Skip to main content
Top
Published in:

Open Access 01-12-2024 | Long-COVID Syndrome | Case report

Circadian re-set repairs long-COVID in a prodromal Parkinson’s parallel: a case series

Authors: Gregory L. Willis, Takuyuki Endo, Saburo Sakoda

Published in: Journal of Medical Case Reports | Issue 1/2024

Login to get access

Abstract

Background

In this case series, results from daily visual exposure to intense polychromatic light of 2000 to 4000 LUX is presented. Bright light treatment is a standard procedure for treating seasonal affective disorder and prodromal Parkinson’s disease with high success. With the post-encephalitic symptoms of long-COVID closely approximating those of prodromal Parkinson’s disease, we treated insomnia and sleep-related parameters in these patients, including total sleep, number of awakenings, tendency to fall back to sleep, and fatigue, to determine whether mending sleep could improve quality of life.

Case presentation

We present three female and two male Caucasian patients aged 42–70 years with long-COVID that persisted from 12 weeks to 139 weeks after contracting coronavirus disease.

Conclusion

A light presentation protocol was adapted for long-COVID that not only restored sleep in all patients, but also unexpectedly repaired the depression, anxiety, and cognitive changes (brain fog) as well. A robust pattern of recovery commencing 4–5 days after treatment and was maintained for weeks to months without relapse. These preliminary findings represent a novel, minimally invasive approach for managing the most debilitating symptoms of long-COVID, making it an ideal candidate for the drug hypersensitive, post-encephalitic brain. That a compromised circadian mechanism seen in Parkinson’s disease may also underlie post-encephalitic long-COVID implicates a compromised role of the circadian system in these disorders.
Literature
2.
go back to reference Mantovani S, Smith S, Gordon R, et al. An overview of sleep and circadian dysfunction in Parkinson’s disease. J Sleep Res. 2018;27(3): e12673.PubMedCrossRef Mantovani S, Smith S, Gordon R, et al. An overview of sleep and circadian dysfunction in Parkinson’s disease. J Sleep Res. 2018;27(3): e12673.PubMedCrossRef
3.
go back to reference Fifel K, De Boer T. The circadian system in Parkinson’s disease, multiple systems atrophy and progressive Supranuclear palsy. Handb Clin Neurol. 2021;179:301–13.PubMedCrossRef Fifel K, De Boer T. The circadian system in Parkinson’s disease, multiple systems atrophy and progressive Supranuclear palsy. Handb Clin Neurol. 2021;179:301–13.PubMedCrossRef
6.
go back to reference Willis G. Parkinson’s disease as a neuroendocrine disorder of circadian function: dopamine–melatonin imbalance and the visual system in the genesis and progression of the degenerative process. Rev Neurosci. 2008;19(4–5):245–316.PubMed Willis G. Parkinson’s disease as a neuroendocrine disorder of circadian function: dopamine–melatonin imbalance and the visual system in the genesis and progression of the degenerative process. Rev Neurosci. 2008;19(4–5):245–316.PubMed
9.
go back to reference Lewy A, Ahmed S, Jackson J, et al. International society of chronobiology: melatonin shifts human circadian rhythms according to a phase-response curve. Chronobiol Int. 1992;9(5):380–92.PubMedCrossRef Lewy A, Ahmed S, Jackson J, et al. International society of chronobiology: melatonin shifts human circadian rhythms according to a phase-response curve. Chronobiol Int. 1992;9(5):380–92.PubMedCrossRef
10.
go back to reference Willis G, Boda J, Freelance C. Polychromatic light exposure as a therapeutic in the treatment and management of Parkinson’s disease: a controlled exploratory trial. Front Neurol. 2018;9:741.PubMedPubMedCentralCrossRef Willis G, Boda J, Freelance C. Polychromatic light exposure as a therapeutic in the treatment and management of Parkinson’s disease: a controlled exploratory trial. Front Neurol. 2018;9:741.PubMedPubMedCentralCrossRef
11.
go back to reference Willis G, Armstrong S. Fine-tuning the circadian system with light treatment for Parkinson’s disease: an in-depth critical review. Rev Neurosci. 2023;35(1):57–84.PubMedCrossRef Willis G, Armstrong S. Fine-tuning the circadian system with light treatment for Parkinson’s disease: an in-depth critical review. Rev Neurosci. 2023;35(1):57–84.PubMedCrossRef
12.
go back to reference Khatoon F, Prasad K, Kumar V. COVID-19 associated nervous system malfunctions. Sleep Med. 2022;91:231–6.PubMedCrossRef Khatoon F, Prasad K, Kumar V. COVID-19 associated nervous system malfunctions. Sleep Med. 2022;91:231–6.PubMedCrossRef
14.
go back to reference Liu Y, Niu L, Liu X, et al. Recent progress in non-motor features of Parkinson’s disease with a focus on circadian rhythm dysregulation. Neurosci Bull. 2021;37(7):1010–24.PubMedPubMedCentralCrossRef Liu Y, Niu L, Liu X, et al. Recent progress in non-motor features of Parkinson’s disease with a focus on circadian rhythm dysregulation. Neurosci Bull. 2021;37(7):1010–24.PubMedPubMedCentralCrossRef
15.
go back to reference Beauchamp L, Finkelstein D, Bush A, et al. Parkinsonism as a third wave of the COVID-19 pandemic. J Park Res. 2020;10(4):1343–53. Beauchamp L, Finkelstein D, Bush A, et al. Parkinsonism as a third wave of the COVID-19 pandemic. J Park Res. 2020;10(4):1343–53.
18.
go back to reference Leng Y, Blackwell T, Cawthon P, et al. Association of circadian abnormalities in older adults with an increased risk of developing Parkinson disease. JAMA Neurol. 2020;77(10):1270–8.PubMedPubMedCentralCrossRef Leng Y, Blackwell T, Cawthon P, et al. Association of circadian abnormalities in older adults with an increased risk of developing Parkinson disease. JAMA Neurol. 2020;77(10):1270–8.PubMedPubMedCentralCrossRef
19.
go back to reference Willis G, Moore C, Armstrong S. A historical justification for and retrospective analysis of the systematic application of light therapy in Parkinson’s disease. Rev Neurosci. 2012;23(2):199–226.PubMedCrossRef Willis G, Moore C, Armstrong S. A historical justification for and retrospective analysis of the systematic application of light therapy in Parkinson’s disease. Rev Neurosci. 2012;23(2):199–226.PubMedCrossRef
20.
go back to reference Lewy A, Sack R, Singer C. Immediate and delayed effects of bright light on human melatonin production: shifting “dawn” and “dusk” shifts the dime light melatonin onset (DLMO). Ann N Y Acad Sci. 1985;453:253–9.PubMedCrossRef Lewy A, Sack R, Singer C. Immediate and delayed effects of bright light on human melatonin production: shifting “dawn” and “dusk” shifts the dime light melatonin onset (DLMO). Ann N Y Acad Sci. 1985;453:253–9.PubMedCrossRef
21.
go back to reference Lewy A, Rough J, Songer J, et al. The phase shift hypothesis for the circadian component of winter depression. Dialogues Clin Neurosci. 2007;9(3):291–300.PubMedPubMedCentralCrossRef Lewy A, Rough J, Songer J, et al. The phase shift hypothesis for the circadian component of winter depression. Dialogues Clin Neurosci. 2007;9(3):291–300.PubMedPubMedCentralCrossRef
22.
go back to reference Willis G. Common circadian features of the 1919 and COVID19 pandemics: the long-COVID and prodromal Parkinson’s parallel. 2023 (Submitted 2023). Willis G. Common circadian features of the 1919 and COVID19 pandemics: the long-COVID and prodromal Parkinson’s parallel. 2023 (Submitted 2023).
23.
go back to reference Willis G, Turner J. Primary and secondary features of Parkinson’s disease improve with strategic exposure to bright light: a case series study. Chronobiol Int. 2007;24(3):521–37.PubMedCrossRef Willis G, Turner J. Primary and secondary features of Parkinson’s disease improve with strategic exposure to bright light: a case series study. Chronobiol Int. 2007;24(3):521–37.PubMedCrossRef
24.
go back to reference Artemenko AR, Leven L. The phototherapy for Parkinson’s patients. Zh Nevrol Psikhiatr Im SS Korsakova. 1996;96:63–6. Artemenko AR, Leven L. The phototherapy for Parkinson’s patients. Zh Nevrol Psikhiatr Im SS Korsakova. 1996;96:63–6.
25.
go back to reference Martino K, Freelance C, Willis G. The effect of light exposure on insomnia and nocturnal movement in Parkinson’s disease: an open label, retrospective, longitudinal study. Sleep Med. 2018;44:24–31.PubMedCrossRef Martino K, Freelance C, Willis G. The effect of light exposure on insomnia and nocturnal movement in Parkinson’s disease: an open label, retrospective, longitudinal study. Sleep Med. 2018;44:24–31.PubMedCrossRef
26.
go back to reference Paus S, Schmitz-Hübsch T, Wüllner U, et al. Bright light therapy in Parkinson’s disease: a pilot study. Mov Disord. 2007;22(10):1495–8.PubMedCrossRef Paus S, Schmitz-Hübsch T, Wüllner U, et al. Bright light therapy in Parkinson’s disease: a pilot study. Mov Disord. 2007;22(10):1495–8.PubMedCrossRef
27.
go back to reference Videnovic A, Klerman E, Wang W, et al. Timed light therapy for sleep and daytime sleepiness associated with Parkinson’s disease: a randomised clinical trial. JAMA Neurol. 2017;74(4):411–8.PubMedPubMedCentralCrossRef Videnovic A, Klerman E, Wang W, et al. Timed light therapy for sleep and daytime sleepiness associated with Parkinson’s disease: a randomised clinical trial. JAMA Neurol. 2017;74(4):411–8.PubMedPubMedCentralCrossRef
29.
go back to reference Rutten S, Vriend C, Smit J, et al. Bright light therapy for depression in Parkinson’s disease: a randomised controlled trial. Neurology. 2019;92(11):e1145–56.PubMedCrossRef Rutten S, Vriend C, Smit J, et al. Bright light therapy for depression in Parkinson’s disease: a randomised controlled trial. Neurology. 2019;92(11):e1145–56.PubMedCrossRef
31.
go back to reference Zarifkar P, Peinkhofer P, Benros M, et al. Frequency of neurological diseases after COVID-19, Influenza A/B and bacterial pneumonia. Front Neurol. 2022;13: 904796.PubMedPubMedCentralCrossRef Zarifkar P, Peinkhofer P, Benros M, et al. Frequency of neurological diseases after COVID-19, Influenza A/B and bacterial pneumonia. Front Neurol. 2022;13: 904796.PubMedPubMedCentralCrossRef
32.
go back to reference Sulser D, Antonini A, Leta V, et al. COVID-19 and possible links with Parkinson’s disease and parkinsonism: from bench to bedside. NPJ Park Dis. 2020;6(1):18.CrossRef Sulser D, Antonini A, Leta V, et al. COVID-19 and possible links with Parkinson’s disease and parkinsonism: from bench to bedside. NPJ Park Dis. 2020;6(1):18.CrossRef
33.
go back to reference Sacks O. Awakenings. London: Picador; 1973. Sacks O. Awakenings. London: Picador; 1973.
36.
go back to reference de Pedro Cuesta J. Studies of the prevalence of paralysis agitans by tracer methodology. Acta Neurol Scand Suppl. 1987;112:1–106.PubMed de Pedro Cuesta J. Studies of the prevalence of paralysis agitans by tracer methodology. Acta Neurol Scand Suppl. 1987;112:1–106.PubMed
37.
go back to reference de Pedro CJ, Stawiarz L. Parkinson’s disease incidence: magnitude, comparability, time trends. Acta Neurol Scand. 1991;84:382–8.CrossRef de Pedro CJ, Stawiarz L. Parkinson’s disease incidence: magnitude, comparability, time trends. Acta Neurol Scand. 1991;84:382–8.CrossRef
38.
go back to reference Chen H, Schernhammer E, Schwarzchild M, et al. A prospective study of night shift work, sleep duration and risk of Parkinson’s disease. Am J Epidemiol. 2021;163:726–30.CrossRef Chen H, Schernhammer E, Schwarzchild M, et al. A prospective study of night shift work, sleep duration and risk of Parkinson’s disease. Am J Epidemiol. 2021;163:726–30.CrossRef
39.
go back to reference Nakano T, Chiang K, Chen C, et al. Sunlight exposure and phototherapy: perspectives for healthy aging in an era of COVID-19. Int J Environ Res Public Health. 2021;18(20):10950.PubMedPubMedCentralCrossRef Nakano T, Chiang K, Chen C, et al. Sunlight exposure and phototherapy: perspectives for healthy aging in an era of COVID-19. Int J Environ Res Public Health. 2021;18(20):10950.PubMedPubMedCentralCrossRef
40.
go back to reference Golombek D, Pandi-Perumal S, Rosenstein R, et al. Dysregulated dark/light cycle impairs sleep and delays the recovery of patients in intensive care units: a call for action for COVID-19 treatment. Chronobiol Int. 2022;39(7):903–6.PubMedCrossRef Golombek D, Pandi-Perumal S, Rosenstein R, et al. Dysregulated dark/light cycle impairs sleep and delays the recovery of patients in intensive care units: a call for action for COVID-19 treatment. Chronobiol Int. 2022;39(7):903–6.PubMedCrossRef
41.
go back to reference Monoz-Gonzalez C, Ruiz-Jaramillo J, Cuerdo-Vilches T, et al. Natural lighting in historic houses during times of pandemic. The case of housing in the Mediterranean climate. Int J Environ Res Public Health. 2021;18(14):7264.CrossRef Monoz-Gonzalez C, Ruiz-Jaramillo J, Cuerdo-Vilches T, et al. Natural lighting in historic houses during times of pandemic. The case of housing in the Mediterranean climate. Int J Environ Res Public Health. 2021;18(14):7264.CrossRef
42.
go back to reference Megna M, Marasca C, Fabbrocini G. Ultraviolet radiation, vitamin D and COVID-19. Ital J Dermatol Venerol. 2021;156(3):366–73.PubMed Megna M, Marasca C, Fabbrocini G. Ultraviolet radiation, vitamin D and COVID-19. Ital J Dermatol Venerol. 2021;156(3):366–73.PubMed
43.
go back to reference Soheilifar S, Fathi H, Naghdi N. Photobiomodulation therapy as a high potential treatment modality for COVID-19. Lasers Med Sci. 2021;36(5):935–8.PubMedCrossRef Soheilifar S, Fathi H, Naghdi N. Photobiomodulation therapy as a high potential treatment modality for COVID-19. Lasers Med Sci. 2021;36(5):935–8.PubMedCrossRef
44.
go back to reference Sabino C, Ball A, Baptista M, et al. Light-based technologies for management of COVID-19 pandemic crisis. J Photochem Photobiol B. 2020;212: 111999.PubMedPubMedCentralCrossRef Sabino C, Ball A, Baptista M, et al. Light-based technologies for management of COVID-19 pandemic crisis. J Photochem Photobiol B. 2020;212: 111999.PubMedPubMedCentralCrossRef
45.
go back to reference Leta V, Boura I, van Wamelen D, et al. Covid-19 and Parkinson’s disease: acute clinical implications, long-COVID and post-COVID-19 parkinsonism. Int Rev Neurobiol. 2022;165:63–89.PubMedPubMedCentralCrossRef Leta V, Boura I, van Wamelen D, et al. Covid-19 and Parkinson’s disease: acute clinical implications, long-COVID and post-COVID-19 parkinsonism. Int Rev Neurobiol. 2022;165:63–89.PubMedPubMedCentralCrossRef
46.
go back to reference Rota R, Boura I, Wan Y, et al. Spotlight on non-motor symptoms and COVID-19. Int Rev Neurosci. 2022;165:103–33. Rota R, Boura I, Wan Y, et al. Spotlight on non-motor symptoms and COVID-19. Int Rev Neurosci. 2022;165:103–33.
47.
go back to reference Endo T, Matsumura R, Tokuda I, et al. Bright light improves sleep in patients with Parkinson’s disease: possible role of circadian restoration. Sci Rep. 2020;10(1):7982.PubMedPubMedCentralCrossRef Endo T, Matsumura R, Tokuda I, et al. Bright light improves sleep in patients with Parkinson’s disease: possible role of circadian restoration. Sci Rep. 2020;10(1):7982.PubMedPubMedCentralCrossRef
48.
go back to reference Fertl E, Auff E, Dopplebauer A, et al. Circadian secretion pattern of melatonin in Parkinson’s disease. J Neural Transm. 1991;3:41–7.CrossRef Fertl E, Auff E, Dopplebauer A, et al. Circadian secretion pattern of melatonin in Parkinson’s disease. J Neural Transm. 1991;3:41–7.CrossRef
49.
go back to reference Wescott D, Wallace M, Hasler B, et al. Sleep and circadian rhythm profiles in seasonal depression. Psychiatr Res. 2022;156:114–21.CrossRef Wescott D, Wallace M, Hasler B, et al. Sleep and circadian rhythm profiles in seasonal depression. Psychiatr Res. 2022;156:114–21.CrossRef
50.
go back to reference Lim R, Wambier C, Goren A. Are night shift workers at an increased risk for COVID-19? Med Hypothesis. 2020;144: 110147.CrossRef Lim R, Wambier C, Goren A. Are night shift workers at an increased risk for COVID-19? Med Hypothesis. 2020;144: 110147.CrossRef
51.
go back to reference Ricter K, Kellner S, Hillemacher T, et al. Sleep quality and COVID-19 outcomes: the evidence-based lessons in the framework of predictive, preventive and personalised (3p) medicine. EPMA J. 2021;12(2):221–41.CrossRef Ricter K, Kellner S, Hillemacher T, et al. Sleep quality and COVID-19 outcomes: the evidence-based lessons in the framework of predictive, preventive and personalised (3p) medicine. EPMA J. 2021;12(2):221–41.CrossRef
52.
go back to reference Pillai J, Bonner-Jackson A, Floden D, et al. Lack of accurate self-appraisal is equally likely in MCI from Parkinson’s disease and Alzheimer’s disease. Mov Disord Clin Prac. 2018;5(3):283–9.CrossRef Pillai J, Bonner-Jackson A, Floden D, et al. Lack of accurate self-appraisal is equally likely in MCI from Parkinson’s disease and Alzheimer’s disease. Mov Disord Clin Prac. 2018;5(3):283–9.CrossRef
53.
54.
go back to reference Brusco L, Cruz P, Cangas A, et al. Efficacy of melatonin in non-intensive care unit patients with COVID-19 pneumonia and sleep dysregulation. Melatonin Res. 2021;4(1):173–88.CrossRef Brusco L, Cruz P, Cangas A, et al. Efficacy of melatonin in non-intensive care unit patients with COVID-19 pneumonia and sleep dysregulation. Melatonin Res. 2021;4(1):173–88.CrossRef
55.
57.
go back to reference Krashner N, Cornelius J. L-dopa for post-encephalitic parkinsonism. Br Med J. 1970;4(5733):496.CrossRef Krashner N, Cornelius J. L-dopa for post-encephalitic parkinsonism. Br Med J. 1970;4(5733):496.CrossRef
59.
go back to reference Abreu G, Aguilar M, Covarrubias D, et al. Amantadine as a drug to mitigate the effect of COVID 19. Med Hypothesis. 2020;140: 109755.CrossRef Abreu G, Aguilar M, Covarrubias D, et al. Amantadine as a drug to mitigate the effect of COVID 19. Med Hypothesis. 2020;140: 109755.CrossRef
60.
go back to reference Anwar F, Naqvi S, Al-Abbasi F, et al. Targeting COVID-19 in Parkinson’s patients: drugs repurposed. Curr Med Chem. 2021;28(12):2392–408.PubMedCrossRef Anwar F, Naqvi S, Al-Abbasi F, et al. Targeting COVID-19 in Parkinson’s patients: drugs repurposed. Curr Med Chem. 2021;28(12):2392–408.PubMedCrossRef
61.
go back to reference an het Rot M, Benkelfat C, Boivin D, et al. Bright light exposure during acute tryptophan depletion prevents a lowering of mood in mildly seasonal women. Eur Neuropsychopharmacol. 2007;18(1):14–23.CrossRef an het Rot M, Benkelfat C, Boivin D, et al. Bright light exposure during acute tryptophan depletion prevents a lowering of mood in mildly seasonal women. Eur Neuropsychopharmacol. 2007;18(1):14–23.CrossRef
62.
go back to reference Lewy A, Emens J, Sack R, et al. Low, but not high, doses of melatonin entrained a free-running blind person with a long circadian period. Chronobiol Int. 2002;19(3):649–58.PubMedCrossRef Lewy A, Emens J, Sack R, et al. Low, but not high, doses of melatonin entrained a free-running blind person with a long circadian period. Chronobiol Int. 2002;19(3):649–58.PubMedCrossRef
63.
go back to reference Lin L, Du Y, Yuan S, et al. Serum melatonin is an alternative index of Parkinson’s disease severity. Brain Res. 2014;1547:43–8.PubMedCrossRef Lin L, Du Y, Yuan S, et al. Serum melatonin is an alternative index of Parkinson’s disease severity. Brain Res. 2014;1547:43–8.PubMedCrossRef
64.
go back to reference Meng T, Zheng Z, Tiu T, et al. Contralateral retinal dopamine decrease and melatonin increase in progression of hemi-Parkinsonian rat. Neurochem Res. 2012;37(5):1050–6.PubMedCrossRef Meng T, Zheng Z, Tiu T, et al. Contralateral retinal dopamine decrease and melatonin increase in progression of hemi-Parkinsonian rat. Neurochem Res. 2012;37(5):1050–6.PubMedCrossRef
65.
go back to reference Willis G, Robertson A. Recovery of experimental Parkinson’s disease with the melatonin analogues ML-23 and S-20928 in a chronic, bilateral 6-OHDA model: a new mechanism involving antagonism of the melatonin receptor. Pharmacol Biochem Behav. 2004;79(3):413–29.PubMedCrossRef Willis G, Robertson A. Recovery of experimental Parkinson’s disease with the melatonin analogues ML-23 and S-20928 in a chronic, bilateral 6-OHDA model: a new mechanism involving antagonism of the melatonin receptor. Pharmacol Biochem Behav. 2004;79(3):413–29.PubMedCrossRef
66.
go back to reference Willis G, Robertson A. Recovery of experimental Parkinson’s disease in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine treated marmoset with the melatonin analogue ML-23. Pharmacol Biochem Behav. 2005;80(1):9–26.PubMedCrossRef Willis G, Robertson A. Recovery of experimental Parkinson’s disease in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine treated marmoset with the melatonin analogue ML-23. Pharmacol Biochem Behav. 2005;80(1):9–26.PubMedCrossRef
67.
go back to reference Sacks O, Kohl M, Schwartz W, et al. Side-effects of L-dopa in post-encephalic parkinsonism. Lancet. 1970;1(7654):1006.PubMedCrossRef Sacks O, Kohl M, Schwartz W, et al. Side-effects of L-dopa in post-encephalic parkinsonism. Lancet. 1970;1(7654):1006.PubMedCrossRef
68.
go back to reference Sacks O, Messeloff C, Schwartz W. Long-term effects of levodopa in the severely disabled patient. JAMA. 1970;213(13):2270.PubMedCrossRef Sacks O, Messeloff C, Schwartz W. Long-term effects of levodopa in the severely disabled patient. JAMA. 1970;213(13):2270.PubMedCrossRef
69.
go back to reference Mahlknecht P, Seppi K, Poewe W. The concept of prodromal Parkinson’s disease. J Park Dis. 2015;5:681–97. Mahlknecht P, Seppi K, Poewe W. The concept of prodromal Parkinson’s disease. J Park Dis. 2015;5:681–97.
70.
71.
go back to reference Naik R, Avula S, Palleti S, et al. From emergence to endemicity: a comprehensive review of COVID-19. Cureus. 2023;15(10): e48046.PubMedPubMedCentral Naik R, Avula S, Palleti S, et al. From emergence to endemicity: a comprehensive review of COVID-19. Cureus. 2023;15(10): e48046.PubMedPubMedCentral
Metadata
Title
Circadian re-set repairs long-COVID in a prodromal Parkinson’s parallel: a case series
Authors
Gregory L. Willis
Takuyuki Endo
Saburo Sakoda
Publication date
01-12-2024

Keynote series | Spotlight on menopause

Menopause can have a significant impact on the body, with effects ranging beyond the endocrine and reproductive systems. Learn about the broader systemic effects of menopause, so you can help patients in your clinics through the transition.

Launching: Thursday 12th December 2024
 

Prof. Martha Hickey
Dr. Claudia Barth
Dr. Samar El Khoudary
Developed by: Springer Medicine
Register your interest now

Advances in Alzheimer's

Alzheimer's research and care is changing rapidly. Keep up with the latest developments from key international conferences, together with expert insights on how to integrate these advances into practice.

This content is intended for healthcare professionals outside of the UK.

Supported by:
  • Lilly
Developed by: Springer Healthcare IME
Learn more