh S, Bae W, Chung CB, et al. UTE bi-component analysis of T2* relaxation in articular cartilage. Osteoarthr Cartil. 2016;24(2):364–73.CrossRef Shao H, Chang EY, Pauli C, Zanganeh S, Bae W, Chung CB, et al. UTE bi-component analysis of T2* relaxation in articular cartilage. Osteoarthr Cartil. 2016;24(2):364–73.CrossRef
33.
go back to reference Makela HI, Grohn OH, Kettunen MI, Kauppinen RA. Proton exchange as a relaxation mechanism for T1 in the rotating frame in native and immobilized protein solutions. Biochem Biophys Res Commun. 2001;289(4):813–8.PubMedCrossRef Makela HI, Grohn OH, Kettunen MI, Kauppinen RA. Proton exchange as a relaxation mechanism for T1 in the rotating frame in native and immobilized protein solutions. Biochem Biophys Res Commun. 2001;289(4):813–8.PubMedCrossRef
34.
go back to reference Duvvuri U, Goldberg AD, Kranz JK, Hoang L, Reddy R, Wehrli FW, et al. Water magnetic relaxation dispersion in biological systems: the contribution of proton exchange and implications for the noninvasive detection of cartilage degradation. Proc Natl Acad Sci U S A. 2001;98(22):12479–84.PubMedCrossRefPubMedCentral Duvvuri U, Goldberg AD, Kranz JK, Hoang L, Reddy R, Wehrli FW, et al. Water magnetic relaxation dispersion in biological systems: the contribution of proton exchange and implications for the noninvasive detection of cartilage degradation. Proc Natl Acad Sci U S A. 2001;98(22):12479–84.PubMedCrossRefPubMedCentral
35.
go back to reference Hanninen N, Rautiainen J, Rieppo L, Saarakkala S, Nissi MJ. Orientation anisotropy of quantitative MRI relaxation parameters in ordered tissue. Sci Rep. 2017;7(1):9606.PubMedCrossRefPubMedCentral Hanninen N, Rautiainen J, Rieppo L, Saarakkala S, Nissi MJ. Orientation anisotropy of quantitative MRI relaxation parameters in ordered tissue. Sci Rep. 2017;7(1):9606.PubMedCrossRefPubMedCentral
36.
go back to reference Li X, Ma C, Link T, Castillo D, Blumenkrantz G, Lozano J, et al. In vivo T1rho and T2 mapping of articular cartilage in osteoarthritis of the knee using 3 Tesla MRI. Osteoarthr Cartil. 2007;15(7):789–97.CrossRef Li X, Ma C, Link T, Castillo D, Blumenkrantz G, Lozano J, et al. In vivo T1rho and T2 mapping of articular cartilage in osteoarthritis of the knee using 3 Tesla MRI. Osteoarthr Cartil. 2007;15(7):789–97.CrossRef
37.
go back to reference Stahl R, Luke A, Li X, Carballido-Gamio J, Ma CB, Majumdar S, et al. T1rho, T2 and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients—a 3.0-Tesla MRI study. Eur Radiol. 2009;19(1):132–43.PubMedCrossRef Stahl R, Luke A, Li X, Carballido-Gamio J, Ma CB, Majumdar S, et al. T1rho, T2 and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients—a 3.0-Tesla MRI study. Eur Radiol. 2009;19(1):132–43.PubMedCrossRef
38.
go back to reference Nishioka H, Hirose J, Okamoto N, Okada T, Oka K, Taniwaki T, et al. Evaluation of the relationship between T1rho and T2 values and patella cartilage degeneration in patients of the same age group. Eur J Radiol. 2015;84(3):463–8.PubMedCrossRef Nishioka H, Hirose J, Okamoto N, Okada T, Oka K, Taniwaki T, et al. Evaluation of the relationship between T1rho and T2 values and patella cartilage degeneration in patients of the same age group. Eur J Radiol. 2015;84(3):463–8.PubMedCrossRef
39.
go back to reference MacKay JW, Low SBL, Smith TO, Toms AP, McCaskie AW, Gilbert FJ. Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis. Osteoarthritis Cartilage. 2018;26(9):1140–52.PubMedCrossRef MacKay JW, Low SBL, Smith TO, Toms AP, McCaskie AW, Gilbert FJ. Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis. Osteoarthritis Cartilage. 2018;26(9):1140–52.PubMedCrossRef
40.
go back to reference Charagundla SR, Borthakur A, Leigh JS, Reddy R. Artifacts in T(1rho)-weighted imaging: correction with a self-compensating spin-locking pulse. J Magn Reson. 2003;162(1):113–21.PubMedCrossRef Charagundla SR, Borthakur A, Leigh JS, Reddy R. Artifacts in T(1rho)-weighted imaging: correction with a self-compensating spin-locking pulse. J Magn Reson. 2003;162(1):113–21.PubMedCrossRef
41.
go back to reference Chen W. Artifacts correction for T1rho imaging with constant amplitude spin-lock. J Magn Reson. 2017;274:13–23.PubMedCrossRef Chen W. Artifacts correction for T1rho imaging with constant amplitude spin-lock. J Magn Reson. 2017;274:13–23.PubMedCrossRef
42.
go back to reference Chen W, Takahashi A, Han E. Quantitative T(1)(rho) imaging using phase cycling for B0 and B1 field inhomogeneity compensation. Magn Reson Imaging. 2011;29(5):608–19.PubMedCrossRef Chen W, Takahashi A, Han E. Quantitative T(1)(rho) imaging using phase cycling for B0 and B1 field inhomogeneity compensation. Magn Reson Imaging. 2011;29(5):608–19.PubMedCrossRef
43.
go back to reference Gram M, Seethaler M, Gensler D, Oberberger J, Jakob PM, Nordbeck P. Balanced spin-lock preparation for B(1)-insensitive and B(0)-insensitive quantification of the rotating frame relaxation time T(1rho). Magn Reson Med. 2021;85(5):2771–80.PubMedCrossRef Gram M, Seethaler M, Gensler D, Oberberger J, Jakob PM, Nordbeck P. Balanced spin-lock preparation for B(1)-insensitive and B(0)-insensitive quantification of the rotating frame relaxation time T(1rho). Magn Reson Med. 2021;85(5):2771–80.PubMedCrossRef
44.
go back to reference Pang Y. A self-compensated spin-locking scheme for quantitative R(1rho) dispersion MR imaging in ordered tissues. Magn Reson Imaging. 2022;94:112–8.PubMedCrossRef Pang Y. A self-compensated spin-locking scheme for quantitative R(1rho) dispersion MR imaging in ordered tissues. Magn Reson Imaging. 2022;94:112–8.PubMedCrossRef
45.
go back to reference Kim J, Peng Q, Wu C, Li X. MR T1ρ preparations: B1 and B0 inhomogeneity and T2ρ evaluation with Bloch equation-based simulation. 2022 Joint Annual Meeting ISMRM-ESMRMB & ISMRT 31st Annual Meeting. London, UK 2022. Kim J, Peng Q, Wu C, Li X. MR T1ρ preparations: B1 and B0 inhomogeneity and T2ρ evaluation with Bloch equation-based simulation. 2022 Joint Annual Meeting ISMRM-ESMRMB & ISMRT 31st Annual Meeting. London, UK 2022.
46.
go back to reference Pala S, Hanninen NE, Nykanen O, Liimatainen T, Nissi MJ. New methods for robust continuous wave T(1rho) relaxation preparation. NMR Biomed. 2023;36(2):e4834.PubMedCrossRef Pala S, Hanninen NE, Nykanen O, Liimatainen T, Nissi MJ. New methods for robust continuous wave T(1rho) relaxation preparation. NMR Biomed. 2023;36(2):e4834.PubMedCrossRef
47.
go back to reference Michaeli S, Sorce DJ, Idiyatullin D, Ugurbil K, Garwood M. Transverse relaxation in the rotating frame induced by chemical exchange. J Magn Reson. 2004;169(2):293–9.PubMedCrossRef Michaeli S, Sorce DJ, Idiyatullin D, Ugurbil K, Garwood M. Transverse relaxation in the rotating frame induced by chemical exchange. J Magn Reson. 2004;169(2):293–9.PubMedCrossRef
48.
go back to reference Liimatainen T, Sorce DJ, O’Connell R, Garwood M, Michaeli S. MRI contrast from relaxation along a fictitious field (RAFF). Magn Reson Med. 2010;64(4):983–94.PubMedCrossRefPubMedCentral Liimatainen T, Sorce DJ, O’Connell R, Garwood M, Michaeli S. MRI contrast from relaxation along a fictitious field (RAFF). Magn Reson Med. 2010;64(4):983–94.PubMedCrossRefPubMedCentral
49.
go back to reference Li X, Wyatt C, Rivoire J, Han E, Chen W, Schooler J, et al. Simultaneous acquisition of T1rho and T2 quantification in knee cartilage: repeatability and diurnal variation. J Magn Reson Imaging. 2014;39(5):1287–93.PubMedCrossRef Li X, Wyatt C, Rivoire J, Han E, Chen W, Schooler J, et al. Simultaneous acquisition of T1rho and T2 quantification in knee cartilage: repeatability and diurnal variation. J Magn Reson Imaging. 2014;39(5):1287–93.PubMedCrossRef
50.
go back to reference Kim J, Mamoto K, Lartey R, Xu K, Nakamura K, Shin W, et al. Multi-vendor multi-site T1rho and T2 quantification of knee cartilage. Osteoarthr Cartil. 2020;28(12):1539–50.CrossRef Kim J, Mamoto K, Lartey R, Xu K, Nakamura K, Shin W, et al. Multi-vendor multi-site T1rho and T2 quantification of knee cartilage. Osteoarthr Cartil. 2020;28(12):1539–50.CrossRef
52.
go back to reference Wang P, Block J, Gore JC. Chemical exchange in knee cartilage assessed by R1rho (1/T1rho) dispersion at 3T. Magn Reson Imaging. 2015;33(1):38–42.PubMedCrossRef Wang P, Block J, Gore JC. Chemical exchange in knee cartilage assessed by R1rho (1/T1rho) dispersion at 3T. Magn Reson Imaging. 2015;33(1):38–42.PubMedCrossRef
53.
go back to reference Han M, Tibrewala R, Bahroos E, Pedoia V, Majumdar S. Magnetization-prepared spoiled gradient-echo snapshot imaging for efficient measurement of R(2) -R(1rho) in knee cartilage. Magn Reson Med. 2022;87(2):733–45.PubMedCrossRef Han M, Tibrewala R, Bahroos E, Pedoia V, Majumdar S. Magnetization-prepared spoiled gradient-echo snapshot imaging for efficient measurement of R(2) -R(1rho) in knee cartilage. Magn Reson Med. 2022;87(2):733–45.PubMedCrossRef
54.
go back to reference Pakin S, Schweitzer M, Regatte R. Rapid 3D–T1rho mapping of the knee joint at 3.0T with parallel imaging. Magn Reson Med. 2006;56(3):563–71.PubMedCrossRef Pakin S, Schweitzer M, Regatte R. Rapid 3D–T1rho mapping of the knee joint at 3.0T with parallel imaging. Magn Reson Med. 2006;56(3):563–71.PubMedCrossRef
55.
go back to reference Zuo J, Li X, Banerjee S, Han E, Majumdar S. Parallel imaging of knee cartilage at 3 Tesla. J Magn Reson Imaging. 2007;26(4):1001–9.PubMedCrossRef Zuo J, Li X, Banerjee S, Han E, Majumdar S. Parallel imaging of knee cartilage at 3 Tesla. J Magn Reson Imaging. 2007;26(4):1001–9.PubMedCrossRef
56.
go back to reference Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.PubMedCrossRef Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.PubMedCrossRef
57.
go back to reference Huang C, Graff CG, Clarkson EW, Bilgin A, Altbach MI. T2 mapping from highly undersampled data by reconstruction of principal component coefficient maps using compressed sensing. Magn Reson Med. 2012;67(5):1355–66.PubMedCrossRef Huang C, Graff CG, Clarkson EW, Bilgin A, Altbach MI. T2 mapping from highly undersampled data by reconstruction of principal component coefficient maps using compressed sensing. Magn Reson Med. 2012;67(5):1355–66.PubMedCrossRef
58.
go back to reference Peng X, Ying L, Liu Y, Yuan J, Liu X, Liang D. Accelerated exponential parameterization of T2 relaxation with model-driven low rank and sparsity priors (MORASA). Magn Reson Med. 2016;76(6):1865–78.PubMedCrossRef Peng X, Ying L, Liu Y, Yuan J, Liu X, Liang D. Accelerated exponential parameterization of T2 relaxation with model-driven low rank and sparsity priors (MORASA). Magn Reson Med. 2016;76(6):1865–78.PubMedCrossRef
59.
go back to reference Zhou Y, Pandit P, Pedoia V, Rivoire J, Wang Y, Liang D, et al. Accelerating T1ρ cartilage imaging using compressed sensing with iterative locally adapted support detection and JSENSE. Magn Reson Med. 2016;75(4):1617–29.PubMedCrossRef Zhou Y, Pandit P, Pedoia V, Rivoire J, Wang Y, Liang D, et al. Accelerating T1ρ cartilage imaging using compressed sensing with iterative locally adapted support detection and JSENSE. Magn Reson Med. 2016;75(4):1617–29.PubMedCrossRef
60.
go back to reference Zhu Y, Zhang Q, Liu Q, Wang YX, Liu X, Zheng H, et al. PANDA-T1ρ: Integrating principal component analysis and dictionary learning for fast T1ρ mapping. Magn Reson Med. 2015;73(1):263–72.PubMedCrossRef Zhu Y, Zhang Q, Liu Q, Wang YX, Liu X, Zheng H, et al. PANDA-T1ρ: Integrating principal component analysis and dictionary learning for fast T1ρ mapping. Magn Reson Med. 2015;73(1):263–72.PubMedCrossRef
61.
go back to reference Pandit P, Rivoire J, King K, Li X. Accelerated T1ρ acquisition for knee cartilage quantification using compressed sensing and data-driven parallel imaging: a feasibility study. Magn Reson Med. 2016;75(3):1256–61.PubMedCrossRef Pandit P, Rivoire J, King K, Li X. Accelerated T1ρ acquisition for knee cartilage quantification using compressed sensing and data-driven parallel imaging: a feasibility study. Magn Reson Med. 2016;75(3):1256–61.PubMedCrossRef
62.
go back to reference Zibetti MVW, Sharafi A, Otazo R, Regatte RR. Accelerating 3D-T(1ρ) mapping of cartilage using compressed sensing with different sparse and low rank models. Magn Reson Med. 2018;80(4):1475–91.PubMedCrossRefPubMedCentral Zibetti MVW, Sharafi A, Otazo R, Regatte RR. Accelerating 3D-T(1ρ) mapping of cartilage using compressed sensing with different sparse and low rank models. Magn Reson Med. 2018;80(4):1475–91.PubMedCrossRefPubMedCentral
63.
go back to reference Kim J, Zhang Z, Liu R, Eck B, Yang M, Li H, et al. Retrospective and prospective evaluation of accelerated T1rho and T2 mapping with Compressed Sensing: high resolution T1rho mapping and combined T1rho and T2 mapping. 2023 ISMRM & ISMRT Annual Meeting & Exhibition. Toronto 2023. Kim J, Zhang Z, Liu R, Eck B, Yang M, Li H, et al. Retrospective and prospective evaluation of accelerated T1rho and T2 mapping with Compressed Sensing: high resolution T1rho mapping and combined T1rho and T2 mapping. 2023 ISMRM & ISMRT Annual Meeting & Exhibition. Toronto 2023.
64.
go back to reference Zibetti MVW, Johnson PM, Sharafi A, Hammernik K, Knoll F, Regatte RR. Rapid mono and biexponential 3D-T(1rho) mapping of knee cartilage using variational networks. Sci Rep. 2020;10(1):19144.PubMedCrossRefPubMedCentral Zibetti MVW, Johnson PM, Sharafi A, Hammernik K, Knoll F, Regatte RR. Rapid mono and biexponential 3D-T(1rho) mapping of knee cartilage using variational networks. Sci Rep. 2020;10(1):19144.PubMedCrossRefPubMedCentral
65.
go back to reference Tolpadi AA, Han M, Caliva F, Pedoia V, Majumdar S. Region of interest-specific loss functions improve T(2) quantification with ultrafast T(2) mapping MRI sequences in knee, hip and lumbar spine. Sci Rep. 2022;12(1):22208.PubMedCrossRefPubMedCentral Tolpadi AA, Han M, Caliva F, Pedoia V, Majumdar S. Region of interest-specific loss functions improve T(2) quantification with ultrafast T(2) mapping MRI sequences in knee, hip and lumbar spine. Sci Rep. 2022;12(1):22208.PubMedCrossRefPubMedCentral
66.
go back to reference Li H, Yang M, Kim JH, Zhang C, Liu R, Huang P, et al. SuperMAP: deep ultrafast MR relaxometry with joint spatiotemporal undersampling. Magn Reson Med. 2023;89(1):64–76.PubMedCrossRef Li H, Yang M, Kim JH, Zhang C, Liu R, Huang P, et al. SuperMAP: deep ultrafast MR relaxometry with joint spatiotemporal undersampling. Magn Reson Med. 2023;89(1):64–76.PubMedCrossRef
68.
go back to reference Cloos MA, Asslander J, Abbas B, Fishbaugh J, Babb JS, Gerig G, et al. Rapid radial T(1) and T(2) mapping of the hip articular cartilage with magnetic resonance fingerprinting. J Magn Reson Imaging. 2019;50(3):810–5.PubMedCrossRef Cloos MA, Asslander J, Abbas B, Fishbaugh J, Babb JS, Gerig G, et al. Rapid radial T(1) and T(2) mapping of the hip articular cartilage with magnetic resonance fingerprinting. J Magn Reson Imaging. 2019;50(3):810–5.PubMedCrossRef
69.
go back to reference Sharafi A, Zibetti MVW, Chang G, Cloos M, Regatte RR. 3D magnetic resonance fingerprinting for rapid simultaneous T1, T2, and T1rho volumetric mapping of human articular cartilage at 3 T. NMR Biomed. 2022;35(12):e4800.PubMedCrossRefPubMedCentral Sharafi A, Zibetti MVW, Chang G, Cloos M, Regatte RR. 3D magnetic resonance fingerprinting for rapid simultaneous T1, T2, and T1rho volumetric mapping of human articular cartilage at 3 T. NMR Biomed. 2022;35(12):e4800.PubMedCrossRefPubMedCentral
70.
go back to reference Tourais J, Ploem T, van Zadelhoff TA, van de Steeg-Henzen C, Oei EHG, Weingartner S. Rapid whole-knee quantification of cartilage using T(1), T(2)(*), and T(RAFF2) mapping with magnetic resonance fingerprinting. IEEE Trans Biomed Eng. 2023;70(11):3197–205.PubMedCrossRef Tourais J, Ploem T, van Zadelhoff TA, van de Steeg-Henzen C, Oei EHG, Weingartner S. Rapid whole-knee quantification of cartilage using T(1), T(2)(*), and T(RAFF2) mapping with magnetic resonance fingerprinting. IEEE Trans Biomed Eng. 2023;70(11):3197–205.PubMedCrossRef
71.
go back to reference Li H, Yang M, Kim J, Liu R, Huang P, Liang D, et al. SuperMRF: deep robust acceleration for MR fingerprinting. 2023 ISMRM & ISMRT Annual Meeting & Exhibition. Toronto, Canada 2023. Li H, Yang M, Kim J, Liu R, Huang P, Liang D, et al. SuperMRF: deep robust acceleration for MR fingerprinting. 2023 ISMRM & ISMRT Annual Meeting & Exhibition. Toronto, Canada 2023.
72.
go back to reference Ebrahimkhani S, Jaward MH, Cicuttini FM, Dharmaratne A, Wang Y, de Herrera AGS. A review on segmentation of knee articular cartilage: from conventional methods towards deep learning. Artif Intell Med. 2020;106:101851.PubMedCrossRef Ebrahimkhani S, Jaward MH, Cicuttini FM, Dharmaratne A, Wang Y, de Herrera AGS. A review on segmentation of knee articular cartilage: from conventional methods towards deep learning. Artif Intell Med. 2020;106:101851.PubMedCrossRef
73.
go back to reference Desai AD, Caliva F, Iriondo C, Mortazi A, Jambawalikar S, Bagci U, et al. The international workshop on osteoarthritis imaging knee MRI segmentation challenge: a multi-institute evaluation and analysis framework on a standardized dataset. Radiol Artif Intell. 2021;3(3):e200078.PubMedCrossRefPubMedCentral Desai AD, Caliva F, Iriondo C, Mortazi A, Jambawalikar S, Bagci U, et al. The international workshop on osteoarthritis imaging knee MRI segmentation challenge: a multi-institute evaluation and analysis framework on a standardized dataset. Radiol Artif Intell. 2021;3(3):e200078.PubMedCrossRefPubMedCentral
74.
go back to reference Gaj S, Yang M, Nakamura K, Li X. Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks. Magn Reson Med. 2020;84(1):437–49.PubMedCrossRef Gaj S, Yang M, Nakamura K, Li X. Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks. Magn Reson Med. 2020;84(1):437–49.PubMedCrossRef
75.
go back to reference Holden W, Lartey R, Obuchowski N, Gaj S, Kim J, Li M, et al. Baseline predictors of knee cartilage magnetic resonance T1ρ and T2 relaxation times 10 years after anterior cruciate ligament reconstruction. Osteoarthr Cartil. 2023;31:S277–8.CrossRef Holden W, Lartey R, Obuchowski N, Gaj S, Kim J, Li M, et al. Baseline predictors of knee cartilage magnetic resonance T1ρ and T2 relaxation times 10 years after anterior cruciate ligament reconstruction. Osteoarthr Cartil. 2023;31:S277–8.CrossRef
76.
go back to reference Xue Y-P, Jang H, Byra M, Cai Z-Y, Wu M, Chang EY, et al. Automated cartilage segmentation and quantification using 3D ultrashort echo time (UTE) cones MR imaging with deep convolutional neural networks. Eur Radiol. 2021;31(10):7653–63.PubMedCrossRefPubMedCentral Xue Y-P, Jang H, Byra M, Cai Z-Y, Wu M, Chang EY, et al. Automated cartilage segmentation and quantification using 3D ultrashort echo time (UTE) cones MR imaging with deep convolutional neural networks. Eur Radiol. 2021;31(10):7653–63.PubMedCrossRefPubMedCentral
77.
go back to reference Pedoia V, Lee J, Norman B, Link TM, Majumdar S. Diagnosing osteoarthritis from T2 maps using deep learning: an analysis of the entire Osteoarthritis Initiative baseline cohort. Osteoarthr Cartil. 2019;27(7):1002–10.CrossRef Pedoia V, Lee J, Norman B, Link TM, Majumdar S. Diagnosing osteoarthritis from T2 maps using deep learning: an analysis of the entire Osteoarthritis Initiative baseline cohort. Osteoarthr Cartil. 2019;27(7):1002–10.CrossRef
78.
go back to reference Schmidt AM, Desai AD, Watkins LE, Crowder HA, Black MS, Mazzoli V, et al. Generalizability of deep learning segmentation algorithms for automated assessment of cartilage morphology and MRI relaxometry. J Magn Reson Imaging. 2023;57(4):1029–39.PubMedCrossRef Schmidt AM, Desai AD, Watkins LE, Crowder HA, Black MS, Mazzoli V, et al. Generalizability of deep learning segmentation algorithms for automated assessment of cartilage morphology and MRI relaxometry. J Magn Reson Imaging. 2023;57(4):1029–39.PubMedCrossRef
79.
go back to reference Rautiainen J, Nissi MJ, Salo EN, Tiitu V, Finnila MAJ, Aho OM, et al. Multiparametric MRI assessment of human articular cartilage degeneration: correlation with quantitative histology and mechanical properties. Magn Reson Med. 2015;74(1):249–59.PubMedCrossRef Rautiainen J, Nissi MJ, Salo EN, Tiitu V, Finnila MAJ, Aho OM, et al. Multiparametric MRI assessment of human articular cartilage degeneration: correlation with quantitative histology and mechanical properties. Magn Reson Med. 2015;74(1):249–59.PubMedCrossRef
80.
go back to reference Emanuel KS, Kellner LJ, Peters MJM, Haartmans MJJ, Hooijmans MT, Emans PJ. The relation between the biochemical composition of knee articular cartilage and quantitative MRI: a systematic review and meta-analysis. Osteoarthr Cartil. 2022;30(5):650–62.CrossRef Emanuel KS, Kellner LJ, Peters MJM, Haartmans MJJ, Hooijmans MT, Emans PJ. The relation between the biochemical composition of knee articular cartilage and quantitative MRI: a systematic review and meta-analysis. Osteoarthr Cartil. 2022;30(5):650–62.CrossRef
81.
go back to reference Atkinson HF, Birmingham TB, Moyer RF, Yacoub D, Kanko LE, Bryant DM, et al. MRI T2 and T1rho relaxation in patients at risk for knee osteoarthritis: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2019;20(1):182.PubMedCrossRefPubMedCentral Atkinson HF, Birmingham TB, Moyer RF, Yacoub D, Kanko LE, Bryant DM, et al. MRI T2 and T1rho relaxation in patients at risk for knee osteoarthritis: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2019;20(1):182.PubMedCrossRefPubMedCentral
83.
go back to reference Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage. 2008;16(12):1433–41.PubMedCrossRefPubMedCentral Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage. 2008;16(12):1433–41.PubMedCrossRefPubMedCentral
84.
go back to reference Eckstein F, Kwoh CK, Link TM, Investigators OAI. Imaging research results from the osteoarthritis initiative (OAI): a review and lessons learned 10 years after start of enrolment. Ann Rheum Dis. 2014;73(7):1289–300.PubMedCrossRef Eckstein F, Kwoh CK, Link TM, Investigators OAI. Imaging research results from the osteoarthritis initiative (OAI): a review and lessons learned 10 years after start of enrolment. Ann Rheum Dis. 2014;73(7):1289–300.PubMedCrossRef
85.
go back to reference Joo PY, Borjali A, Chen AF, Muratoglu OK, Varadarajan KM. Defining and predicting radiographic knee osteoarthritis progression: a systematic review of findings from the osteoarthritis initiative. Knee Surg Sports Traumatol Arthrosc. 2022;30(12):4015–28.PubMedCrossRef Joo PY, Borjali A, Chen AF, Muratoglu OK, Varadarajan KM. Defining and predicting radiographic knee osteoarthritis progression: a systematic review of findings from the osteoarthritis initiative. Knee Surg Sports Traumatol Arthrosc. 2022;30(12):4015–28.PubMedCrossRef
86.
go back to reference Joseph GB, Baum T, Alizai H, Carballido-Gamio J, Nardo L, Virayavanich W, et al. Baseline mean and heterogeneity of MR cartilage T2 are associated with morphologic degeneration of cartilage, meniscus, and bone marrow over 3 years–data from the Osteoarthritis Initiative. Osteoarthr Cartil. 2012;20(7):727–35.CrossRef Joseph GB, Baum T, Alizai H, Carballido-Gamio J, Nardo L, Virayavanich W, et al. Baseline mean and heterogeneity of MR cartilage T2 are associated with morphologic degeneration of cartilage, meniscus, and bone marrow over 3 years–data from the Osteoarthritis Initiative. Osteoarthr Cartil. 2012;20(7):727–35.CrossRef
87.
go back to reference Kretzschmar M, Nevitt MC, Schwaiger BJ, Joseph GB, McCulloch CE, Link TM. Spatial distribution and temporal progression of T2 relaxation time values in knee cartilage prior to the onset of cartilage lesions - data from the Osteoarthritis Initiative (OAI). Osteoarthr Cartil. 2019;27(5):737–45.CrossRef Kretzschmar M, Nevitt MC, Schwaiger BJ, Joseph GB, McCulloch CE, Link TM. Spatial distribution and temporal progression of T2 relaxation time values in knee cartilage prior to the onset of cartilage lesions - data from the Osteoarthritis Initiative (OAI). Osteoarthr Cartil. 2019;27(5):737–45.CrossRef
88.
go back to reference Razmjoo A, Caliva F, Lee J, Liu F, Joseph GB, Link TM, et al. T2 analysis of the entire osteoarthritis initiative dataset. J Orthop Res. 2021;39(1):74–85.PubMedCrossRef Razmjoo A, Caliva F, Lee J, Liu F, Joseph GB, Link TM, et al. T2 analysis of the entire osteoarthritis initiative dataset. J Orthop Res. 2021;39(1):74–85.PubMedCrossRef
89.
go back to reference Hovis KK, Stehling C, Souza RB, Haughom BD, Baum T, Nevitt M, et al. Physical activity is associated with magnetic resonance imaging-based knee cartilage T2 measurements in asymptomatic subjects with and those without osteoarthritis risk factors. Arthritis Rheum. 2011;63(8):2248–56.PubMedCrossRefPubMedCentral Hovis KK, Stehling C, Souza RB, Haughom BD, Baum T, Nevitt M, et al. Physical activity is associated with magnetic resonance imaging-based knee cartilage T2 measurements in asymptomatic subjects with and those without osteoarthritis risk factors. Arthritis Rheum. 2011;63(8):2248–56.PubMedCrossRefPubMedCentral
90.
go back to reference Lin W, Alizai H, Joseph GB, Srikhum W, Nevitt MC, Lynch JA, et al. Physical activity in relation to knee cartilage T2 progression measured with 3 T MRI over a period of 4 years: data from the Osteoarthritis Initiative. Osteoarthr Cartil. 2013;21(10):1558–66.CrossRef Lin W, Alizai H, Joseph GB, Srikhum W, Nevitt MC, Lynch JA, et al. Physical activity in relation to knee cartilage T2 progression measured with 3 T MRI over a period of 4 years: data from the Osteoarthritis Initiative. Osteoarthr Cartil. 2013;21(10):1558–66.CrossRef
91.
go back to reference Gersing AS, Schwaiger BJ, Nevitt MC, Joseph GB, Chanchek N, Guimaraes JB, et al. Is weight loss associated with less progression of changes in knee articular cartilage among obese and overweight patients as assessed with MR imaging over 48 months? Data from the osteoarthritis initiative. Radiology. 2017;284(2):508–20.PubMedCrossRef Gersing AS, Schwaiger BJ, Nevitt MC, Joseph GB, Chanchek N, Guimaraes JB, et al. Is weight loss associated with less progression of changes in knee articular cartilage among obese and overweight patients as assessed with MR imaging over 48 months? Data from the osteoarthritis initiative. Radiology. 2017;284(2):508–20.PubMedCrossRef
92.
go back to reference Whittaker JL, Losciale JM, Juhl CB, Thorlund JB, Lundberg M, Truong LK, et al. Risk factors for knee osteoarthritis after traumatic knee injury: a systematic review and meta-analysis of randomised controlled trials and cohort studies for the OPTIKNEE Consensus. Br J Sports Med. 2022;56(24):1406–21.PubMedCrossRef Whittaker JL, Losciale JM, Juhl CB, Thorlund JB, Lundberg M, Truong LK, et al. Risk factors for knee osteoarthritis after traumatic knee injury: a systematic review and meta-analysis of randomised controlled trials and cohort studies for the OPTIKNEE Consensus. Br J Sports Med. 2022;56(24):1406–21.PubMedCrossRef
93.
94.
go back to reference O’Sullivan O, Ladlow P, Steiner K, Kuyser D, Ali O, Stocks J, et al. Knee MRI biomarkers associated with structural, functional and symptomatic changes at least a year from ACL injury - a systematic review. Osteoarthr Cartil Open. 2023;5(3):100385.PubMedCrossRefPubMedCentral O’Sullivan O, Ladlow P, Steiner K, Kuyser D, Ali O, Stocks J, et al. Knee MRI biomarkers associated with structural, functional and symptomatic changes at least a year from ACL injury - a systematic review. Osteoarthr Cartil Open. 2023;5(3):100385.PubMedCrossRefPubMedCentral
95.
go back to reference Klocke NF, Amendola A, Thedens DR, Williams GN, Luty CM, Martin JA, et al. Comparison of T1rho, dGEMRIC, and quantitative T2 MRI in preoperative ACL rupture patients. Acad Radiol. 2013;20(1):99–107.PubMedCrossRef Klocke NF, Amendola A, Thedens DR, Williams GN, Luty CM, Martin JA, et al. Comparison of T1rho, dGEMRIC, and quantitative T2 MRI in preoperative ACL rupture patients. Acad Radiol. 2013;20(1):99–107.PubMedCrossRef
96.
go back to reference Li X, Kuo D, Theologis A, Carballido-Gamio J, Stehling C, Link TM, et al. Cartilage in anterior cruciate ligament-reconstructed knees: MR imaging T1{rho} and T2–initial experience with 1-year follow-up. Radiology. 2011;258(2):505–14.PubMedCrossRefPubMedCentral Li X, Kuo D, Theologis A, Carballido-Gamio J, Stehling C, Link TM, et al. Cartilage in anterior cruciate ligament-reconstructed knees: MR imaging T1{rho} and T2–initial experience with 1-year follow-up. Radiology. 2011;258(2):505–14.PubMedCrossRefPubMedCentral
97.
go back to reference Xie D, Murray J, Lartey R, Gaj S, Kim J, Li M, et al. Multi-vendor multi-site quantitative MRI analysis of cartilage degeneration 10 years after anterior cruciate ligament reconstruction: MOON-MRI protocol and preliminary results. Osteoarthr Cartil. 2022;30(12):1647–57.CrossRef Xie D, Murray J, Lartey R, Gaj S, Kim J, Li M, et al. Multi-vendor multi-site quantitative MRI analysis of cartilage degeneration 10 years after anterior cruciate ligament reconstruction: MOON-MRI protocol and preliminary results. Osteoarthr Cartil. 2022;30(12):1647–57.CrossRef
98.
go back to reference Chu CR, Williams AA, West RV, Qian Y, Fu FH, Do BH, et al. Quantitative magnetic resonance imaging UTE-T2* mapping of cartilage and meniscus healing after anatomic anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(8):1847–56.PubMedCrossRefPubMedCentral Chu CR, Williams AA, West RV, Qian Y, Fu FH, Do BH, et al. Quantitative magnetic resonance imaging UTE-T2* mapping of cartilage and meniscus healing after anatomic anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(8):1847–56.PubMedCrossRefPubMedCentral
99.
go back to reference Neuman P, Tjornstrand J, Svensson J, Ragnarsson C, Roos H, Englund M, et al. Longitudinal assessment of femoral knee cartilage quality using contrast enhanced MRI (dGEMRIC) in patients with anterior cruciate ligament injury–comparison with asymptomatic volunteers. Osteoarthr Cartil. 2011;19(8):977–83.CrossRef Neuman P, Tjornstrand J, Svensson J, Ragnarsson C, Roos H, Englund M, et al. Longitudinal assessment of femoral knee cartilage quality using contrast enhanced MRI (dGEMRIC) in patients with anterior cruciate ligament injury–comparison with asymptomatic volunteers. Osteoarthr Cartil. 2011;19(8):977–83.CrossRef
100.
go back to reference Pietrosimone B, Nissman D, Padua DA, Blackburn JT, Harkey MS, Creighton RA, et al. Associations between cartilage proteoglycan density and patient outcomes 12months following anterior cruciate ligament reconstruction. Knee. 2018;25(1):118–29.PubMedCrossRef Pietrosimone B, Nissman D, Padua DA, Blackburn JT, Harkey MS, Creighton RA, et al. Associations between cartilage proteoglycan density and patient outcomes 12months following anterior cruciate ligament reconstruction. Knee. 2018;25(1):118–29.PubMedCrossRef
101.
go back to reference Williams AA, Erhart-Hledik JC, Asay JL, Mahtani GB, Titchenal MR, Lutz AM, et al. Patient-reported outcomes and knee mechanics correlate with patellofemoral deep cartilage UTE-T2* 2 years after anterior cruciate ligament reconstruction. Am J Sports Med. 2021;49(3):675–83.PubMedCrossRef Williams AA, Erhart-Hledik JC, Asay JL, Mahtani GB, Titchenal MR, Lutz AM, et al. Patient-reported outcomes and knee mechanics correlate with patellofemoral deep cartilage UTE-T2* 2 years after anterior cruciate ligament reconstruction. Am J Sports Med. 2021;49(3):675–83.PubMedCrossRef
102.
go back to reference Xie D, Tanaka M, Pedoia V, Li AK, Facchetti L, Neumann J, et al. Baseline cartilage T1rho and T2 predicted patellofemoral joint cartilage lesion progression and patient-reported outcomes after ACL reconstruction. J Orthop Res. 2023;41(6):1310–9.PubMedCrossRef Xie D, Tanaka M, Pedoia V, Li AK, Facchetti L, Neumann J, et al. Baseline cartilage T1rho and T2 predicted patellofemoral joint cartilage lesion progression and patient-reported outcomes after ACL reconstruction. J Orthop Res. 2023;41(6):1310–9.PubMedCrossRef
103.
go back to reference Su F, Pedoia V, Teng HL, Kretzschmar M, Lau BC, McCulloch CE, et al. The association between MR T1rho and T2 of cartilage and patient-reported outcomes after ACL injury and reconstruction. Osteoarthr Cartil. 2016;24(7):1180–9.CrossRef Su F, Pedoia V, Teng HL, Kretzschmar M, Lau BC, McCulloch CE, et al. The association between MR T1rho and T2 of cartilage and patient-reported outcomes after ACL injury and reconstruction. Osteoarthr Cartil. 2016;24(7):1180–9.CrossRef
104.
go back to reference Tjornstrand J, Neuman P, Svensson J, Lundin B, Dahlberg LE, Tiderius CJ. Osteoarthritis development related to cartilage quality-the prognostic value of dGEMRIC after anterior cruciate ligament injury. Osteoarthr Cartil. 2019;27(11):1647–52.CrossRef Tjornstrand J, Neuman P, Svensson J, Lundin B, Dahlberg LE, Tiderius CJ. Osteoarthritis development related to cartilage quality-the prognostic value of dGEMRIC after anterior cruciate ligament injury. Osteoarthr Cartil. 2019;27(11):1647–52.CrossRef
105.
go back to reference Osaki K, Okazaki K, Takayama Y, Matsubara H, Kuwashima U, Murakami K, et al. Characterization of biochemical cartilage change after anterior cruciate ligament injury using T1rho mapping magnetic resonance imaging. Orthop J Sports Med. 2015;3(5):2325967115585092.PubMedCrossRefPubMedCentral Osaki K, Okazaki K, Takayama Y, Matsubara H, Kuwashima U, Murakami K, et al. Characterization of biochemical cartilage change after anterior cruciate ligament injury using T1rho mapping magnetic resonance imaging. Orthop J Sports Med. 2015;3(5):2325967115585092.PubMedCrossRefPubMedCentral
106.
go back to reference Zhong Q, Pedoia V, Tanaka M, Neumann J, Link TM, Ma B, et al. 3D bone-shape changes and their correlations with cartilage T1rho and T2 relaxation times and patient-reported outcomes over 3-years after ACL reconstruction. Osteoarthr Cartil. 2019;27(6):915–21.CrossRef Zhong Q, Pedoia V, Tanaka M, Neumann J, Link TM, Ma B, et al. 3D bone-shape changes and their correlations with cartilage T1rho and T2 relaxation times and patient-reported outcomes over 3-years after ACL reconstruction. Osteoarthr Cartil. 2019;27(6):915–21.CrossRef
107.
go back to reference Amano K, Pedoia V, Su F, Souza RB, Li X, Ma CB. Persistent biomechanical alterations after ACL reconstruction are associated with early cartilage matrix changes detected by quantitative MR. Orthop J Sports Med. 2016;4(4):2325967116644421.PubMedCrossRefPubMedCentral Amano K, Pedoia V, Su F, Souza RB, Li X, Ma CB. Persistent biomechanical alterations after ACL reconstruction are associated with early cartilage matrix changes detected by quantitative MR. Orthop J Sports Med. 2016;4(4):2325967116644421.PubMedCrossRefPubMedCentral
108.
go back to reference Kumar D, Su F, Wu D, Pedoia V, Heitkamp L, Ma CB, et al. Frontal plane knee mechanics and early cartilage degeneration in people with anterior cruciate ligament reconstruction: a longitudinal study. Am J Sports Med. 2018;46(2):378–87.PubMedCrossRef Kumar D, Su F, Wu D, Pedoia V, Heitkamp L, Ma CB, et al. Frontal plane knee mechanics and early cartilage degeneration in people with anterior cruciate ligament reconstruction: a longitudinal study. Am J Sports Med. 2018;46(2):378–87.PubMedCrossRef
109.
go back to reference Armitano-Lago C, Davis-Wilson HC, Evans-Pickett A, Lisee C, Kershner CE, Blackburn T, et al. Gait variability structure linked to worse cartilage composition post-ACL reconstruction. Med Sci Sports Exerc. 2023;55(8):1499–506.PubMedCrossRefPubMedCentral Armitano-Lago C, Davis-Wilson HC, Evans-Pickett A, Lisee C, Kershner CE, Blackburn T, et al. Gait variability structure linked to worse cartilage composition post-ACL reconstruction. Med Sci Sports Exerc. 2023;55(8):1499–506.PubMedCrossRefPubMedCentral
110.
go back to reference Davis-Wilson HC, Thoma LM, Franz JR, Blackburn JT, Longobardi L, Schwartz TA, Hackney AC, Pietrosimone B. Physical activity associates with T1rho MRI of femoral cartilage after anterior cruciate ligament reconstruction. Med Sci Sports Exerc. 2024;56(3):411–7. https://doi.org/10.1249/MSS.0000000000003318. Davis-Wilson HC, Thoma LM, Franz JR, Blackburn JT, Longobardi L, Schwartz TA, Hackney AC, Pietrosimone B. Physical activity associates with T1rho MRI of femoral cartilage after anterior cruciate ligament reconstruction. Med Sci Sports Exerc. 2024;56(3):411–7. https://​doi.​org/​10.​1249/​MSS.​0000000000003318​.
111.
go back to reference Amano K, Huebner JL, Stabler TV, Tanaka M, McCulloch CE, Lobach I, et al. Synovial fluid profile at the time of anterior cruciate ligament reconstruction and its association with cartilage matrix composition 3 years after surgery. Am J Sports Med. 2018;46(4):890–9.PubMedCrossRefPubMedCentral Amano K, Huebner JL, Stabler TV, Tanaka M, McCulloch CE, Lobach I, et al. Synovial fluid profile at the time of anterior cruciate ligament reconstruction and its association with cartilage matrix composition 3 years after surgery. Am J Sports Med. 2018;46(4):890–9.PubMedCrossRefPubMedCentral
112.
go back to reference Lansdown DA, Allen C, Zaid M, Wu S, Subburaj K, Souza R, et al. A comprehensive in vivo kinematic, quantitative MRI and functional evaluation following ACL reconstruction–a comparison between mini-two incision and anteromedial portal femoral tunnel drilling. Knee. 2015;22(6):547–53.PubMedCrossRef Lansdown DA, Allen C, Zaid M, Wu S, Subburaj K, Souza R, et al. A comprehensive in vivo kinematic, quantitative MRI and functional evaluation following ACL reconstruction–a comparison between mini-two incision and anteromedial portal femoral tunnel drilling. Knee. 2015;22(6):547–53.PubMedCrossRef
113.
go back to reference Amano K, Li AK, Pedoia V, Koff MF, Krych AJ, Link TM, et al. Effects of surgical factors on cartilage can be detected using quantitative magnetic resonance imaging after anterior cruciate ligament reconstruction. Am J Sports Med. 2017;45(5):1075–84.PubMedCrossRef Amano K, Li AK, Pedoia V, Koff MF, Krych AJ, Link TM, et al. Effects of surgical factors on cartilage can be detected using quantitative magnetic resonance imaging after anterior cruciate ligament reconstruction. Am J Sports Med. 2017;45(5):1075–84.PubMedCrossRef
114.
go back to reference Brunst C, Ithurburn MP, Zbojniewicz AM, Paterno MV, Schmitt LC. Return-to-sport quadriceps strength symmetry impacts 5-year cartilage integrity after anterior cruciate ligament reconstruction: a preliminary analysis. J Orthop Res. 2022;40(1):285–94.PubMedCrossRef Brunst C, Ithurburn MP, Zbojniewicz AM, Paterno MV, Schmitt LC. Return-to-sport quadriceps strength symmetry impacts 5-year cartilage integrity after anterior cruciate ligament reconstruction: a preliminary analysis. J Orthop Res. 2022;40(1):285–94.PubMedCrossRef
115.
go back to reference Moran CJ, Pascual-Garrido C, Chubinskaya S, Potter HG, Warren RF, Cole BJ, et al. Restoration of articular cartilage. J Bone Joint Surg Am. 2014;96(4):336–44.PubMedCrossRef Moran CJ, Pascual-Garrido C, Chubinskaya S, Potter HG, Warren RF, Cole BJ, et al. Restoration of articular cartilage. J Bone Joint Surg Am. 2014;96(4):336–44.PubMedCrossRef
116.
go back to reference Trattnig S, Winalski CS, Marlovits S, Jurvelin JS, Welsch G, Potter HG. Magnetic resonance imaging of cartilage repair: a review. Cartilage. 2011;2(1):5–26.PubMedCrossRefPubMedCentral Trattnig S, Winalski CS, Marlovits S, Jurvelin JS, Welsch G, Potter HG. Magnetic resonance imaging of cartilage repair: a review. Cartilage. 2011;2(1):5–26.PubMedCrossRefPubMedCentral
117.
go back to reference Zbyn S, Mlynarik V, Juras V, Szomolanyi P, Trattnig S. Evaluation of cartilage repair and osteoarthritis with sodium MRI. NMR Biomed. 2016;29(2):206–15.PubMedCrossRef Zbyn S, Mlynarik V, Juras V, Szomolanyi P, Trattnig S. Evaluation of cartilage repair and osteoarthritis with sodium MRI. NMR Biomed. 2016;29(2):206–15.PubMedCrossRef
118.
go back to reference Lineham B, Wijayathunga H, Moran E, Shuweihdi F, Gupta H, Pandit H, et al. A systematic review demonstrating correlation of MRI compositional parameters with clinical outcomes following articular cartilage repair interventions in the knee. Osteoarthr Cartil Open. 2023;5(3):100388.PubMedCrossRefPubMedCentral Lineham B, Wijayathunga H, Moran E, Shuweihdi F, Gupta H, Pandit H, et al. A systematic review demonstrating correlation of MRI compositional parameters with clinical outcomes following articular cartilage repair interventions in the knee. Osteoarthr Cartil Open. 2023;5(3):100388.PubMedCrossRefPubMedCentral
119.
go back to reference Lansdown DA, Wang K, Cotter E, Davey A, Cole BJ. Relationship between quantitative MRI biomarkers and patient-reported outcome measures after cartilage repair surgery: a systematic review. Orthop J Sports Med. 2018;6(4):2325967118765448.PubMedCrossRefPubMedCentral Lansdown DA, Wang K, Cotter E, Davey A, Cole BJ. Relationship between quantitative MRI biomarkers and patient-reported outcome measures after cartilage repair surgery: a systematic review. Orthop J Sports Med. 2018;6(4):2325967118765448.PubMedCrossRefPubMedCentral
120.
go back to reference Vega A, Martin-Ferrero MA, Del Canto F, Alberca M, Garcia V, Munar A, et al. Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial. Transplantation. 2015;99(8):1681–90.PubMedCrossRef Vega A, Martin-Ferrero MA, Del Canto F, Alberca M, Garcia V, Munar A, et al. Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial. Transplantation. 2015;99(8):1681–90.PubMedCrossRef
121.
go back to reference Chahal J, Gomez-Aristizabal A, Shestopaloff K, Bhatt S, Chaboureau A, Fazio A, et al. Bone marrow mesenchymal stromal cell treatment in patients with osteoarthritis results in overall improvement in pain and symptoms and reduces synovial inflammation. Stem Cells Transl Med. 2019;8(8):746–57.PubMedCrossRefPubMedCentral Chahal J, Gomez-Aristizabal A, Shestopaloff K, Bhatt S, Chaboureau A, Fazio A, et al. Bone marrow mesenchymal stromal cell treatment in patients with osteoarthritis results in overall improvement in pain and symptoms and reduces synovial inflammation. Stem Cells Transl Med. 2019;8(8):746–57.PubMedCrossRefPubMedCentral
122.
go back to reference Park YB, Ha CW, Lee CH, Yoon YC, Park YG. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cells Transl Med. 2017;6(2):613–21.PubMedCrossRef Park YB, Ha CW, Lee CH, Yoon YC, Park YG. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cells Transl Med. 2017;6(2):613–21.PubMedCrossRef
123.
go back to reference McAlindon TE, Nuite M, Krishnan N, Ruthazer R, Price LL, Burstein D, et al. Change in knee osteoarthritis cartilage detected by delayed gadolinium enhanced magnetic resonance imaging following treatment with collagen hydrolysate: a pilot randomized controlled trial. Osteoarthr Cartil. 2011;19(4):399–405.CrossRef McAlindon TE, Nuite M, Krishnan N, Ruthazer R, Price LL, Burstein D, et al. Change in knee osteoarthritis cartilage detected by delayed gadolinium enhanced magnetic resonance imaging following treatment with collagen hydrolysate: a pilot randomized controlled trial. Osteoarthr Cartil. 2011;19(4):399–405.CrossRef
124.
go back to reference Zhao X, Ruan J, Tang H, Li J, Shi Y, Li M, et al. Multi-compositional MRI evaluation of repair cartilage in knee osteoarthritis with treatment of allogeneic human adipose-derived mesenchymal progenitor cells. Stem Cell Res Ther. 2019;10(1):308.PubMedCrossRefPubMedCentral Zhao X, Ruan J, Tang H, Li J, Shi Y, Li M, et al. Multi-compositional MRI evaluation of repair cartilage in knee osteoarthritis with treatment of allogeneic human adipose-derived mesenchymal progenitor cells. Stem Cell Res Ther. 2019;10(1):308.PubMedCrossRefPubMedCentral
125.
go back to reference Menon RG, Chang G, Regatte RR. Musculoskeletal MR imaging applications at ultra-high (7T) field strength. Magn Reson Imaging Clin N Am. 2021;29(1):117–27.PubMedCrossRef Menon RG, Chang G, Regatte RR. Musculoskeletal MR imaging applications at ultra-high (7T) field strength. Magn Reson Imaging Clin N Am. 2021;29(1):117–27.PubMedCrossRef
126.
go back to reference Domayer SE, Apprich S, Stelzeneder D, Hirschfeld C, Sokolowski M, Kronnerwetter C, et al. Cartilage repair of the ankle: first results of T2 mapping at 7.0 T after microfracture and matrix associated autologous cartilage transplantation. Osteoarthr Cartil. 2012;20(8):829–36.CrossRef Domayer SE, Apprich S, Stelzeneder D, Hirschfeld C, Sokolowski M, Kronnerwetter C, et al. Cartilage repair of the ankle: first results of T2 mapping at 7.0 T after microfracture and matrix associated autologous cartilage transplantation. Osteoarthr Cartil. 2012;20(8):829–36.CrossRef
127.
go back to reference Chang G, Xia D, Sherman O, Strauss E, Jazrawi L, Recht MP, et al. High resolution morphologic imaging and T2 mapping of cartilage at 7 Tesla: comparison of cartilage repair patients and healthy controls. MAGMA. 2013;26(6):539–48.PubMedCrossRefPubMedCentral Chang G, Xia D, Sherman O, Strauss E, Jazrawi L, Recht MP, et al. High resolution morphologic imaging and T2 mapping of cartilage at 7 Tesla: comparison of cartilage repair patients and healthy controls. MAGMA. 2013;26(6):539–48.PubMedCrossRefPubMedCentral
128.
go back to reference Wyatt C, Guha A, Venkatachari A, Li X, Krug R, Kelley DE, et al. Improved differentiation between knees with cartilage lesions and controls using 7T relaxation time mapping. J Orthop Translat. 2015;3(4):197–204.PubMedCrossRefPubMedCentral Wyatt C, Guha A, Venkatachari A, Li X, Krug R, Kelley DE, et al. Improved differentiation between knees with cartilage lesions and controls using 7T relaxation time mapping. J Orthop Translat. 2015;3(4):197–204.PubMedCrossRefPubMedCentral
129.
go back to reference Kraff O, Lazik-Palm A, Heule R, Theysohn JM, Bieri O, Quick HH. 7 Tesla quantitative hip MRI: a comparison between TESS and CPMG for T2 mapping. MAGMA. 2016;29(3):503–12.PubMedCrossRef Kraff O, Lazik-Palm A, Heule R, Theysohn JM, Bieri O, Quick HH. 7 Tesla quantitative hip MRI: a comparison between TESS and CPMG for T2 mapping. MAGMA. 2016;29(3):503–12.PubMedCrossRef
130.
go back to reference Welsch GH, Apprich S, Zbyn S, Mamisch TC, Mlynarik V, Scheffler K, et al. Biochemical (T2, T2* and magnetisation transfer ratio) MRI of knee cartilage: feasibility at ultra-high field (7T) compared with high field (3T) strength. Eur Radiol. 2011;21(6):1136–43.PubMedCrossRef Welsch GH, Apprich S, Zbyn S, Mamisch TC, Mlynarik V, Scheffler K, et al. Biochemical (T2, T2* and magnetisation transfer ratio) MRI of knee cartilage: feasibility at ultra-high field (7T) compared with high field (3T) strength. Eur Radiol. 2011;21(6):1136–43.PubMedCrossRef
131.
go back to reference Singh A, Haris M, Cai K, Kogan F, Hariharan H, Reddy R. High resolution T1rho mapping of in vivo human knee cartilage at 7T. PLoS One. 2014;9(5):e97486.PubMedCrossRefPubMedCentral Singh A, Haris M, Cai K, Kogan F, Hariharan H, Reddy R. High resolution T1rho mapping of in vivo human knee cartilage at 7T. PLoS One. 2014;9(5):e97486.PubMedCrossRefPubMedCentral
132.
go back to reference Singh A, Haris M, Cai K, Kassey VB, Kogan F, Reddy D, et al. Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T. Magn Reson Med. 2012;68(2):588–94.PubMedCrossRef Singh A, Haris M, Cai K, Kassey VB, Kogan F, Reddy D, et al. Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T. Magn Reson Med. 2012;68(2):588–94.PubMedCrossRef
133.
go back to reference Brinkhof S, Nizak R, Khlebnikov V, Prompers JJ, Klomp DWJ, Saris DBF. Detection of early cartilage damage: feasibility and potential of gagCEST imaging at 7T. Eur Radiol. 2018;28(7):2874–81.PubMedCrossRefPubMedCentral Brinkhof S, Nizak R, Khlebnikov V, Prompers JJ, Klomp DWJ, Saris DBF. Detection of early cartilage damage: feasibility and potential of gagCEST imaging at 7T. Eur Radiol. 2018;28(7):2874–81.PubMedCrossRefPubMedCentral
134.
go back to reference Peterson P, Olsson E, Svensson J. T(2) relaxation time bias in gagCEST at 3T and 7T: comparison of saturation schemes. Magn Reson Med. 2019;81(2):1044–51.PubMedCrossRef Peterson P, Olsson E, Svensson J. T(2) relaxation time bias in gagCEST at 3T and 7T: comparison of saturation schemes. Magn Reson Med. 2019;81(2):1044–51.PubMedCrossRef
135.
go back to reference Madelin G, Xia D, Brown R, Babb J, Chang G, Krasnokutsky S, et al. Longitudinal study of sodium MRI of articular cartilage in patients with knee osteoarthritis: initial experience with 16-month follow-up. Eur Radiol. 2018;28(1):133–42.PubMedCrossRef Madelin G, Xia D, Brown R, Babb J, Chang G, Krasnokutsky S, et al. Longitudinal study of sodium MRI of articular cartilage in patients with knee osteoarthritis: initial experience with 16-month follow-up. Eur Radiol. 2018;28(1):133–42.PubMedCrossRef
136.
go back to reference Zbyn S, Stelzeneder D, Welsch GH, Negrin LL, Juras V, Mayerhoefer ME, et al. Evaluation of native hyaline cartilage and repair tissue after two cartilage repair surgery techniques with 23Na MR imaging at 7 T: initial experience. Osteoarthr Cartil. 2012;20(8):837–45.CrossRef Zbyn S, Stelzeneder D, Welsch GH, Negrin LL, Juras V, Mayerhoefer ME, et al. Evaluation of native hyaline cartilage and repair tissue after two cartilage repair surgery techniques with 23Na MR imaging at 7 T: initial experience. Osteoarthr Cartil. 2012;20(8):837–45.CrossRef
137.
go back to reference Zbyn S, Ludwig KD, Watkins LE, Lagore RL, Nowacki A, Toth F, Tompkins MA, Zhang L, Adriany G, Gold GE, Shea KG, Nagel AM, Carlson CS, Metzger GJ, Ellermann JM. Changes in tissue sodium concentration and sodium relaxation times during the maturation of human knee cartilage: ex vivo (23) Na MRI study at 10.5 T. Magn Reson Med. 2024;91(3):1099–114. https://doi.org/10.1002/mrm.29930. Zbyn S, Ludwig KD, Watkins LE, Lagore RL, Nowacki A, Toth F, Tompkins MA, Zhang L, Adriany G, Gold GE, Shea KG, Nagel AM, Carlson CS, Metzger GJ, Ellermann JM. Changes in tissue sodium concentration and sodium relaxation times during the maturation of human knee cartilage: ex vivo (23) Na MRI study at 10.5 T. Magn Reson Med. 2024;91(3):1099–114. https://​doi.​org/​10.​1002/​mrm.​29930.
138.
go back to reference Link TM, Joseph GB, Li X. MRI-based T(1rho) and T(2) cartilage compositional imaging in osteoarthritis: what have we learned and what is needed to apply it clinically and in a trial setting? Skeletal Radiol. 2023;52(11):2137–47.PubMedCrossRef Link TM, Joseph GB, Li X. MRI-based T(1rho) and T(2) cartilage compositional imaging in osteoarthritis: what have we learned and what is needed to apply it clinically and in a trial setting? Skeletal Radiol. 2023;52(11):2137–47.PubMedCrossRef
140.
go back to reference Balamoody S, Williams TG, Wolstenholme C, Waterton JC, Bowes M, Hodgson R, et al. Magnetic resonance transverse relaxation time T2 of knee cartilage in osteoarthritis at 3-T: a cross-sectional multicentre, multivendor reproducibility study. Skeletal Radiol. 2013;42(4):511–20.PubMedCrossRef Balamoody S, Williams TG, Wolstenholme C, Waterton JC, Bowes M, Hodgson R, et al. Magnetic resonance transverse relaxation time T2 of knee cartilage in osteoarthritis at 3-T: a cross-sectional multicentre, multivendor reproducibility study. Skeletal Radiol. 2013;42(4):511–20.PubMedCrossRef
141.
go back to reference Lartey R, Nanavati A, Kim J, Li M, Xu K, Nakamura K, et al. Reproducibility of T(1rho) and T(2) quantification in a multi-vendor multi-site study. Osteoarthr Cartil. 2023;31(2):249–57.CrossRef Lartey R, Nanavati A, Kim J, Li M, Xu K, Nakamura K, et al. Reproducibility of T(1rho) and T(2) quantification in a multi-vendor multi-site study. Osteoarthr Cartil. 2023;31(2):249–57.CrossRef
142.
go back to reference Kijowski R, Blankenbaker DG, Munoz Del Rio A, Baer GS, Graf BK. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology. 2013;267(2):503–13.PubMedCrossRef Kijowski R, Blankenbaker DG, Munoz Del Rio A, Baer GS, Graf BK. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology. 2013;267(2):503–13.PubMedCrossRef
Metadata
Title
Cartilage compositional MRI—a narrative review of technical development and clinical applications over the past three decades
Authors
Xiaojuan Li
Jeehun Kim
Mingrui Yang
Ahmet H. Ok
Štefan Zbýň
Thomas M. Link
Sharmilar Majumdar
C. Benjamin Ma
Kurt P. Spindler
Carl S. Winalski
Publication date
09-07-2024
Publisher
Springer Berlin Heidelberg
Published in
Skeletal Radiology / Issue 9/2024
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-024-04734-z

Other articles of this Issue 9/2024

Skeletal Radiology 9/2024 Go to the issue