Skip to main content
Top
Published in:

01-12-2021 | Lung Cancer | Imaging Informatics and Artificial Intelligence

AI-based improvement in lung cancer detection on chest radiographs: results of a multi-reader study in NLST dataset

Authors: Hyunsuk Yoo, Sang Hyup Lee, Chiara Daniela Arru, Ruhani Doda Khera, Ramandeep Singh, Sean Siebert, Dohoon Kim, Yuna Lee, Ju Hyun Park, Hye Joung Eom, Subba R. Digumarthy, Mannudeep K. Kalra

Published in: European Radiology | Issue 12/2021

Login to get access

Abstract

Objective

Assess if deep learning–based artificial intelligence (AI) algorithm improves reader performance for lung cancer detection on chest X-rays (CXRs).

Methods

This reader study included 173 images from cancer-positive patients (n = 98) and 346 images from cancer-negative patients (n = 196) selected from National Lung Screening Trial (NLST). Eight readers, including three radiology residents, and five board-certified radiologists, participated in the observer performance test. AI algorithm provided image-level probability of pulmonary nodule or mass on CXRs and a heatmap of detected lesions. Reader performance was compared with AUC, sensitivity, specificity, false-positives per image (FPPI), and rates of chest CT recommendations.

Results

With AI, the average sensitivity of readers for the detection of visible lung cancer increased for residents, but was similar for radiologists compared to that without AI (0.61 [95% CI, 0.55–0.67] vs. 0.72 [95% CI, 0.66–0.77], p = 0.016 for residents, and 0.76 [95% CI, 0.72–0.81] vs. 0.76 [95% CI, 0.72–0.81, p = 1.00 for radiologists), while false-positive findings per image (FPPI) was similar for residents, but decreased for radiologists (0.15 [95% CI, 0.11–0.18] vs. 0.12 [95% CI, 0.09–0.16], p = 0.13 for residents, and 0.24 [95% CI, 0.20–0.29] vs. 0.17 [95% CI, 0.13–0.20], p < 0.001 for radiologists). With AI, the average rate of chest CT recommendation in patients positive for visible cancer increased for residents, but was similar for radiologists (54.7% [95% CI, 48.2–61.2%] vs. 70.2% [95% CI, 64.2–76.2%], p < 0.001 for residents and 72.5% [95% CI, 68.0–77.1%] vs. 73.9% [95% CI, 69.4–78.3%], p = 0.68 for radiologists), while that in cancer-negative patients was similar for residents, but decreased for radiologists (11.2% [95% CI, 9.6–13.1%] vs. 9.8% [95% CI, 8.0–11.6%], p = 0.32 for residents and 16.4% [95% CI, 14.7–18.2%] vs. 11.7% [95% CI, 10.2–13.3%], p < 0.001 for radiologists).

Conclusions

AI algorithm can enhance the performance of readers for the detection of lung cancers on chest radiographs when used as second reader.

Key Points

• Reader study in the NLST dataset shows that AI algorithm had sensitivity benefit for residents and specificity benefit for radiologists for the detection of visible lung cancer.
• With AI, radiology residents were able to recommend more chest CT examinations (54.7% vs 70.2%, p < 0.001) for patients with visible lung cancer.
• With AI, radiologists recommended significantly less proportion of unnecessary chest CT examinations (16.4% vs. 11.7%, p < 0.001) in cancer-negative patients.
Appendix
This content is only visible if you are logged in and have the appropriate permissions.
Literature
This content is only visible if you are logged in and have the appropriate permissions.
Metadata
Title
AI-based improvement in lung cancer detection on chest radiographs: results of a multi-reader study in NLST dataset
Authors
Hyunsuk Yoo
Sang Hyup Lee
Chiara Daniela Arru
Ruhani Doda Khera
Ramandeep Singh
Sean Siebert
Dohoon Kim
Yuna Lee
Ju Hyun Park
Hye Joung Eom
Subba R. Digumarthy
Mannudeep K. Kalra
Publication date
01-12-2021
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 12/2021
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-021-08074-7

How can your team use biomarkers to improve management of AD? (Link opens in a new window)

Our experts explore using biomarker tests and interpreting results, establishing a shared decision-making approach with patients and caregivers, and applying biomarker testing to guide treatment strategies.

This content is intended for healthcare professionals outside of the UK.

Supported by:
  • Lilly
Developed by: Springer Healthcare IME
Register your interest

How can you integrate PET into your practice? (Link opens in a new window)

1.5 AMA PRA Category 1 Credit(s)™

PET imaging is playing an increasingly critical role in managing AD. Our expert-led program will empower you with practical strategies and real-world case studies to effectively integrate it into clinical practice.

This content is intended for healthcare professionals outside of the UK.

Supported by:
  • Lilly
Developed by: Springer Healthcare IME
Register your interest