Skip to main content
Top
Published in:

Open Access 13-11-2024 | METHODS

Machine learning in causal inference for epidemiology

Authors: Chiara Moccia, Giovenale Moirano, Maja Popovic, Costanza Pizzi, Piero Fariselli, Lorenzo Richiardi, Claus Thorn Ekstrøm, Milena Maule

Published in: European Journal of Epidemiology | Issue 10/2024

Login to get access

Abstract

In causal inference, parametric models are usually employed to address causal questions estimating the effect of interest. However, parametric models rely on the correct model specification assumption that, if not met, leads to biased effect estimates. Correct model specification is challenging, especially in high-dimensional settings. Incorporating Machine Learning (ML) into causal analyses may reduce the bias arising from model misspecification, since ML methods do not require the specification of a functional form of the relationship between variables. However, when ML predictions are directly plugged in a predefined formula of the effect of interest, there is the risk of introducing a “plug-in bias” in the effect measure. To overcome this problem and to achieve useful asymptotic properties, new estimators that combine the predictive potential of ML and the ability of traditional statistical methods to make inference about population parameters have been proposed. For epidemiologists interested in taking advantage of ML for causal inference investigations, we provide an overview of three estimators that represent the current state-of-art, namely Targeted Maximum Likelihood Estimation (TMLE), Augmented Inverse Probability Weighting (AIPW) and Double/Debiased Machine Learning (DML).
Appendix
Available only for authorised users
Footnotes
1
Efficiency ensures that the estimator is the one with the lowest possible variance (e.g., achieving the Cramér-Rao lower bound).
 
2
Consistency guarantees that the estimator converges in probability to the true parameter.
 
3
Asymptotic normality causes the estimator to converge to a normal distribution as the sample size becomes infinitely large.
 
4
It is important to distinguish between identification bias and estimation bias. The estimation bias is the difference between the estimate obtained from data and the causal estimand. It relates to issues in estimating the causal effect from data, which may arise due to various statistical challenges. It can be solved with better estimation methods, and it is what we will address in this article. Identification bias is the difference between the causal estimand and the causal effect that we aim to measure. It can only be addressed with a better causal model and it is unrelated to the statistical methods used in the analyses (e.g., identification bias pertains to the adequacy of the causal model in representing the true causal relationships) [7]. Throughout the article, with the term “bias” we will refer to the estimation bias and with the concept of “model misspecification problem” to its statistical misspecification.
 
5
In statistical theory, 1/√n often serves as a benchmark for the expected magnitude of the standard error of an estimator, where n is the sample size. This threshold represents the standard deviation of the estimator, indicating the typical variability of the estimator around the true parameter value.
 
6
Neyman orthogonal moment function.
 
Literature
1.
go back to reference Adlung L, Cohen Y, Mor U, Elinav E. Machine learning in clinical decision making. Med. 2021;2(6):642–65.PubMedCrossRef Adlung L, Cohen Y, Mor U, Elinav E. Machine learning in clinical decision making. Med. 2021;2(6):642–65.PubMedCrossRef
2.
go back to reference Kino S, Hsu YT, Shiba K, Chien YS, Mita C, Kawachi I, Daoud A. A scoping review on the use of machine learning in research on social determinants of health: Trends and research prospects. SSM-population Health. 2021;15:100836.PubMedPubMedCentralCrossRef Kino S, Hsu YT, Shiba K, Chien YS, Mita C, Kawachi I, Daoud A. A scoping review on the use of machine learning in research on social determinants of health: Trends and research prospects. SSM-population Health. 2021;15:100836.PubMedPubMedCentralCrossRef
3.
go back to reference van Boven MR, Henke CE, Leemhuis AG, Hoogendoorn M, van Kaam AH, Königs M, Oosterlaan J. (2022). Machine learning prediction models for neurodevelopmental outcome after preterm birth: a scoping review and new machine learning evaluation framework. Pediatrics, 150(1), e2021056052. van Boven MR, Henke CE, Leemhuis AG, Hoogendoorn M, van Kaam AH, Königs M, Oosterlaan J. (2022). Machine learning prediction models for neurodevelopmental outcome after preterm birth: a scoping review and new machine learning evaluation framework. Pediatrics, 150(1), e2021056052.
4.
go back to reference Naimi AI, Cole SR, Kennedy EH. An introduction to g methods. Int J Epidemiol. 2017;46(2):756–62.PubMed Naimi AI, Cole SR, Kennedy EH. An introduction to g methods. Int J Epidemiol. 2017;46(2):756–62.PubMed
5.
go back to reference Kennedy EH. (2022). Semiparametric doubly robust targeted double machine learning: a review. arXiv preprint arXiv:2203.06469. Kennedy EH. (2022). Semiparametric doubly robust targeted double machine learning: a review. arXiv preprint arXiv:2203.06469.
6.
go back to reference Rose S, Rizopoulos D. Machine learning for causal inference in biostatistics. Biostatistics. 2020;21(2):336–8.PubMed Rose S, Rizopoulos D. Machine learning for causal inference in biostatistics. Biostatistics. 2020;21(2):336–8.PubMed
7.
go back to reference Díaz I. Machine learning in the estimation of causal effects: targeted minimum loss-based estimation and double/debiased machine learning. Biostatistics. 2020;21(2):353–8.PubMed Díaz I. Machine learning in the estimation of causal effects: targeted minimum loss-based estimation and double/debiased machine learning. Biostatistics. 2020;21(2):353–8.PubMed
8.
go back to reference Bi Q, Goodman KE, Kaminsky J, Lessler J. What is machine learning? A primer for the epidemiologist. Am J Epidemiol. 2019;188(12):2222–39.PubMed Bi Q, Goodman KE, Kaminsky J, Lessler J. What is machine learning? A primer for the epidemiologist. Am J Epidemiol. 2019;188(12):2222–39.PubMed
9.
go back to reference Ripley BD. Pattern recognition and neural networks. Cambridge University Press; 2007. Ripley BD. Pattern recognition and neural networks. Cambridge University Press; 2007.
10.
go back to reference Hernan MA, Robins J. Causal inference: what if. boca raton: Chapman & hill/crc; 2020. Hernan MA, Robins J. Causal inference: what if. boca raton: Chapman & hill/crc; 2020.
11.
go back to reference Schuler MS, Rose S. Targeted maximum likelihood estimation for causal inference in observational studies. Am J Epidemiol. 2017;185(1):65–73.PubMedCrossRef Schuler MS, Rose S. Targeted maximum likelihood estimation for causal inference in observational studies. Am J Epidemiol. 2017;185(1):65–73.PubMedCrossRef
12.
go back to reference Van der Laan MJ, Rose S. Targeted learning: causal inference for observational and experimental data. Volume 4. New York: Springer; 2011.CrossRef Van der Laan MJ, Rose S. Targeted learning: causal inference for observational and experimental data. Volume 4. New York: Springer; 2011.CrossRef
13.
go back to reference Lin SH, Ikram MA. On the relationship of machine learning with causal inference. Eur J Epidemiol. 2020;35:183–5.PubMedCrossRef Lin SH, Ikram MA. On the relationship of machine learning with causal inference. Eur J Epidemiol. 2020;35:183–5.PubMedCrossRef
14.
go back to reference Petersen AH, Osler M, Ekstrøm CT. Data-driven model building for life-course epidemiology. Am J Epidemiol. 2021;190(9):1898–907.PubMedCrossRef Petersen AH, Osler M, Ekstrøm CT. Data-driven model building for life-course epidemiology. Am J Epidemiol. 2021;190(9):1898–907.PubMedCrossRef
15.
go back to reference Naimi AI, Whitcomb BW. Defining and identifying Average Treatment effects. Am J Epidemiol. 2023;192(5):685–7.PubMedCrossRef Naimi AI, Whitcomb BW. Defining and identifying Average Treatment effects. Am J Epidemiol. 2023;192(5):685–7.PubMedCrossRef
16.
go back to reference Vansteelandt S, Dukes O. Assumption-lean inference for generalised linear model parameters. J Royal Stat Soc Ser B: Stat Methodol. 2022;84(3):657–85.CrossRef Vansteelandt S, Dukes O. Assumption-lean inference for generalised linear model parameters. J Royal Stat Soc Ser B: Stat Methodol. 2022;84(3):657–85.CrossRef
18.
go back to reference Lewis D. Causation J Philos. 1973;70(17):556–67. Lewis D. Causation J Philos. 1973;70(17):556–67.
19.
go back to reference Balzer LB, Petersen ML. Invited commentary: machine learning in causal inference—how do I love thee? Let me count the ways. Am J Epidemiol. 2021;190(8):1483–7.PubMedCrossRef Balzer LB, Petersen ML. Invited commentary: machine learning in causal inference—how do I love thee? Let me count the ways. Am J Epidemiol. 2021;190(8):1483–7.PubMedCrossRef
20.
go back to reference Zhong Y, Kennedy EH, Bodnar LM, Naimi AI. AIPW: an r package for augmented inverse probability–weighted estimation of average causal effects. Am J Epidemiol. 2021;190(12):2690–9.PubMedPubMedCentralCrossRef Zhong Y, Kennedy EH, Bodnar LM, Naimi AI. AIPW: an r package for augmented inverse probability–weighted estimation of average causal effects. Am J Epidemiol. 2021;190(12):2690–9.PubMedPubMedCentralCrossRef
21.
go back to reference Gruber S, Van Der Laan M. Tmle: an R package for targeted maximum likelihood estimation. J Stat Softw. 2012;51:1–35.CrossRef Gruber S, Van Der Laan M. Tmle: an R package for targeted maximum likelihood estimation. J Stat Softw. 2012;51:1–35.CrossRef
22.
go back to reference Bach P, Kurz MS, Chernozhukov V, Spindler M, Klaassen S. DoubleML: an Object-OrientedImplementation of double machine learning in R. J Stat Softw. 2024;108(3):1–56.CrossRef Bach P, Kurz MS, Chernozhukov V, Spindler M, Klaassen S. DoubleML: an Object-OrientedImplementation of double machine learning in R. J Stat Softw. 2024;108(3):1–56.CrossRef
23.
go back to reference Blakely T, Lynch J, Simons K, Bentley R, Rose S. Reflection on modern methods: when worlds collide—prediction, machine learning and causal inference. Int J Epidemiol. 2020;49(6):2058–64.CrossRef Blakely T, Lynch J, Simons K, Bentley R, Rose S. Reflection on modern methods: when worlds collide—prediction, machine learning and causal inference. Int J Epidemiol. 2020;49(6):2058–64.CrossRef
24.
25.
go back to reference Choi BY, Wang CP, Gelfond J. Machine learning outcome regression improves doubly robust estimation of average causal effects. Pharmacoepidemiol Drug Saf. 2020;29(9):1120–33.PubMedPubMedCentralCrossRef Choi BY, Wang CP, Gelfond J. Machine learning outcome regression improves doubly robust estimation of average causal effects. Pharmacoepidemiol Drug Saf. 2020;29(9):1120–33.PubMedPubMedCentralCrossRef
26.
go back to reference Tan X, Yang S, Ye W, Faries DE, Lipkovich I, Kadziola Z. (2022). When doubly robust methods meet machine learning for estimating treatment effects from real-world data: A comparative study. arXiv preprint arXiv:2204.10969. Tan X, Yang S, Ye W, Faries DE, Lipkovich I, Kadziola Z. (2022). When doubly robust methods meet machine learning for estimating treatment effects from real-world data: A comparative study. arXiv preprint arXiv:2204.10969.
27.
go back to reference Balzer LB, Westling T. (2021). Demystifying statistical inference when using machine learning in causal research. Am J Epidemiol, kwab200. Balzer LB, Westling T. (2021). Demystifying statistical inference when using machine learning in causal research. Am J Epidemiol, kwab200.
28.
go back to reference Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C, Newey W, Robins J. (2018). Double/debiased machine learning for treatment and structural parameters. Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C, Newey W, Robins J. (2018). Double/debiased machine learning for treatment and structural parameters.
29.
go back to reference Naimi AI, Mishler AE, Kennedy EH. Challenges in obtaining valid causal effect estimates with machine learning algorithms. Am J Epidemiol. 2023;192(9):1536–44.CrossRef Naimi AI, Mishler AE, Kennedy EH. Challenges in obtaining valid causal effect estimates with machine learning algorithms. Am J Epidemiol. 2023;192(9):1536–44.CrossRef
30.
go back to reference Dukes O, Vansteelandt S, Whitney D. (2021). On doubly robust inference for double machine learning. arXiv preprint arXiv:2107.06124. Dukes O, Vansteelandt S, Whitney D. (2021). On doubly robust inference for double machine learning. arXiv preprint arXiv:2107.06124.
31.
go back to reference Van Laan D, M. J., Rubin D. (2006). Targeted maximum likelihood learning. Int J Biostatistics, 2(1). Van Laan D, M. J., Rubin D. (2006). Targeted maximum likelihood learning. Int J Biostatistics, 2(1).
32.
go back to reference Robins JM, Rotnitzky A, Zhao LP. Estimation of regression coefficients when some regressors are not always observed. J Am Stat Assoc. 1994;89(427):846–66.CrossRef Robins JM, Rotnitzky A, Zhao LP. Estimation of regression coefficients when some regressors are not always observed. J Am Stat Assoc. 1994;89(427):846–66.CrossRef
33.
go back to reference Scharfstein DO, Rotnitzky A, Robins JM. Adjusting for nonignorable drop-out using semiparametric nonresponse models. J Am Stat Assoc. 1999;94(448):1096–120.CrossRef Scharfstein DO, Rotnitzky A, Robins JM. Adjusting for nonignorable drop-out using semiparametric nonresponse models. J Am Stat Assoc. 1999;94(448):1096–120.CrossRef
34.
go back to reference Glynn AN, Quinn KM. An introduction to the augmented inverse propensity weighted estimator. Political Anal. 2010;18(1):36–56.CrossRef Glynn AN, Quinn KM. An introduction to the augmented inverse propensity weighted estimator. Political Anal. 2010;18(1):36–56.CrossRef
35.
go back to reference Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Stat Med. 2004;23(19):2937–60.PubMedCrossRef Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Stat Med. 2004;23(19):2937–60.PubMedCrossRef
36.
go back to reference Kurz CF. Augmented inverse probability weighting and the double robustness property. Med Decis Making. 2022;42(2):156–67.PubMedCrossRef Kurz CF. Augmented inverse probability weighting and the double robustness property. Med Decis Making. 2022;42(2):156–67.PubMedCrossRef
37.
go back to reference Huang Y, Leung CH, Wu Q, Yan X. (2021). Robust Orthogonal Machine Learning of Treatment Effects. arXiv preprint arXiv:2103.11869. Huang Y, Leung CH, Wu Q, Yan X. (2021). Robust Orthogonal Machine Learning of Treatment Effects. arXiv preprint arXiv:2103.11869.
38.
go back to reference Smith MJ, Phillips RV, Luque-Fernandez MA, Maringe C. Application of targeted maximum likelihood estimation in public health and epidemiological studies: a systematic review. Annals of Epidemiology; 2023. Smith MJ, Phillips RV, Luque-Fernandez MA, Maringe C. Application of targeted maximum likelihood estimation in public health and epidemiological studies: a systematic review. Annals of Epidemiology; 2023.
39.
go back to reference Smith MJ, Mansournia MA, Maringe C, Zivich PN, Cole SR, Leyrat C, Luque-Fernandez MA. Introduction to computational causal inference using reproducible Stata, R, and Python code: a tutorial. Stat Med. 2022;41(2):407–32.PubMedCrossRef Smith MJ, Mansournia MA, Maringe C, Zivich PN, Cole SR, Leyrat C, Luque-Fernandez MA. Introduction to computational causal inference using reproducible Stata, R, and Python code: a tutorial. Stat Med. 2022;41(2):407–32.PubMedCrossRef
40.
go back to reference Papini S, Chi FW, Schuler A, Satre DD, Liu VX, Sterling SA. Comparing the effectiveness of a brief intervention to reduce unhealthy alcohol use among adult primary care patients with and without depression: a machine learning approach with augmented inverse probability weighting. Drug Alcohol Depend. 2022;239:109607.PubMedPubMedCentralCrossRef Papini S, Chi FW, Schuler A, Satre DD, Liu VX, Sterling SA. Comparing the effectiveness of a brief intervention to reduce unhealthy alcohol use among adult primary care patients with and without depression: a machine learning approach with augmented inverse probability weighting. Drug Alcohol Depend. 2022;239:109607.PubMedPubMedCentralCrossRef
41.
go back to reference Tseng TC, Chuang YC, Yang JL, Lin CY, Huang SH, Wang JT, Chang SC. The combination of daptomycin with fosfomycin is more effective than daptomycin alone in reducing mortality of Vancomycin-resistant enterococcal bloodstream infections: a retrospective, comparative cohort study. Infect Dis Therapy. 2023;12(2):589–606.CrossRef Tseng TC, Chuang YC, Yang JL, Lin CY, Huang SH, Wang JT, Chang SC. The combination of daptomycin with fosfomycin is more effective than daptomycin alone in reducing mortality of Vancomycin-resistant enterococcal bloodstream infections: a retrospective, comparative cohort study. Infect Dis Therapy. 2023;12(2):589–606.CrossRef
42.
go back to reference Gon Y, Kabata D, Mochizuki H. Association between kidney function and intracerebral hematoma volume. J Clin Neurosci. 2022;96:101–6.PubMedCrossRef Gon Y, Kabata D, Mochizuki H. Association between kidney function and intracerebral hematoma volume. J Clin Neurosci. 2022;96:101–6.PubMedCrossRef
43.
go back to reference Shinkawa H, Hirokawa F, Kaibori M, Kabata D, Nomi T, Ueno M, Kubo S. Impact of laparoscopic parenchyma-sparing resection of lesions in the right posterosuperior liver segments on surgical outcomes: a multicenter study based on propensity score analysis. Surgery. 2022;171(5):1311–9.PubMedCrossRef Shinkawa H, Hirokawa F, Kaibori M, Kabata D, Nomi T, Ueno M, Kubo S. Impact of laparoscopic parenchyma-sparing resection of lesions in the right posterosuperior liver segments on surgical outcomes: a multicenter study based on propensity score analysis. Surgery. 2022;171(5):1311–9.PubMedCrossRef
44.
go back to reference Laan MVD, Rose S. (2018). Targeted learning in data science: causal inference for complex longitudinal studies. Laan MVD, Rose S. (2018). Targeted learning in data science: causal inference for complex longitudinal studies.
45.
go back to reference Luque-Fernandez MA, Schomaker M, Rachet B, Schnitzer ME. Targeted maximum likelihood estimation for a binary treatment: a tutorial. Stat Med. 2018;37(16):2530–46.PubMedPubMedCentralCrossRef Luque-Fernandez MA, Schomaker M, Rachet B, Schnitzer ME. Targeted maximum likelihood estimation for a binary treatment: a tutorial. Stat Med. 2018;37(16):2530–46.PubMedPubMedCentralCrossRef
46.
go back to reference Pang M, Schuster T, Filion KB, Eberg M, Platt RW. Targeted maximum likelihood estimation for pharmacoepidemiologic research. Epidemiology. 2016;27(4):570–7.PubMedPubMedCentralCrossRef Pang M, Schuster T, Filion KB, Eberg M, Platt RW. Targeted maximum likelihood estimation for pharmacoepidemiologic research. Epidemiology. 2016;27(4):570–7.PubMedPubMedCentralCrossRef
47.
go back to reference Kreif N, Tran L, Grieve R, De Stavola B, Tasker RC, Petersen M. Estimating the comparative effectiveness of feeding interventions in the pediatric intensive care unit: a demonstration of longitudinal targeted maximum likelihood estimation. Am J Epidemiol. 2017;186(12):1370–9.PubMedPubMedCentralCrossRef Kreif N, Tran L, Grieve R, De Stavola B, Tasker RC, Petersen M. Estimating the comparative effectiveness of feeding interventions in the pediatric intensive care unit: a demonstration of longitudinal targeted maximum likelihood estimation. Am J Epidemiol. 2017;186(12):1370–9.PubMedPubMedCentralCrossRef
48.
go back to reference Veit C, Herrera R, Weinmayr G, Genuneit J, Windstetter D, Vogelberg C, Weinmann T. Long-term effects of asthma medication on asthma symptoms: an application of the targeted maximum likelihood estimation. BMC Med Res Methodol. 2020;20(1):1–10.CrossRef Veit C, Herrera R, Weinmayr G, Genuneit J, Windstetter D, Vogelberg C, Weinmann T. Long-term effects of asthma medication on asthma symptoms: an application of the targeted maximum likelihood estimation. BMC Med Res Methodol. 2020;20(1):1–10.CrossRef
49.
go back to reference Izano MA, Sofrygin OA, Picciotto S, Bradshaw PT, Eisen EA. (2019). Metalworking fluids and colon cancer risk: longitudinal targeted minimum loss-based estimation. Environ Epidemiol, 3(1). Izano MA, Sofrygin OA, Picciotto S, Bradshaw PT, Eisen EA. (2019). Metalworking fluids and colon cancer risk: longitudinal targeted minimum loss-based estimation. Environ Epidemiol, 3(1).
50.
go back to reference Chavda MP, Bihari S, Woodman RJ, Secombe P, Pilcher D. The impact of obesity on outcomes of patients admitted to intensive care after cardiac arrest. J Crit Care. 2022;69:154025.PubMedCrossRef Chavda MP, Bihari S, Woodman RJ, Secombe P, Pilcher D. The impact of obesity on outcomes of patients admitted to intensive care after cardiac arrest. J Crit Care. 2022;69:154025.PubMedCrossRef
51.
go back to reference Kang L, Vij A, Hubbard A, Shaw D. The unintended impact of helmet use on bicyclists’ risk-taking behaviors. J Saf Res. 2021;79:135–47.CrossRef Kang L, Vij A, Hubbard A, Shaw D. The unintended impact of helmet use on bicyclists’ risk-taking behaviors. J Saf Res. 2021;79:135–47.CrossRef
52.
go back to reference Lim S, Tellez M, Ismail AI. Estimating a dynamic effect of soda intake on pediatric dental caries using targeted maximum likelihood estimation method. Caries Res. 2019;53(5):532–40.PubMedCrossRef Lim S, Tellez M, Ismail AI. Estimating a dynamic effect of soda intake on pediatric dental caries using targeted maximum likelihood estimation method. Caries Res. 2019;53(5):532–40.PubMedCrossRef
53.
go back to reference Luque-Fernandez MA, Belot A, Valeri L, Cerulli G, Maringe C, Rachet B. Data-adaptive estimation for double-robust methods in population-based cancer epidemiology: risk differences for lung cancer mortality by emergency presentation. Am J Epidemiol. 2018;187(4):871–8.PubMedPubMedCentralCrossRef Luque-Fernandez MA, Belot A, Valeri L, Cerulli G, Maringe C, Rachet B. Data-adaptive estimation for double-robust methods in population-based cancer epidemiology: risk differences for lung cancer mortality by emergency presentation. Am J Epidemiol. 2018;187(4):871–8.PubMedPubMedCentralCrossRef
54.
go back to reference Schnitzer ME, van der Laan MJ, Moodie EE, Platt RW. Effect of breastfeeding on gastrointestinal infection in infants: a targeted maximum likelihood approach for clustered longitudinal data. Annals Appl Stat. 2014;8(2):703.CrossRef Schnitzer ME, van der Laan MJ, Moodie EE, Platt RW. Effect of breastfeeding on gastrointestinal infection in infants: a targeted maximum likelihood approach for clustered longitudinal data. Annals Appl Stat. 2014;8(2):703.CrossRef
55.
go back to reference Ehrlich SF, Neugebauer RS, Feng J, Hedderson MM, Ferrara A. Exercise during the first trimester and infant size at birth: targeted maximum likelihood estimation of the causal risk difference. Am J Epidemiol. 2020;189(2):133–45.PubMedCrossRef Ehrlich SF, Neugebauer RS, Feng J, Hedderson MM, Ferrara A. Exercise during the first trimester and infant size at birth: targeted maximum likelihood estimation of the causal risk difference. Am J Epidemiol. 2020;189(2):133–45.PubMedCrossRef
56.
go back to reference Papadopoulou E, Haug LS, Sakhi AK, Andrusaityte S, Basagaña X, Brantsaeter AL, Chatzi L. Diet as a source of exposure to environmental contaminants for pregnant women and children from six European countries. Environ Health Perspect. 2019;127(10):107005.PubMedPubMedCentralCrossRef Papadopoulou E, Haug LS, Sakhi AK, Andrusaityte S, Basagaña X, Brantsaeter AL, Chatzi L. Diet as a source of exposure to environmental contaminants for pregnant women and children from six European countries. Environ Health Perspect. 2019;127(10):107005.PubMedPubMedCentralCrossRef
57.
go back to reference Vrijheid M. The exposome: a new paradigm to study the impact of environment on health. Thorax. 2014;69(9):876–8.PubMedCrossRef Vrijheid M. The exposome: a new paradigm to study the impact of environment on health. Thorax. 2014;69(9):876–8.PubMedCrossRef
58.
go back to reference Maitre L, Guimbaud JB, Warembourg C, Güil-Oumrait N, Petrone PM, Chadeau-Hyam M, Exposome Data Challenge Participant Consortium. State-of-the-art methods for exposure-health studies: results from the exposome data challenge event. Environ Int. 2022;168:107422.PubMedCrossRef Maitre L, Guimbaud JB, Warembourg C, Güil-Oumrait N, Petrone PM, Chadeau-Hyam M, Exposome Data Challenge Participant Consortium. State-of-the-art methods for exposure-health studies: results from the exposome data challenge event. Environ Int. 2022;168:107422.PubMedCrossRef
59.
go back to reference Warembourg C, Anguita-Ruiz A, Siroux V, Slama R, Vrijheid M, Richiardi L, Basagaña X. Statistical approaches to Study Exposome-Health associations in the context of repeated exposure data: a Simulation Study. Environmental Science & Technology; 2023. Warembourg C, Anguita-Ruiz A, Siroux V, Slama R, Vrijheid M, Richiardi L, Basagaña X. Statistical approaches to Study Exposome-Health associations in the context of repeated exposure data: a Simulation Study. Environmental Science & Technology; 2023.
60.
go back to reference Wang H, van der Laan MJ. Dimension reduction with gene expression data using targeted variable importance measurement. BMC Bioinformatics. 2011;12:1–12.CrossRef Wang H, van der Laan MJ. Dimension reduction with gene expression data using targeted variable importance measurement. BMC Bioinformatics. 2011;12:1–12.CrossRef
Metadata
Title
Machine learning in causal inference for epidemiology
Authors
Chiara Moccia
Giovenale Moirano
Maja Popovic
Costanza Pizzi
Piero Fariselli
Lorenzo Richiardi
Claus Thorn Ekstrøm
Milena Maule
Publication date
13-11-2024
Publisher
Springer Netherlands
Published in
European Journal of Epidemiology / Issue 10/2024
Print ISSN: 0393-2990
Electronic ISSN: 1573-7284
DOI
https://doi.org/10.1007/s10654-024-01173-x