Skip to main content
Top
Published in:

05-03-2025 | Magnetic Resonance Imaging | Research Article

A dual-stage framework for segmentation of the brain anatomical regions with high accuracy

Authors: Peyman Sharifian, Alireza Karimian, Hossein Arabi

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 2/2025

Login to get access

Abstract

Objective

This study presents a novel deep learning-based framework for precise brain MR region segmentation, aiming to identify the location and the shape details of different anatomical structures within the brain.

Materials and methods

The approach uses a two-stage 3D segmentation technique on a dataset of adult subjects, including cognitively normal participants and individuals with cognitive decline. Stage 1 employs a 3D U-Net to segment 13 brain regions, achieving a mean DSC of 0.904 ± 0.060 and a mean HD95 of 1.52 ± 1.53 mm (a mean DSC of 0.885 ± 0.065 and a mean HD95 of 1.57 ± 1.35 mm for smaller parts). For challenging regions like hippocampus, thalamus, cerebrospinal fluid, amygdala, basal ganglia, and corpus callosum, Stage 2 with SegResNet refines segmentation, improving mean DSC to 0.921 ± 0.048 and HD95 to 1.17 ± 0.69 mm.

Results

Statistical analysis reveals significant improvements (p-value < 0.001) for these regions, with DSC increases ranging from 1.3 to 3.2% and HD95 reductions of 0.06–0.33 mm. Comparisons with recent studies highlight the superior performance of the performed method.

Discussion

The inclusion of a second stage for refining the segmentation of smaller regions demonstrates substantial improvements, establishing the framework’s potential for precise and reliable brain region segmentation across diverse cognitive groups.
Literature
1.
go back to reference Hazarika RA, Maji AK, Syiem R, Sur SN, Kandar D (2022) Hippocampus segmentation using U-Net convolutional network from brain Magnetic Resonance Imaging (MRI). J Digit Imaging 35(4):893–909PubMedPubMedCentral Hazarika RA, Maji AK, Syiem R, Sur SN, Kandar D (2022) Hippocampus segmentation using U-Net convolutional network from brain Magnetic Resonance Imaging (MRI). J Digit Imaging 35(4):893–909PubMedPubMedCentral
2.
go back to reference Hua L, Gu Y, Gu X, Xue J, Ni T (2021) A novel brain MRI image segmentation method using an improved multi-view fuzzy c-means clustering algorithm. Front Neurosci 15:662674PubMedPubMedCentral Hua L, Gu Y, Gu X, Xue J, Ni T (2021) A novel brain MRI image segmentation method using an improved multi-view fuzzy c-means clustering algorithm. Front Neurosci 15:662674PubMedPubMedCentral
3.
go back to reference Yazdani S, Yusof R, Karimian A, Mitsukira Y, Hematian A (2016) Automatic region-based brain classification of MRI-T1 data. PLoS ONE 11(4):e0151326PubMedPubMedCentral Yazdani S, Yusof R, Karimian A, Mitsukira Y, Hematian A (2016) Automatic region-based brain classification of MRI-T1 data. PLoS ONE 11(4):e0151326PubMedPubMedCentral
4.
go back to reference Jyothi P, Singh AR (2023) Deep learning models and traditional automated techniques for brain tumor segmentation in MRI: a review. Artif Intell Rev 56(4):2923–2969 Jyothi P, Singh AR (2023) Deep learning models and traditional automated techniques for brain tumor segmentation in MRI: a review. Artif Intell Rev 56(4):2923–2969
5.
go back to reference Achuthan A, Rajeswari M (2021) Segmentation of hippocampus guided by assembled and weighted coherent point drift registration. J King Saud Univ Comput Inf Sci 33(8):1008–1017 Achuthan A, Rajeswari M (2021) Segmentation of hippocampus guided by assembled and weighted coherent point drift registration. J King Saud Univ Comput Inf Sci 33(8):1008–1017
6.
go back to reference Tarkhaneh O, Shen H (2019) An adaptive differential evolution algorithm to optimal multi-level thresholding for MRI brain image segmentation. Expert Syst Appl 138:112820 Tarkhaneh O, Shen H (2019) An adaptive differential evolution algorithm to optimal multi-level thresholding for MRI brain image segmentation. Expert Syst Appl 138:112820
7.
go back to reference Karimian A, Jafari S (2015) A new method to segment the multiple sclerosis lesions on brain magnetic resonance images. J Med Signals Sens 5(4):238PubMedPubMedCentral Karimian A, Jafari S (2015) A new method to segment the multiple sclerosis lesions on brain magnetic resonance images. J Med Signals Sens 5(4):238PubMedPubMedCentral
8.
go back to reference Arabi H, Zaidi H (2022) MRI-guided attenuation correction in torso PET/MRI: assessment of segmentation-, atlas-, and deep learning-based approaches in the presence of outliers. Magn Reson Med 87(2):686–701PubMed Arabi H, Zaidi H (2022) MRI-guided attenuation correction in torso PET/MRI: assessment of segmentation-, atlas-, and deep learning-based approaches in the presence of outliers. Magn Reson Med 87(2):686–701PubMed
9.
go back to reference Marin-Castrillon DM et al (2023) Segmentation of the aorta in systolic phase from 4D flow MRI: multi-atlas vs. deep learning. Magn Reson Mater Phys Biol Med 36(5):687–700 Marin-Castrillon DM et al (2023) Segmentation of the aorta in systolic phase from 4D flow MRI: multi-atlas vs. deep learning. Magn Reson Mater Phys Biol Med 36(5):687–700
10.
go back to reference Ibrahim RW, Hasan AM, Jalab HA (2018) A new deformable model based on fractional Wright energy function for tumor segmentation of volumetric brain MRI scans. Comput Methods Programs Biomed 163:21–28PubMed Ibrahim RW, Hasan AM, Jalab HA (2018) A new deformable model based on fractional Wright energy function for tumor segmentation of volumetric brain MRI scans. Comput Methods Programs Biomed 163:21–28PubMed
11.
go back to reference Rincón M et al (2017) Improved automatic segmentation of white matter hyperintensities in MRI based on multilevel lesion features. Neuroinformatics 15(3):231–245PubMed Rincón M et al (2017) Improved automatic segmentation of white matter hyperintensities in MRI based on multilevel lesion features. Neuroinformatics 15(3):231–245PubMed
12.
go back to reference Huang H, Meng F, Zhou S, Jiang F, Manogaran G (2019) Brain image segmentation based on FCM clustering algorithm and rough set. IEEE Access 7:12386–12396 Huang H, Meng F, Zhou S, Jiang F, Manogaran G (2019) Brain image segmentation based on FCM clustering algorithm and rough set. IEEE Access 7:12386–12396
13.
go back to reference Chen G, Li Q, Shi F, Rekik I, Pan Z (2020) RFDCR: automated brain lesion segmentation using cascaded random forests with dense conditional random fields. Neuroimage 211:116620PubMed Chen G, Li Q, Shi F, Rekik I, Pan Z (2020) RFDCR: automated brain lesion segmentation using cascaded random forests with dense conditional random fields. Neuroimage 211:116620PubMed
14.
go back to reference Subbanna NK et al (2019) Stroke lesion segmentation in FLAIR MRI datasets using customized Markov random fields. Front Neurol 10:541PubMedPubMedCentral Subbanna NK et al (2019) Stroke lesion segmentation in FLAIR MRI datasets using customized Markov random fields. Front Neurol 10:541PubMedPubMedCentral
15.
go back to reference Fawzi A, Achuthan A, Belaton B (2021) Brain image segmentation in recent years: a narrative review. Brain Sci 11(8):1055PubMedPubMedCentral Fawzi A, Achuthan A, Belaton B (2021) Brain image segmentation in recent years: a narrative review. Brain Sci 11(8):1055PubMedPubMedCentral
16.
go back to reference Arabi H, AkhavanAllaf A, Sanaat A, Shiri I, Zaidi H (2021) The promise of artificial intelligence and deep learning in PET and SPECT imaging. Physica Med 83:122–137 Arabi H, AkhavanAllaf A, Sanaat A, Shiri I, Zaidi H (2021) The promise of artificial intelligence and deep learning in PET and SPECT imaging. Physica Med 83:122–137
17.
go back to reference Kawakubo M et al (2022) Right ventricular strain and volume analyses through deep learning-based fully automatic segmentation based on radial long-axis reconstruction of short-axis cine magnetic resonance images. Magn Reson Mater Phys Biol Med 35(6):911–921 Kawakubo M et al (2022) Right ventricular strain and volume analyses through deep learning-based fully automatic segmentation based on radial long-axis reconstruction of short-axis cine magnetic resonance images. Magn Reson Mater Phys Biol Med 35(6):911–921
18.
go back to reference Cheng C et al (2024) Automatic segmentation of the interscapular brown adipose tissue in rats based on deep learning using the dynamic magnetic resonance fat fraction images. Magn Reson Mater Phys Biol Med 37(2):215–226 Cheng C et al (2024) Automatic segmentation of the interscapular brown adipose tissue in rats based on deep learning using the dynamic magnetic resonance fat fraction images. Magn Reson Mater Phys Biol Med 37(2):215–226
19.
go back to reference Hu Z, Li L, Sui A, Wu G, Wang Y, Yu J (2023) An efficient R-Transformer network with dual encoders for brain glioma segmentation in MR images. Biomed Signal Process Control 79:104034 Hu Z, Li L, Sui A, Wu G, Wang Y, Yu J (2023) An efficient R-Transformer network with dual encoders for brain glioma segmentation in MR images. Biomed Signal Process Control 79:104034
20.
go back to reference P. Sharifian, A. Karimian, H. Arabi, and H. Zaidi, “Anatomical brain regions segmentation from MR images using global and local deep learning networks,” in 2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and International Symposium on Room-Temperature Semiconductor Detectors (NSS MIC RTSD), 2023, pp. 1–1: IEEE P. Sharifian, A. Karimian, H. Arabi, and H. Zaidi, “Anatomical brain regions segmentation from MR images using global and local deep learning networks,” in 2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and International Symposium on Room-Temperature Semiconductor Detectors (NSS MIC RTSD), 2023, pp. 1–1: IEEE
21.
go back to reference Wu B et al (2023) Automatic segmentation of human supraclavicular adipose tissue using high-resolution T2-weighted magnetic resonance imaging. Magn Reson Mater Phys Biol Med 36(4):641–649 Wu B et al (2023) Automatic segmentation of human supraclavicular adipose tissue using high-resolution T2-weighted magnetic resonance imaging. Magn Reson Mater Phys Biol Med 36(4):641–649
22.
go back to reference K. Danesh, M. Azimi, P. Sharifian, A. Karimian, H. Arabi, and H. Zaidi, “Anatomical Brain segmentation from CT Images in Brain PET/CT imaging for the purpose of partial volume correction in PET imaging,” in 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 2024, pp. 1–2: IEEE K. Danesh, M. Azimi, P. Sharifian, A. Karimian, H. Arabi, and H. Zaidi, “Anatomical Brain segmentation from CT Images in Brain PET/CT imaging for the purpose of partial volume correction in PET imaging,” in 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 2024, pp. 1–2: IEEE
23.
go back to reference Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL (2007) Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci 19(9):1498–1507PubMed Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL (2007) Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci 19(9):1498–1507PubMed
24.
go back to reference Wachinger C, Reuter M, Klein T (2018) DeepNAT: deep convolutional neural network for segmenting neuroanatomy. Neuroimage 170:434–445PubMed Wachinger C, Reuter M, Klein T (2018) DeepNAT: deep convolutional neural network for segmenting neuroanatomy. Neuroimage 170:434–445PubMed
25.
go back to reference A. Anand and N. Anand (2020), “Fast Brain Volumetric Segmentation from T1 MRI Scans,” in Advances in computer vision: proceedings of the 2019 Computer Vision Conference (CVC), Volume 1, Springer, pp 402–415 A. Anand and N. Anand (2020), “Fast Brain Volumetric Segmentation from T1 MRI Scans,” in Advances in computer vision: proceedings of the 2019 Computer Vision Conference (CVC), Volume 1, Springer, pp 402–415
26.
go back to reference LaMontagne PJ et al (2019) OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease. MedRxiv. 7:44 LaMontagne PJ et al (2019) OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease. MedRxiv. 7:44
27.
go back to reference Nobakht S et al (2021) Combined atlas and convolutional neural network-based segmentation of the hippocampus from MRI according to the ADNI harmonized protocol. Sensors 21(7):2427PubMedPubMedCentral Nobakht S et al (2021) Combined atlas and convolutional neural network-based segmentation of the hippocampus from MRI according to the ADNI harmonized protocol. Sensors 21(7):2427PubMedPubMedCentral
28.
go back to reference Gi Y et al (2024) Study of multistep Dense U-Net-based automatic segmentation for head MRI scans. Med Phys 51(3):2230–2238PubMed Gi Y et al (2024) Study of multistep Dense U-Net-based automatic segmentation for head MRI scans. Med Phys 51(3):2230–2238PubMed
29.
go back to reference Gangopadhyay T et al (2022) MTSE U-Net: an architecture for segmentation, and prediction of fetal brain and gestational age from MRI of brain. Netw Model Anal Health Inform Bioinform 11(1):50 Gangopadhyay T et al (2022) MTSE U-Net: an architecture for segmentation, and prediction of fetal brain and gestational age from MRI of brain. Netw Model Anal Health Inform Bioinform 11(1):50
30.
go back to reference Yee E et al (2022) 3D hemisphere-based convolutional neural network for whole-brain MRI segmentation. Comput Med Imaging Graph 95:102000PubMed Yee E et al (2022) 3D hemisphere-based convolutional neural network for whole-brain MRI segmentation. Comput Med Imaging Graph 95:102000PubMed
31.
go back to reference Baniasadi M et al (2023) DBSegment: fast and robust segmentation of deep brain structures considering domain generalization. Hum Brain Mapp 44(2):762–778PubMed Baniasadi M et al (2023) DBSegment: fast and robust segmentation of deep brain structures considering domain generalization. Hum Brain Mapp 44(2):762–778PubMed
32.
go back to reference Karimi H, Hamghalam M (2024) Segmentation of 3D MRI Using 2D convolutional neural networks in infant’s brain. Multimed Tools Appl 83(11):33511–33526 Karimi H, Hamghalam M (2024) Segmentation of 3D MRI Using 2D convolutional neural networks in infant’s brain. Multimed Tools Appl 83(11):33511–33526
33.
go back to reference Kumari KV, Barpanda SS (2023) Residual UNet with dual attention—an ensemble residual UNet with dual attention for multi-modal and multi-class brain MRI segmentation. Int J Imaging Syst Technol 33(2):644–658 Kumari KV, Barpanda SS (2023) Residual UNet with dual attention—an ensemble residual UNet with dual attention for multi-modal and multi-class brain MRI segmentation. Int J Imaging Syst Technol 33(2):644–658
34.
go back to reference Torres HR et al (2024) Infant head and brain segmentation from magnetic resonance images using fusion-based deep learning strategies. Multimed Syst 30(2):71 Torres HR et al (2024) Infant head and brain segmentation from magnetic resonance images using fusion-based deep learning strategies. Multimed Syst 30(2):71
35.
go back to reference Ahsan R, Shahzadi I, Najeeb F, Omer H (2024) Brain tumor detection and segmentation using deep learning. Magn Reson Mater Phy Biol Med 38(1):13–22 Ahsan R, Shahzadi I, Najeeb F, Omer H (2024) Brain tumor detection and segmentation using deep learning. Magn Reson Mater Phy Biol Med 38(1):13–22
36.
go back to reference Arabi H, Zaidi H (2017) Comparison of atlas-based techniques for whole-body bone segmentation. Med Image Anal 36:98–112PubMed Arabi H, Zaidi H (2017) Comparison of atlas-based techniques for whole-body bone segmentation. Med Image Anal 36:98–112PubMed
38.
go back to reference Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotation. Springer International Publishing, Cham, pp 424–432 Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotation. Springer International Publishing, Cham, pp 424–432
39.
go back to reference Godoy IRB, Silva RP, Rodrigues TC, Skaf AY, de Castro Pochini A, Yamada AF (2022) Automatic MRI segmentation of pectoralis major muscle using deep learning. Sci Rep 12(1):5300PubMedPubMedCentral Godoy IRB, Silva RP, Rodrigues TC, Skaf AY, de Castro Pochini A, Yamada AF (2022) Automatic MRI segmentation of pectoralis major muscle using deep learning. Sci Rep 12(1):5300PubMedPubMedCentral
40.
go back to reference Henschel L, Conjeti S, Estrada S, Diers K, Fischl B, Reuter M (2020) Fastsurfer-a fast and accurate deep learning based neuroimaging pipeline. Neuroimage 219:117012PubMed Henschel L, Conjeti S, Estrada S, Diers K, Fischl B, Reuter M (2020) Fastsurfer-a fast and accurate deep learning based neuroimaging pipeline. Neuroimage 219:117012PubMed
41.
go back to reference Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18(2):203–211PubMed Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18(2):203–211PubMed
42.
go back to reference Ramzan F, Khan MUG, Iqbal S, Saba T, Rehman A (2020) Volumetric segmentation of brain regions from MRI scans using 3D convolutional neural networks. IEEE Access 8:103697–103709 Ramzan F, Khan MUG, Iqbal S, Saba T, Rehman A (2020) Volumetric segmentation of brain regions from MRI scans using 3D convolutional neural networks. IEEE Access 8:103697–103709
43.
go back to reference Qamar S, Jin H, Zheng R, Ahmad P, Usama M (2020) A variant form of 3D-UNet for infant brain segmentation. Futur Gener Comput Syst 108:613–623 Qamar S, Jin H, Zheng R, Ahmad P, Usama M (2020) A variant form of 3D-UNet for infant brain segmentation. Futur Gener Comput Syst 108:613–623
44.
go back to reference Basnet R, Ahmad MO, Swamy M (2021) A deep dense residual network with reduced parameters for volumetric brain tissue segmentation from MR images. Biomed Signal Process Control 70:103063 Basnet R, Ahmad MO, Swamy M (2021) A deep dense residual network with reduced parameters for volumetric brain tissue segmentation from MR images. Biomed Signal Process Control 70:103063
45.
go back to reference Li Y et al (2021) Whole brain segmentation with full volume neural network. Comput Med Imaging Graph 93:101991PubMed Li Y et al (2021) Whole brain segmentation with full volume neural network. Comput Med Imaging Graph 93:101991PubMed
46.
go back to reference Li Z et al (2023) Diffusion MRI data analysis assisted by deep learning synthesized anatomical images (DeepAnat). Med Image Anal 86:102744PubMedPubMedCentral Li Z et al (2023) Diffusion MRI data analysis assisted by deep learning synthesized anatomical images (DeepAnat). Med Image Anal 86:102744PubMedPubMedCentral
47.
go back to reference Peng Y, Xu Y, Wang M, Zhang H, Xie J (2023) The nnU-Net based method for automatic segmenting fetal brain tissues. Health Inf Sci Syst 11(1):17PubMedPubMedCentral Peng Y, Xu Y, Wang M, Zhang H, Xie J (2023) The nnU-Net based method for automatic segmenting fetal brain tissues. Health Inf Sci Syst 11(1):17PubMedPubMedCentral
48.
go back to reference Avesta A, Hui Y, Aboian M, Duncan J, Krumholz H, Aneja S (2023) 3D capsule networks for brain image segmentation. AJNR 15:251 Avesta A, Hui Y, Aboian M, Duncan J, Krumholz H, Aneja S (2023) 3D capsule networks for brain image segmentation. AJNR 15:251
49.
go back to reference Deprest T et al (2023) Application of automatic segmentation on super-resolution reconstruction MR images of the abnormal fetal brain. Am J Neuroradiol 44(4):486–491PubMedPubMedCentral Deprest T et al (2023) Application of automatic segmentation on super-resolution reconstruction MR images of the abnormal fetal brain. Am J Neuroradiol 44(4):486–491PubMedPubMedCentral
50.
go back to reference Zhang X, Liu Y, Guo S (2023) EG-Unet: Edge-Guided cascaded networks for automated frontal brain segmentation in MR images. Comput Biol Med 158:106891PubMed Zhang X, Liu Y, Guo S (2023) EG-Unet: Edge-Guided cascaded networks for automated frontal brain segmentation in MR images. Comput Biol Med 158:106891PubMed
Metadata
Title
A dual-stage framework for segmentation of the brain anatomical regions with high accuracy
Authors
Peyman Sharifian
Alireza Karimian
Hossein Arabi
Publication date
05-03-2025
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 2/2025
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-025-01233-7