Skip to main content
Top
Published in:

09-07-2022 | Lung Cancer | Original Article

Comparison of the performances of machine learning and deep learning in improving the quality of low dose lung cancer PET images

Authors: Ying-Hwey Nai, Hoi Yin Loi, Sophie O’Doherty, Teng Hwee Tan, Anthonin Reilhac

Published in: Japanese Journal of Radiology | Issue 12/2022

Login to get access

Abstract

Purpose

To compare the performances of machine learning (ML) and deep learning (DL) in improving the quality of low dose (LD) lung cancer PET images and the minimum counts required.

Materials and methods

33 standard dose (SD) PET images, were used to simulate LD PET images at seven-count levels of 0.25, 0.5, 1, 2, 5, 7.5 and 10 million (M) counts. Image quality transfer (IQT), a ML algorithm that uses decision tree and patch-sampling was compared to two DL networks—HighResNet (HRN) and deep-boosted regression (DBR). Supervised training was performed by training the ML and DL algorithms with matched-pair SD and LD images. Image quality evaluation and clinical lesion detection tasks were performed by three readers. Bias in 53 radiomic features, including mean SUV, was evaluated for all lesions.

Results

ML- and DL-estimated images showed higher signal and smaller error than LD images with optimal image quality recovery achieved using LD down to 5 M counts. True positive rate and false discovery rate were fairly stable beyond 5 M counts for the detection of small and large true lesions. Readers rated average or higher ratings to images estimated from LD images of count levels above 5 M only, with higher confidence in detecting true lesions.

Conclusion

LD images with a minimum of 5 M counts (8.72 MBq for 10 min scan or 25 MBq for 3 min scan) are required for optimal clinical use of ML and DL, with slightly better but more varied performance shown by DL.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sanaat A, Arabi H, Mainta I, Garibotto V, Zaidi H. Projection space implementation of deep learning-guided low-dose brain PET imaging improves performance over implementation in image space. J Nucl Med. 2020;61(9):1388–96.CrossRefPubMedPubMedCentral Sanaat A, Arabi H, Mainta I, Garibotto V, Zaidi H. Projection space implementation of deep learning-guided low-dose brain PET imaging improves performance over implementation in image space. J Nucl Med. 2020;61(9):1388–96.CrossRefPubMedPubMedCentral
2.
go back to reference Schaefferkoetter J, Yan J, Ortega C, Sertic A, Lechtman E, Eshet Y, et al. Convolutional neural networks for improving image quality with noisy PET data. EJNMMI Res. 2020;10(1):1–11.CrossRef Schaefferkoetter J, Yan J, Ortega C, Sertic A, Lechtman E, Eshet Y, et al. Convolutional neural networks for improving image quality with noisy PET data. EJNMMI Res. 2020;10(1):1–11.CrossRef
3.
go back to reference Lei Y, Dong X, Wang T, Higgins K, Liu T, Curran WJ, et al. Whole-body PET estimation from low count statistics using cycle-consistent generative adversarial networks. Phys Med Biol. 2019;64(21):215017.CrossRefPubMedPubMedCentral Lei Y, Dong X, Wang T, Higgins K, Liu T, Curran WJ, et al. Whole-body PET estimation from low count statistics using cycle-consistent generative adversarial networks. Phys Med Biol. 2019;64(21):215017.CrossRefPubMedPubMedCentral
6.
go back to reference Lu W, Onofrey JA, Lu Y, Shi L, Ma T, Liu Y, et al. An investigation of quantitative accuracy for deep learning based denoising in oncological PET. Phys Med Biol. 2019;64(16):165019.CrossRefPubMed Lu W, Onofrey JA, Lu Y, Shi L, Ma T, Liu Y, et al. An investigation of quantitative accuracy for deep learning based denoising in oncological PET. Phys Med Biol. 2019;64(16):165019.CrossRefPubMed
10.
go back to reference Xiang LQY. Deep auto-context convolutional neural networks for standard- dose PET image estimation from low-dose PET/MRI. Neurocomputing. 2017;6(267):406–16.CrossRef Xiang LQY. Deep auto-context convolutional neural networks for standard- dose PET image estimation from low-dose PET/MRI. Neurocomputing. 2017;6(267):406–16.CrossRef
12.
go back to reference Wang Y, Wang L, Zu C, Lalush DS, Lin W, Wu X, et al. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage. 2018;174:550–62.CrossRefPubMed Wang Y, Wang L, Zu C, Lalush DS, Lin W, Wu X, et al. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage. 2018;174:550–62.CrossRefPubMed
13.
go back to reference Wang Y, Zhou L, Wang L, Yu B, Zu C, Lalush D, et al. Locality adaptive multi-modality GANs for high-Quality PET image synthesis. Med Image Comput Comut Assist Interv. 2018;11070:329–37. Wang Y, Zhou L, Wang L, Yu B, Zu C, Lalush D, et al. Locality adaptive multi-modality GANs for high-Quality PET image synthesis. Med Image Comput Comut Assist Interv. 2018;11070:329–37.
14.
go back to reference Chen KT, Toueg TN, Koran MEI, Davidzon G, Zeineh M, Holley D, et al. True ultra-low-dose amyloid PET/MRI enhanced with deep learning for clinical interpretation. Eur J Nucl Med Mol Imaging. 2021;48(8):2416–25.CrossRefPubMedPubMedCentral Chen KT, Toueg TN, Koran MEI, Davidzon G, Zeineh M, Holley D, et al. True ultra-low-dose amyloid PET/MRI enhanced with deep learning for clinical interpretation. Eur J Nucl Med Mol Imaging. 2021;48(8):2416–25.CrossRefPubMedPubMedCentral
15.
go back to reference Kaplan S, Zhu YM. Full-dose PET image estimation from low-dose PET image using deep learning: a pilot study. J Digit Imaging. 2019;32(5):773–8.CrossRefPubMed Kaplan S, Zhu YM. Full-dose PET image estimation from low-dose PET image using deep learning: a pilot study. J Digit Imaging. 2019;32(5):773–8.CrossRefPubMed
17.
go back to reference Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Deep learning-assisted ultra-fast / low-dose whole-body PET/CT imaging. Eur J Nucl Med Mol Imaging. 2021;48:2405–15.CrossRefPubMedPubMedCentral Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Deep learning-assisted ultra-fast / low-dose whole-body PET/CT imaging. Eur J Nucl Med Mol Imaging. 2021;48:2405–15.CrossRefPubMedPubMedCentral
18.
go back to reference Xue H, Zhang Q, Zou S, Zhang W, Zhou C, Tie C, et al. LCPR-Net: Low-count PET image reconstruction using the domain transform and cycle-consistent generative adversarial networks. Quant Imaging Med Surg. 2021;11(2):749–62.CrossRefPubMedPubMedCentral Xue H, Zhang Q, Zou S, Zhang W, Zhou C, Tie C, et al. LCPR-Net: Low-count PET image reconstruction using the domain transform and cycle-consistent generative adversarial networks. Quant Imaging Med Surg. 2021;11(2):749–62.CrossRefPubMedPubMedCentral
19.
go back to reference Tsuchiya J, Yokoyama K, Yamagiwa K, Watanabe R, Kimura K, Kishino M, et al. Deep learning-based image quality improvement of 18F-fluorodeoxyglucose positron emission tomography: a retrospective observational study. EJNMMI Phys. 2021;8(1):31.CrossRefPubMedPubMedCentral Tsuchiya J, Yokoyama K, Yamagiwa K, Watanabe R, Kimura K, Kishino M, et al. Deep learning-based image quality improvement of 18F-fluorodeoxyglucose positron emission tomography: a retrospective observational study. EJNMMI Phys. 2021;8(1):31.CrossRefPubMedPubMedCentral
20.
go back to reference Schaefferkoetter J, Nai Y-H, Reilhac A, Townsend DW, Eriksson L, Conti M. Low dose positron emission tomography emulation from decimated high statistics: A clinical validation study. Med Phys. 2019;46(6):2638–45.CrossRefPubMed Schaefferkoetter J, Nai Y-H, Reilhac A, Townsend DW, Eriksson L, Conti M. Low dose positron emission tomography emulation from decimated high statistics: A clinical validation study. Med Phys. 2019;46(6):2638–45.CrossRefPubMed
21.
go back to reference Alexander DC, Zikic D, Ghosh A, Tanno R, Wottschel V, Zhang J, et al. Image quality transfer and applications in diffusion MRI. Neuroimage. 2017;152:283–98.CrossRefPubMed Alexander DC, Zikic D, Ghosh A, Tanno R, Wottschel V, Zhang J, et al. Image quality transfer and applications in diffusion MRI. Neuroimage. 2017;152:283–98.CrossRefPubMed
22.
go back to reference Li W, Wang G, Fidon L, Ourselin S, Cardoso MJ, Vercauteren T. On the compactness, efficiency, and representation of 3D convolutional networks: Brain parcellation as a pretext task. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2017;10265 LNCS:348–60. Li W, Wang G, Fidon L, Ourselin S, Cardoso MJ, Vercauteren T. On the compactness, efficiency, and representation of 3D convolutional networks: Brain parcellation as a pretext task. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2017;10265 LNCS:348–60.
23.
go back to reference Kläser K, Markiewicz P, Ranzini M, Li W, Modat M, Hutton BF, et al. Deep boosted regression for mr to ct synthesis. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2018;11037 LNCS:61–70. Kläser K, Markiewicz P, Ranzini M, Li W, Modat M, Hutton BF, et al. Deep boosted regression for mr to ct synthesis. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2018;11037 LNCS:61–70.
25.
go back to reference Wang Z, Simoncelli E, Bovik AC. Multi-scale structural similarity for image quality assessment. N Y. 2003;2:9–13. Wang Z, Simoncelli E, Bovik AC. Multi-scale structural similarity for image quality assessment. N Y. 2003;2:9–13.
26.
go back to reference Gwet KL. Testing the difference of correlated agreement coefficients for statistical significance. Educ Psychol Meas. 2016;76(4):609–37.CrossRefPubMed Gwet KL. Testing the difference of correlated agreement coefficients for statistical significance. Educ Psychol Meas. 2016;76(4):609–37.CrossRefPubMed
Metadata
Title
Comparison of the performances of machine learning and deep learning in improving the quality of low dose lung cancer PET images
Authors
Ying-Hwey Nai
Hoi Yin Loi
Sophie O’Doherty
Teng Hwee Tan
Anthonin Reilhac
Publication date
09-07-2022
Publisher
Springer Nature Singapore
Published in
Japanese Journal of Radiology / Issue 12/2022
Print ISSN: 1867-1071
Electronic ISSN: 1867-108X
DOI
https://doi.org/10.1007/s11604-022-01311-z