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Introduction
Stroke is common in older people, with those over the age of 

60 years being at greatest risk [1]. The most common muscular 
impairment following stroke is spasticity, defined as “a motor disorder 
characterized by a velocity-dependent increase in tonic stretch 
reflexes (muscle tone) with exaggerated tendon jerks” [2]. Treatment 
of spasticity, or increased tone, underpins the rehabilitation aims in 
the stroke clinic [3], but objective assessment of muscle tone is not 
currently possible in the clinical setting. 

Clinical measures of tone are subjective, allowing limited 
comparison with population normal values or accurate monitoring of 
medical or therapeutic treatment efficacy. Widely used scales are the 
Modified Ashworth Scale [4] and the Tardieu Scale [5], lack temporal 
and inter-rater reliability [6]. Bilateral muscular symmetry is 
assumed through palpation of resistance of the muscle to continuous 
passive stretch as compared to the contralateral side [4]. Crucially 
in hemi-paretic patients, objective measures of tone are required for 
quantitative investigation of therapeutic interventions. New measures 
of muscular properties are being developed, offering an in vivo, 
objective, clinical, non-invasive alternative to subjective assessments. 
These include tensiomyography or TMG, which uses electrical 
stimulation to elicit muscle oscillations to measure contraction time 
and muscle displacement [7]; various devices that measure tissue 
stiffness, such as muscle ‘hardness’ meters [8], myotonometry, which 
compresses (≥ 1 ≤ 2 seconds) the muscle to record tissue displacement 
[9,10], and a mechano-acoustic indentor system that records tissue 
displacement to measure non-linear elastic properties [11]; and the 

recently introduced Myoton technology, which elicits mechanically 
induced oscillations [12-21]. The different technologies have their 
relative advantages. Myoton devices lend themselves readily to 
clinical testing, as they are compact and hand-held, measure various 
parameters and do not need to be connected to a computer during 
data collection.

Myoton devices apply mechanical impulses, producing damped 
oscillations, from which several muscle parameters can be computed 
simultaneously; those most commonly documented are frequency 
(non-neural tone), logarithmic decrement (indicating elasticity), and 
stiffness [12]. Muscle tone is not strictly a mechanical property but a 
state of tension. The MyotonPRO is a novel hand-held device (Myoton 
AS, Estonia and Myoton Ltd, London) and earlier prototypes have 
contributed to existing literature, with the Myoton-2 and 3 being the 
most documented (see below). The present study is amongst the first 
to use the MyotonPRO device [13,14]. Although the basic principle of 
testing remains the same, some differences are detailed in the Methods 
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section. Myoton technology has been examined for the assessment 
of muscle in neurological conditions, including Parkinson’s disease 
[15] and stroke [16,17]. The technology is potentially useful for 
aiding assessment of muscle dysfunction and monitoring the effects 
of treatment on muscle tone and rigidity (elasticity), which are 
important impairments in the case of stroke and Parkinson’s disease 
respectively. Reference values from healthy cohorts are needed for 
comparison in such studies. 

Reliability of using prototypes of Myoton devices has generally 
been good but varied with the muscle studied [17-21]. When compared 
with TMG, the Myoton-3 device was more reliable on repeated 
testing and more valid for detecting changes in muscle parameters 
at different muscle lengths [20]. The within day (sessions 30 minutes 
apart) intra-rater reliability of the Myoton-3 in BB in a small group of 
stroke patients (n=12) produced fair to good ICCs for both the affected 
side (ICC: 0.54- 0.99) and poor to good for the non-affected sides (ICC 
0.25- 0.98) [16]. A larger study of 62 stroke patients, testing 60 minutes 
apart, found excellent ICCs for BB and triceps in both limbs (ICC 
0.79-0.96) apart from BB tone in the unaffected limb (ICC=0.72) [17]. 
Reliability of novice user is important to examine, not only to reflect 
the clinical situation but as it may influence the likely uptake of the 
technique by clinicians if it is found to be easy to use. 

The contralateral side is often used clinically to assess abnormalities 
of the injured side [22,23]. Such comparison requires knowledge of the 
normal level of symmetry. Myoton studies on stroke patients have not 
compared data with healthy control data to examine the magnitude 
of asymmetry as a guide to the degree of abnormality. Studies of 
muscles in healthy older populations are lacking and therefore needed 
for comparison with patient groups, in terms of providing reference 
values, establishing normal symmetry and assessing reliability. 

Biceps brachii (BB) is an important muscle to test in older people. 
With approximately half of stroke survivors experiencing difficulty 
with a non-functional arm [3], the BB muscle often forms the focus 
of rehabilitation efforts. Between-side symmetry of mechanical 
properties has not been established for healthy older adults.

Aims
The present study aimed to: 1) investigate the level of between-

side symmetry between BB muscle characteristics of the two upper 
limbs measured using the MyotonPRO in older males over the age of 
65 years and, 2) establish the within-session intra-rater reliability of a 
novice user of the MyotonPRO device. 

Material and Methods
Participants

Twenty healthy, right-hand dominant, community-dwelling older 
males (aged 65-85 years; mean 71.7) were recruited via posters in 
local community areas and presentations in social groups. A sample 
of 20 participants is recommended as sufficient for reliability studies 
[24,25]. Information on handedness, determined using the Edinburgh 
Handedness Inventory [26], and levels of physical activity, determined 
by the validated Physical Activity Scale for the Elderly (PASE) [27] 
were obtained during telephone screening. Exclusion criteria included 
being left-handed or ambidextrous, having medical conditions or 
medications known to affect muscle tone, having a BMI >30 kg/m2, 
which may cause oscillations to be too attenuated to measure [28], or a 
current upper limb injury or skin condition over the BB muscle where 
the testing device was to be applied. 

Measurement of mechanical parameters

Myoton technology is well described in the literature [20], with 
the MyotonPRO being the latest and more compact version of the 
device, which is not affected by gravity [14]. This is achieved by the 
device using a triaxial accelerometer and a system which allows the 
device to be held in any direction when taking measurements, thus 
making muscles more accessible in different postures. However, as 
muscle tissue is affected by gravity, it is recommended that muscles 
are placed at less than 90 degrees to the horizontal. The device is held 
perpendicular to the skin surface, so that the mechanical impulse is 
delivered to the muscle, eliciting effective damped oscillations. The 
device performs simultaneous computation of the tissue parameters, 
and the three measured in the present study were its non-neural tone 
(state of resting tension or the muscle’s resistance to passive stretch 
during resting state) represented by frequency of oscillation (Hz), 
and mechanical properties of stiffness (N/m), or rigidity of tissue 
indicating the ability to resist force that modifies its shape, and 
elasticity (logarithmic decrement), indicating the muscle’s ability 
to recover its shape after being deformed (Figure 1). Frequency is 
defined as the maximum frequency (F=fmax) computed from the signal 
spectrum by FFT–Fast Fourier Transform. The higher the frequency 
of the dampened oscillations (natural oscillation frequency), the 
higher is the tone (intrinsic state of resting tension without voluntary 
contraction). Frequency is known to increase with contraction 
(state of tension) [12] and stretch [20]. Stiffness is calculated as  
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∆S: Pre-compression of subcutaneous tissues above muscle being measured; 
∆l: Maximum displacement of the tissue; S: Displacement, tissue oscillation 
(mm); V: Oscillation velocity (m/s); a: Acceleration of oscillation (mG); t:Time 
(ms); a0: Maximum acceleration; tmi: End of mechanical impulse; a1: Maximum 
acceleration representing the maximum displacement of the tissue i.e. maximum 
tissue resistance (mG); a2: Maximum acceleration at the point of opposite 
displacement due to residual inertia of the tissue oscillation; a3: Maximum 
acceleration of the second period of oscillation–occurs due to recuperation of 
stored residual mechanical energy in the tissue. 
Figure 1: Waveforms illustrating muscle oscillation and its relative displacement 
(S), velocity (V) and acceleration (a). The purpose of the figure is to describe the 
muscle oscillation i.e.  displacement (S), velocity of the oscillation (V) in relation 
to the oscillation acceleration (a). When the mechanical impulse is delivered 
and released quickly under constant pre-compression, the muscle responds 
immediately in the form of a damped oscillation, causing co-oscillation of: the 
pre-compressed subcutaneous tissue layers above the muscle; the testing-end; 
measurement mechanism; and accelerometer attached to the measurement 
mechanism. (Diagram provided courtesy of Myoton AS, Estonia).
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and indicates how much mechanical energy is lost in the tissue during 
an oscillation cycle. The smaller the decrement value, the smaller will 
be the dissipation of mechanical energy and higher will the elasticity 
of a tissue [12]. Decrement of zero would represent absolute elasticity 
and zero dissipation of mechanical energy (Figure 1).

Experimental procedure

Prior to data collection, participants were asked to refrain from 
strenuous physical activity for at least 48 hours, and alcohol for at least 
24 hours. Test protocols were designed so they could be replicated 
easily in the clinic. Participants were positioned in supine lying with 
pillows supporting their forearms in neutral anatomical alignment. 
A rolled towel under the wrist produced approximately 10-15 degrees 
elbow flexion to release stretch on BB. The testing site on the muscle 
belly was then located using a tape measure to identify the point mid-
way between the anterior aspect of the lateral tip of the acromion and 
the medial border of the cubital fossa (Figure 2), and marked on the 
skin using a non-toxic non-permanent marker. Modification of this 
protocol for locating the testing site is suggested in the discussion 
section but was not followed in the present study. 

A 10-minute rest enabled the baseline relaxation state of the muscle 
to be achieved prior to testing. The tip of the probe (or testing end; 
3mm diameter) was applied to the skin perpendicular to its surface 
over the muscle of interest at a constant pre-load (0.18 Newtons) to 
pre-compress subcutaneous tissues. An automatic system triggered a 
short electromagnetic impulse with constant force (0.4 Newtons) that 
was transmitted to the tissue, applying a brief mechanical impulse 
(15 milliseconds) with quick release (http://www.myoton.com/en/
Technology/Technical-specification). The device was used in multi-
scan mode consisting of a set of 10 mechanical impulses, one second 
apart. Values for mean, standard deviation and coefficient of variation 
(CV) for the 10 measurements, i.e. one measurement set, appear on 
the device’s screen [12]. If the CV of a set exceeded 3%, as displayed on 

the screen, the set was erased and re-measured. This criterion aimed 
to maximise consistency on the part of the investigator and did not 
need to be employed frequently. Two sets of 10 impulses were recorded 
on both the dominant and non-dominant sides, and the mean of each 
set used in the analysis. The operator (lead investigator, LB), a novice 
user who had been formally trained for four hours by Myoton Ltd, and 
undertook a further one day’s practice, performed the measurements. 
Right BB was always tested first for ease of data management and 
standardisation across participants. 

Statistical analysis

MyotonPRO readings were imported into Microsoft Excel. SPSS 
Statistics v19 was used for data analysis. Data were examined for 
normality using the Shapiro-Wilks test and frequency histograms. A 
confidence interval of 95% allowed significance of p<0.05.

Descriptive statistics (mean, SD and range) were calculated 
bilaterally for each parameter. The mean of the dominant (right) 
BB was compared to the mean of the non-dominant BB. The actual 
difference (non-dominant subtracted from dominant side) between 
limbs was calculated to assess symmetry. To examine whether true 
differences between sides were masked in the analysis considering 
dominance, the limb with the largest value was compared to the 
limb with the smallest value for each parameter. This calculation 
provides the absolute difference, which could also be calculated 
using dominance but taking the non-negative value of the actual 
difference for each participant and then calculating the mean. 
Percentage differences using the actual (dominant versus non-
dominant) and absolute (larger versus smaller) differences divided 
by the mean values, (multiplied by 100) were also calculated. Paired 
t-tests were used to examine differences between sides for both types 
of comparison (dominant versus non-dominant and larger versus 
smaller), to examine whether the former was appropriate and did not 
mask true differences within the group mean data.

Analysis of reliability used intra-class correlation coefficients 
(ICCs) for each parameter between the two sets of measurements, 
using an average measures ICC (3,2) model. 

The following classification was used for interpreting level 
of reliability from ICCs: Excellent >0.75; Good to Fair=0.74–0.4; 
Poor<0.4 [29]. In order to determine any meaningful differences from 
data error (precision), the standard error of measurement (SEM) was 
calculated by: SEM=SDx(√1-ICC), where SD is the pooled standard 
deviation, and the ICC is the reliability coefficient [30].

Bland-Altman analysis assessed the variability between the two 
sets of measurements for each parameter to determine the level of 
agreement [31]. The limits of agreement were calculated as the mean 
difference plus or minus two standard deviations of the differences 
between each score. 

Ethical considerations

The Faculty of Health Sciences Ethics Committee, University 
of Southampton, approved the study. Procedures and risks of 
participation were explained and written informed consent was 
obtained from all participants.

Results
Twenty volunteers were studied and their characteristics are 

shown in table 1. The data were normally distributed for all three 
parameters (p>0.05), so parametric statistics were used for analysis.

A                       B                                                   C

Figure 2: Location of testing site for biceps brachii. The equidistant point 
between the anterior aspect of the lateral tip of the acromion and the medial 
border of the cubital fossa (A: (10)) was located using a tape measure and 
marked on the skin with non-toxic washable ink pen (B). The MyotonPRO was 
then applied perpendicularly to the skin surface (C).
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Muscle symmetry

Statistical analysis indicated the percentage differences for all 
parameters were small (<4%) when the dominant and non-dominant 
sides were compared for the group, i.e. actual difference (Table 2). A 
paired t-test found no significant difference between sides for, tone 
(p=0.94), stiffness (p=0.53) or elasticity (p=0.48) in this population 
sample. Decrement displayed the greatest difference but it was not 
significant (3.8%). 

When analysis was performed comparing the limb showing the 
larger value with the limb showing the smaller value to calculate the 
absolute difference, mean differences of 12%, 14% and 26% were found 

for tone, stiffness and elasticity, respectively (Table 2). The absolute 
differences between larger and smaller values for each parameter were 
found to be significant (p<0.001).

Reliability

Within-session reliability for all three parameters was excellent 
(ICC 3,2: all 0.99) and SEMs were small (Table 3). 

Bland-Altman analysis

Bland Altman plots showed good intra-rater agreement in BB for 
the three parameters, with all points distributed evenly around zero 

Baseline Data Mean (SD) Range
Age (years) 71.7 (4.9) 65-82
Weight (kg) 75.6 (12.9) 55-98.5
Height (cm) 1.73 (0.1) 1.64-1.83
BMI (kg/m2) 25.2 (3.5) 19.5-30
No. of participants (n=20)
Ethnic origin (white/other) 13/7
Comorbidities (Diabetes/Previous TIAs) 3/3
Previous occupation (Active/Sedentary) 7/13
Taking regular medication? (Y/N) 15/5
Current physical activity levels (PASE) (Light/Moderate) 5/15

Table 1: Baseline demographic characteristics of participants and testing 
conditions.

Dominant vs. non-dominant 
analysis 
(Actual difference)

Tone 
(Frequency; Hz)

Stiffness (N/m) Elasticity (Log 
Decrement)

D ND D ND D ND
Mean 14.4 14.4 235.0 238.6 1.3 1.3
SD 1.5 1.4 27.4 29.0 0.2 0.2
Range 11.9-17.0 12.1- 17.2 188.2- 301.3 177.7- 281.5 1.0- 1.8 1.0- 1.8
Actual Difference 0.02 3.60 -0.04
% Difference 0.10 1.43 3.84
% SD 9.61 10.59 20.80
P valuea p=0.94 p=0.53 p=0.48
95% CI -0.61 to 0.66 -15.52 to 8.32 -0.18 to 0.09
Larger vs. smaller value analysis 
(Absolute difference)

L S L S L S
Mean 15.22 13.61 252.30 222.28 1.50 1.19
% Difference 12 14 27
% SD 7.77 8.37 15.85
p valuea p<0.001 p<0.001 p<0.001
95% CI -2.06 to -1.15 -38.15 to -21.90 -0.39 to -0.23

aSignificance level p<0.05; CI: Confidence intervals; SD: Standard deviation; D: 
Dominant side; ND: Non-dominant side; L: side on which largest values were 
found; S: Smallest values 
Table 2: Symmetry of dominant vs. non-dominant, and larger vs. smaller values of 
biceps brachii characteristics in healthy right-handed older males.
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Figure 3: Bland and Altman plots highlighting the within sessiona agreement 
for A) frequency (Hz), B) stiffness (Nm) and C) decrement (Log decrement). 
The solid line represents the mean difference. The 95% upper and lower limits 
of agreement are represented by the dashed line and show two standard 
deviations above and below the mean difference respectively.  aUsing two sets 
of 10 measurements.

Tone (Frequency) Stiffness Elasticity
Within-day 1 ICC (3,2) 0.99 0.99 0.99

SEM 0.09Hz 2.39N/m 0.02 (log decrement)

aScale for interpretation: Excellent>0.75; Good to Fair=0.74 – 0.4; Poor<0.4; 
SEM: Standard Error of Measurement 
Table 3: Reliability within-session for tone (frequency, stiffness and elasticity 
of biceps brachii; intraclass correlation coefficients (ICC), standard error of 
measurement (SEM).
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(Figure 3), thus indicating no bias and good levels of repeatability. The 
mean differences and 95% limits of agreement for Bland and Altman 
analysis are presented in table 4. 

Discussion
The present study is the first to establish between-side symmetry 

of mechanical properties of BB in healthy older males using Myoton 
technology. The dominant limb was not consistently associated 
with the larger values for mechanical parameters, so assessment of 
symmetry by comparison of the side with the larger value versus 
the side with the smaller value, i.e. absolute difference, may be more 
appropriate than using dominance (actual difference). Reliability of 
repeated tests of BB by a novice user within the same session was 
excellent. Between-day reliability needs to be tested using a refined 
protocol, as suggested below.

Between-side symmetry 

The present study demonstrated that symmetry can be influenced 
by how the data are analysed. Calculating actual difference according 
to limb dominance (<4%) underestimated the true (absolute) 
difference (12-27%) between the two sides. The mean of 12% difference 
for tone would be consistent with the generally accepted 10% for 
muscle strength differences [22], for example, but the 14% for stiffness 
and certainly the 27% difference for elasticity are greater. Further 
work needs to establish what would constitute a clinically significant 
difference, to determine what value would indicate abnormality. In 
preparing the present study protocol, limb dominance was selected 
as a factor in assessing symmetry due to muscle strength tending 
to be greater on the dominant side [22], but such an assumption 
for mechanical properties was not justified. The present findings 
challenge screening methods using limb dominance for comparing 
the Myoton parameters tested.

In previously published literature reporting values for the 
trapezius muscle in females (mean 44.2 years; SD 14.7) [19], and 
eight muscles, including BB, in five young (aged 18-19 years) 
male triathletes [12], bilateral readings were pooled. Between-side 
symmetry may be a useful way of assessing abnormality as result of 
injury. However, in stroke patients, for example, evidence suggests 
the presence of reduced strength and sensorimotor function of the 
non-hemiplegic contralateral limb compared to healthy controls 
[32]. Development of disuse phenomena, decreased contralateral 
stabilisation of the affected side [33] and ipsilateral motor damage [34] 
could result in a decrease in resting muscle tone of the contralateral 
side. It is therefore important to note that comparisons may need to be 
made with documented population normative values, rather than the 
contralateral limb within an individual, unless studies demonstrate 
similar data to healthy controls. 

A study using the Myoton-3 device in a mixed gender stroke 
population (aged 54.67 ± 10.9 years) found muscle tone was only 
significantly asymmetrical in flexor carpi radialis (0.004) and not 
extensor digitorum (0.416) or flexor carpi ulnaris (0.760) muscles 
[35]. This highlights the importance of ascertaining symmetry values 

in healthy populations for specific muscles prior to clinical use. 
Statistical significance and not percentage differences were used to 
assess asymmetry in the stroke study [35] but the clinical significance 
of between-side differences in mechanical parameters needs to be 
determined from large studies of healthy and patient populations.

Reliability

The operator was a novice user of Myoton technology and 
acquaintance with the MyotonPRO device was easily established. 
Training was deliberately restricted to replicate the likely limited 
training received by clinicians prior to using new devices that are 
relatively simple to use. 

Excellent intra-rater reliability was demonstrated (ICC 3,2: all 
0.99) but it is stressed that this was only for tests repeated within the 
same session. Between-day reliability is important to establish. Initial 
findings using the MyotonPRO found similar within-session findings 
to those in the present study for rectus femoris in healthy young [14] 
and older [13] males. These two earlier studies also examined between-
day reliability of testing rectus femoris in young (ICC 3,1: 0.81-0.87) 
[14] and older (0.77-0.82) [13] males. Studies using earlier Myoton 
prototypes have reported high-to-very-high test re-test reliability for 
sessions 30 minutes apart in stroke populations [16,17]. In 61 chronic 
stroke patients studied using the Myoton-3, ICCs ranged from 0.82 to 
0.95 and measurements of biceps had more stability and less variability 
between the two sessions than the other muscles studied, which were 
deltoid, triceps brachii, extensor digitorum, flexor carpi radialis and 
flexor carpi ulnaris [17]. Bizzini and Mannion [18] found within 
session reliability was better than between-days using the Myoton-2 
and also found that reliability varied between muscles; being high 
for rectus femoris, biceps femoris and gastrocnemius muscles (ICCs 
0.80-0.93) but low for vastus lateralis (0.4). The authors proposed 
that this discrepancy may have been due to difficulty in maintaining 
the probe in a perpendicular orientation to the muscle [18]. The 
MyotonPRO has a shorter probe than the earlier prototypes, which 
reduces the possibility of error during testing. However, other factors 
can influence the technique. For instance, in some older participants, 
the middle of BB muscle belly lay more medially and distally than in 
younger participants, making precision of the muscle belly difficult to 
ensure, and resultant deviation of testing site from the measurement 
protocol outlined above. The studies on stroke patients mentioned 
above used palpation to locate the muscle belly and found good 
reliability [16,17], so it may not be necessary to be as precise as in the 
present protocol for locating the testing site. However, the reliability 
on different days was not assessed in the studies on stroke patients, 
only for sessions 30 minutes apart [16,17], so the variability over time, 
when muscle characteristics and recording conditions can change and 
influence reliability, has yet to be studied.

Normative values of data for the MyotonPRO

The present study is the first to provide normative values for 
muscle (non-neural) tone, stiffness and decrement of the BB in healthy 
older males using the MyotonPRO device. 

Published BB values for stiffness in healthy females was compared 
to age-matched patients with Parkinson’s disease (PD), where 
significantly higher values were recorded in PD (203 ± 22 N/m vs. 192 
± 8 N/m, p=0.004) [15]. The higher stiffness values obtained during the 
present study (235.04 ± 4.33 N/m) compared to the healthy controls 
in the study by Marusiak et al. [15], might be attributed to gender 
differences [36] or position of the forearm or probe application, and 
highlights the importance of producing definitive reference values for 

Parameter Mean Difference 
between Raters

Upper Limit Lower Limit

Frequency -0.07 0.30 -0.44
Stiffness -2.13 7.30 -11.57

Decrement -0.01 0.08 -0.10

Table 4: Mean difference and limits of agreement for Bland and Altman analysis, 
showing within-session agreement.
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different healthy populations using standardised protocols, before use 
of the technique for routine clinical testing. 

Limitations of the study

The limited size of the present convenience sample, although 
justified for measuring reliability [25], is not sufficient to provide 
reference data for this population, thus limiting its generalizability. 
Larger studies are recommended to produce reference data-sets 
allowing comparisons with populations of different age groups, 
genders and levels of physical activity. In addition, documentation of 
symmetry for different populations and muscle groups is advocated. 

The experimental protocol was intended to be clinically relevant. 
The degree of elbow flexion was therefore only estimated and not 
measured. The elbow angle used in the present study (approximately 
10-15 degrees) was intended to release stretch on the BB muscle. 
However, a study on electrical stimulation of BB at different elbow 
angles showed that the optimal angle of biceps is about 20 degrees [37]. 
The angle of 10-15 degrees used may therefore still involve some stretch 
on the BB muscle, although the angle was not actually measured, so 
may have been near the optimal angle in cases. In light of the Koo et 
al. [37] study findings, which the current authors have become aware 
of since conducting the present study, the recommended elbow angle 
would be 20 degrees. An investigation is needed to document the 
effect of elbow angle on Myoton results within the range examined 
in the electrical stimulation study by Koo et al. [37]. Changes in 
the shape of the muscle with ageing may have caused variability 
in relation to testing the true muscle belly, which was more medial 
in older participants than experienced in younger participants in 
a related study [38]. The protocol could be modified to account for 
the likelihood that recordings were not reflective of the muscle belly, 
perhaps using a compromise between gaining a true midpoint along 
the length of the muscle, yet allowing an element of clinical judgment 
to ensure measurements are taken over the muscle belly. This could 
be achieved by visual observation and palpation, when asking the 
participant to make a gentle contraction of the muscle. The modified 
protocol has yet to be tested for reliability, both within sessions and 
between days.

Potential clinical applications

Accurate objective assessment of muscle tone in neurological 
conditions remains a challenge for clinicians. The MyotonPRO offers 
the ability to make accurate measurements rapidly, safely and reliably 
in the clinical setting. The frequency parameter measured, which 
reflects state of muscle tension, i.e. resting tone, can now be measured 
objectively but it may not be the most informative parameter in all 
situations. For example, greater muscle stiffness was found in patients 
with Parkinson’s disease than in healthy controls [15], which might 
be expected from subjective clinical assessment. Much research 
is needed to determine the relative importance of the different 
parameters (tone, stiffness and elasticity) measured using the Myoton 
technology in different conditions. Muscle abnormalities can also be 
assessed in musculoskeletal and respiratory disorders. Potentially, 
both research and clinical practice could be greatly enhanced by using 
Myoton technology to aid assessment and monitor the effectiveness 
of pharmacological and physical interventions on skeletal muscles. 
Evidence from research is required before adopting such a tool in 
routine clinical practice and modifications to the technology could 
make it even more user friendly. 

Conclusions
The present study has established the levels of between-side 

symmetry of tone and the mechanical properties of stiffness and 
elasticity of BB in healthy, community-dwelling older males, as 
measured using the MyotonPRO. Excellent within-session intra-
rater reliability was found. Measures of mechanical properties of 
skeletal muscle using hand-held devices, such as the Myoton PRO, 
would provide a potentially powerful objective tool in the stroke 
rehabilitation setting, as it is non-invasive, painless, safe, and relatively 
easy to use. The level of symmetry of BB may differ in younger age 
groups, in females, and in patients with different neurological 
conditions. Refinement of the testing procedure has been suggested 
and needs to be tested for reliability between days. 
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