
Volume 5 • Issue 4 • 1000203
J Biomet Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Open Access

Jaffa et al., J Biomet Biostat 2014, 5:4 
DOI: 10.472/2155-6180.1000203

Open Access

      
Research Article

Keywords: Informative right censoring; Joint modelling; Likelihood 
based approach; Multivariate longitudinal outcomes; Random effect; 
Slope estimation

Introduction
Kidney function is assessed using the markers serum creatinine, 

blood urea nitrogen (BUN), and estimated glomerular filtration rate 
(eGFR). All three markers are needed to assess kidney function since 
each marker has its own limitation. For instance, serum creatinine 
varies inversely with glomerular filtration rate (GFR) and creatinine 
levels are influenced by age and gender [1]. Whereas, BUN levels could 
fluctuate with protein intake, catabolism and tubular reabsorption 
of urea [2] and eGFR could be less accurate in obese individuals and 
those with normal or near normal GFR [3-5]. Also in most clinical 
settings the exact values of BUN, creatinine and eGFR provide little 
information on disease severity. What is more important is monitoring 
the rate of change in serum creatinine, BUN and eGFR over time to 
determine disease progression or to ascertain if state of disease is stable 
or changing [6]. This is done by taking repeated measures of these 
markers on the same patient and by calculating the rate of change or 
slopes for each of these markers to provide an evaluation of disease 
progression over time. This is critically significant for patients who 
undergo kidney transplant where a routine follow-up evaluation for 
their kidney function is mandated to determine how well their kidneys 
are functioning post-transplantation and to verify if graft failure is likely 
to transpire. For the cohort of renal transplantation we considered in 
this study, longitudinal measures of creatinine and BUN are recorded 
and eGFR levels are computed post transplant repeatedly over time till 
patient experiences renal graft failure. Patients who experience graft 
failure will therefore have an incomplete set of repeated measures on 
their creatinine, BUN and eGFR, a situation referred to as informative 
right censoring. 

Slope estimation for these outcomes is complicated in the presence 
of informative right censoring and special method of analysis that 
accounts for this problem should be conducted so that valid inferences 
are reached. If this type of censoring is ignored or treated as non-

informative, it could result in biased estimates and lead to inaccurate 
inferences [7]. Since informative right censoring is widespread in 
longitudinal studies several statistical methods were developed for 
slope estimation that account for right censoring [8-16]. However, 
all these methodological approaches have been developed for a single 
longitudinal outcome with informative right censoring. Although 
multiple outcomes are commonly encountered in medical research 
setting methodological approaches for slope estimation for multivariate 
longitudinal outcomes with informative right censoring are still not 
well developed [17]. This paucity is due to the level of complexity that 
accompanies such approaches where informative right censoring and 
the different correlations should be adjusted for [18]. This problem 
becomes much more compounded when the outcomes are of high 
dimension which results in an increase in the number of parameters 
in the variance-covariance matrix and in the number of estimates, 
and hence could lead to convergence problems in many situations. 
Few studies have developed methods for slope estimation for bivariate 
longitudinal outcomes adjusting for informative right censoring [19-
21]. For example, a joint model for a time to clinical event and for 
repeated measures over time on surrogate outcomes was presented 
by Xu and Zeger [22,23]. In this study a multivariate mixed model 
was used for the joint analysis of multivariate repeated measures data 
and times to an event with an underlying assumption of conditional 
independence between the censoring time and the biomarkers given 
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Abstract
Analysis of multivariate longitudinal data becomes complicated when the outcomes are of high dimension and 

informative right censoring is prevailing. Here, we propose a likelihood based approach for high dimensional outcomes 
wherein we jointly model the censoring process along with the slopes of the multivariate outcomes in the same likelihood 
function. We utilized pseudo likelihood function to generate parameter estimates for the population slopes and Empirical 
Bayes estimates for the individual slopes. The proposed approach was applied to jointly model longitudinal measures of 
blood urea nitrogen, plasma creatinine, and estimated glomerular filtration rate which are key markers of kidney function 
in a cohort of renal transplant patients followed from kidney transplant to kidney failure. Feasibility of the proposed joint 
model for high dimensional multivariate outcomes was successfully demonstrated and its performance was compared to 
that of a pairwise bivariate model. Our simulation study results suggested that there was a significant reduction in bias 
and mean squared errors associated with the joint model compared to the pairwise bivariate model.
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the latent process for each outcome. A pairwise fitting model was 
proposed to analyze multivariate outcomes [24,25]; but this approach 
could lead to efficiency loss. He and Luo developed a joint model of 
the multilevel item response theory (MLIRT) and Cox’s proportional 
hazard model for the time to the dependent terminal event with shared 
random effects to link the two models [26]. 

Joint modeling and maximization of the full multivariate likelihood 
function if feasible is a favorable approach [24]. However, this approach 
becomes difficult to implement with high dimensional outcomes given 
the computational complexity and convergence problem that could be 
encountered in such a setting. In the current article we aim to extend 
the bivariate model developed by Jaffa et al. [21] to high dimensional 
multivariate outcomes and to demonstrate its implementation 
feasibility through its successful convergence. Specifically, we propose 
a likelihood based approach where we jointly model the censoring 
process along with the slopes of the multivariate longitudinal outcomes 
and their variance-covariance matrix in the same multivariate 
likelihood function. This likelihood function is then maximized to 
generate slope estimates for the population as well as individual 
subjects. Estimating the individual slopes provides an assessment 
for the rate of change for every subject and therefore a case by case 
prognosis of the disease. This approach accounts for the informative 
right censoring and the correlation between the longitudinal outcomes. 
Specifically, the number of visits (before censoring happens due to 
kidney failure) for every patient is modeled using a discrete probability 
model with the individual slopes of the outcomes as covariates in the 
model. The innovation in the proposed model resides in its feasibility 
to handle high dimensional outcomes by jointly modeling all the 
slopes, their correlations and the censoring process in one likelihood 
function and casting the problem in such a way that standard software 
could be used to generate estimates for multivariate longitudinal 
outcomes of high dimension. We first used simulated data to assess the 
performance of the proposed method in terms of bias and efficiency 
and made comparison with the bivariate approach proposed in Jaffa 
et al. [21] applied in a pairwise fashion. This comparison enables us 
to determine if incorporating all the correlations concomitantly in the 
same likelihood function leads to a better precision than that of the 
bivariate modeling with pairwise joint modeling of the correlations. 
Moreover, a small simulation study was conducted on outcomes with 
different dimensions (7 outcomes and 10 outcomes) to confirm the 
feasibility of the model for high dimensional data. We then used data 
from a cohort of renal transplant patients at the Medical University 
of South Carolina where the markers of interest: creatinine, BUN and 
eGFR, are measured for each patient in a longitudinal fashion [27]. 
The objective of this study is to assess kidney function over time by 
estimating the population and individual slopes corresponding to these 
kidney markers. The baseline measures for BUN, creatinine, and eGFR 
recorded prior to the transplantation do not have any impact on kidney 
function after the transplantation since a new organ is transplanted and 
post operative measures of these markers determine the progression of 
disease. This is demonstrated by Kaplan Meier survival analysis which 
confirmed that there is no significant difference in survival between the 
group of patients whose baseline pre-transplant eGFR levels is less than 
15 ml/min/1.73 m2 and those who are above this cutoff point (P-value 
= 0.5). Those with less than 15 ml/min are patients with kidney failure 
while those with more than 15 correspond to those who have severe 
to mild kidney damage prior to transplantation. This classification of 
patients is based on that of Perazella and Reilly [28]. Failing to capture 
a significant difference in survival between the two groups of patients 
indicates that the pre-transplant baseline eGFR levels do not affect 

kidney function post-transplantation and intercept could therefore be 
discarded in such a clinical setting and the corresponding statistical 
model could focus on the slopes only. 

Multivariate Model
The multivariate model proposed in this manuscript is an extension 

of the bivariate approach [21]. Specifically the multivariate model could 
be specified as follows:

Consider a set of i=1,…,n independent subjects, with k=1,…,q 
multivariate correlated outcomes (yij1, yij2,…, yijq) recorded at j=1,..,p 
predetermined times denoted as 1 2( , ,..., )k k pkt t t . These p times are not 
necessarily equally spaced. Because of right censoring, the ith individual 
has mi number of visits or observations, where mi ≤ p, corresponding 
to times of measurement 1 2( , ,..., )

ii k i k im kt t t . We assume that (yij1, 
yij2,…,yijq) are all observed at all time points before dropout, i.e., the q 
outcomes are either all measured or all are missing. For example in the 
renal transplantation example, a patient has measurements on BUN, 
creatinine, and eGFR till renal failure. In this case measurements are 
no longer taken on any of the outcomes after failure.

The underlying model for (yij1, yij2,…, yijq) at time tik 
is assumed to be 

 ,ijk ik ik ik ijky t eα β= + +  			                    (1) 

for the ith individual, jth observation and kth outcome, with random 
effects αik 

and βik, and random error eijk which is assumed to be 
normal with mean zero and variance 2

kε
σ . We note here that, in a 

model with informative right censoring, the probability of being 
censored depends on unobserved data. In our informative censoring 
model, the probability of being censored depends on the random 
slopes 1 2( , , , )i i iqβ β β , that will be incorporated in the likelihood 
function described later in this section. Specifically, our interest is in 
estimating multivariate population slopes ( )1 2, , qβ β β and predicting 
the multivariate individual random effects ( )1 2, , ,i i iqβ β β

that are 
assumed to be correlated with covariance 2 * *

kl k l k lβ β β β βσ ρ σ σ= and 
follow a multivariate normal distribution:
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Hence by having the slopes of the outcomes correlated and 
incorporating these correlations in the likelihood function (described 
below), we are therefore accounting for the correlations between the 
outcomes. Moreover, since interest is in the slopes, the individual’s 
observations yijk pertaining for very outcome are reduced to the 
generalized least square estimates (GLS) denoted as bik that are obtained 
using SAS proc mixed. The likelihood is a function of the following: 

Assumption 1:

 i im β ′  having Truncated Discrete Distribution with

 ( ) 0 11 1 12 2 1Pr ( )i i i q iqM m G γ γ β γ β γ β= = + + + +
; 	                 (3)

This assumption states that the number of observations for each 
individual follows a discrete probability distribution with probability 
dependent on the individual slopes ( )1 2, , ,i i iqβ β β . Also, γ10,γ11,γ12,…
,γ1q are the parameters of the censoring distribution. This discrete 
censoring distribution can be right-truncated since the study may 
terminate before observing the withdrawal of all the subjects and 
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population slopes (β1,β2,…,βq) in addition to the parameters of the 
dropout model (γ0,γ11,γ12,γ1q). The Empirical Bayes estimates of the 
individual random slopes (βi1,βi2,…,βiq) are obtained via the approach 
described [29]. The slopes iβ ′ of the q multivariate longitudinal 
outcomes are assumed to follow a multivariate normal distribution 
and the correlations between these slopes are included in the variance-
covariance matrix denoted as 1−Σ and hence are incorporated in the 
likelihood function. 

SAS procedure NLMIXED (SAS 9.3 Institute Inc.) is used to 
implement the proposed approach [30]. 

Simulation Study
A simulation study was conducted to assess the performance of the 

multivariate model with three outcomes in comparison to the bivariate 
model described by Jaffa [21] assuming geometric distribution for the 
patients’ number of visits. Performance was determined by bias, and 
means squared errors for the population and individual slopes denoted 
as MSEa and MSEb respectively and evaluated as follows: 

( ) ( )2 2

1 1 1

1 1ˆ ˆandr r n
s is iss s i

MSEa MSEb
r nr

β β β β
= = =

= − = −∑ ∑ ∑  (8)

with n being the number of subjects in each data set and r being the 
total number of replications. The bivariate model was used in a pairwise 
fashion for all possible pairwise combination of outcomes. The average 
of bias and that of MSEa and MSEb were computed respectively for every 
outcome. In the proposed multivariate model the slopes of the three 
outcomes and their correlations were all concurrently incorporated in 
the same likelihood function which is maximized to obtain the slopes 
estimates. This simulation study enables us to determine whether 
maximizing the multivariate likelihood function which incorporates 
all the slopes for the outcomes on which the censoring process depends 
has any effect on the accuracy of the estimates compared to the bivariate 
model that accounts for only two of these outcomes and ignores the 
rest. Specifically this comparison enables us to determine whether 
incorporating all slopes simultaneously in the likelihood function has 
any effect on the precision and accuracy of the slope estimates assessed 
by bias and mean squared errors compared to the pairwise bivariate 
model. The number of visits per individual was randomly generated 
from the truncated geometric distribution that depended on three 
censoring parameters γ11,γ12, and γ13. The number of observations 
ranged from 2 to 7 recorded at prespecified time points (tij) 0, 1, 3, 6, 
12, 24, and 36 months and a linear relationship was assumed between 
each outcome and log(tijk+1). Thus, the model for the outcomes is 

( )log 1ijk ik ik ijk ijky t eα β= + + +  for k=1,2,3. Errors eijk were assumed to be 
normally distributed with mean zero and variance 2

kεσ . The parameters 
used in the simulation study were the ones acquired from the renal 
transplant with estimated slopes β1= βcreatinine=-0.089, β2=βBUN=-0.142, 
and β3=βeGFR=0.302, slope variances of 

1 2

2 20.255, 0.269,β βσ σ= =  and 

3

2 1.417βσ = , and error variances 1 2

2 20.078, 0.08ε εσ σ= = and 
3

2 0.14εσ = . 
Different values of correlation coefficient between the three outcomes 
were considered ranging from low to high correlations and 2000 
replications each with size of 200 were generated. In specific, low 
correlations with 

1 2 1 3 2 3
0.1,  0.2,  0.3β β β β β βρ ρ ρ= = = , mid correlation 

with 
1 2 1 3 2 3

0.4,  0.4,  0.5β β β β β βρ ρ ρ= = =  and high correlation with 

1 2 1 3 2 3
0.9,  0.85,  0.8β β β β β βρ ρ ρ= = =  were examined along with different 

censoring levels. Incorporating different levels of correlation between 
the outcomes and allowing the censoring process to vary in magnitude 
help us understand the impact of the correlation and censoring on the 
accuracy of the estimates. 

left truncated since at least two observations need to be recorded for 
every individual so that individual slopes can be estimated. A special 
case of the discrete censoring distribution is the truncated geometric 
distribution.

Assumption 1 can then be defined as follows:

i im β ′  ~ Truncated geometric with

0 11 1 12 2 1( )i i i q iqP F γ γ β γ β γ β= + + + +  		                   (4)

 with probability model 

{ } { }2

0 11 1 12 2 1 0 11 1 12 2 1Pr( ) 1 ( ) ( )  (5)i im R

i i i q iq i i q iqM m F Fγ γ β γ β γ β γ γ β γ β γ β
−

= = − + + + + + + + + 

With mi = 2,3,…,p; p is the number of prespecified measurement 
time points and 0 11 1 12 2 1( )i i q iqF γ γ β γ β γ β+ + + + is a function of 
individual slopes iβ ′ . To account for right truncation the geometric 
distribution was modified by introducing an indicator variable denoted 
as Ri to the geometric probability function. The indicator variable Ri=1

 
if 

censoring occurred and Ri=0 otherwise. In a previous study [16] it 
was suggested that logistic model may be employed for the sake of 
simplicity and the function 0 11 1 12 2 1( )i i q iqF γ γ β γ β γ β+ + + + is 
therefore defined as follows:

( )0 11 1 12 2 1
0 11 1 12 2 1

1( )
1 expi i q iq

i i q iq

F γ γ β γ β γ β
γ γ β γ β γ β

+ + + + =
 + − + + + + 





 (6) 

Note that if censoring parameters γ11,γ12,…,γ1q are all equal to zero 
then the drop-out process does not depend on any of the outcomes 
and is therefore non-informative. In case of dropout, it is assumed that 
no more measurements are recorded on all the outcomes. Thus each 
subject will have the same number of observations for all q outcomes. 

Assumption 2:

 Given mi, the observed individuals’ GLS estimates bik for every 
outcome are assumed to be normally distributed with mean βik and 
variance 2

ikbσ

The censoring process is viewed as informative or non-ignorable 
in the sense that the censoring mechanism is dependent on the 
unobserved random vector iβ ′ . In this context, iβ ′  is both a parameter 
in the distribution of the vector of GLS estimates ib′ and is unobserved 
itself. The marginal likelihood, integrated over the unobserved random 
effects iβ ′ is maximized to obtain the maximum likelihood estimates 
for the population slopes and censoring parameters, and empirical 
Bayes estimates for the individual slopes .iβ ′  

The joint distribution of 
mi, and ib′ is used in the likelihood function as follows: 

( )1 2 12 13

2 2 2 2 2 2
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The log of this likelihood is maximized to obtain estimates of the 
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Tables 1-3 present the bias and mean square errors for the slopes 
estimates for the three outcomes under the trivariate and bivariate 
models applied in a pairwise fashion. The reported means for bias for 
the first outcome in the bivariate model correspond to the mean of 
bias associated with the bivariate outcomes one and two (first pair), 
and one and three (second pair). The same computation was followed 
for the bias for outcomes two and three. Mean MSEa and mean MSEb 
for the bivariate model were computed similarly to the mean bias. We 
will start first by discussing the results reported in Table 1 wherein 
low correlations between the outcomes were assumed. In this context, 
when the censoring level was low (γ1=3.5, γ2=2.7 and γ3=3.0)

 
bias 

for the three outcomes was decreased by 52% on average under the 
multivariate model compared to the pairwise bivariate model, MSEa 
by 23% and MSEb by 54%. When the censoring level increased to a 
midlevel with γ1=4.2, γ2=4.8 and γ3=5.1

 
bias decreased on average for 

the three outcomes by 54%, MSEa by 10% and MSEb by 26% for the 
multivariate model compared to the pairwise bivariate model. When 
the censoring level increased to high censoring withγ1=7.8, γ2=7.5 and 
γ3=7.2

 
bias decreased by 26%, MSEa by 41% and MSEb by 20%. These 

results indicate that regardless of the censoring levels the estimates 
generated under the multivariate model had better precision and 
accuracy compared to the bivariate model. When the correlation levels 
between the outcomes increased to mid levels with ρ12=0.4, ρ13=0.4, and 
ρ23=0.5 (Table 2), bias across all levels of censoring decreased by 40%, 
MSEa by about 15% and MSEb by 28% for multivariate compared to 
bivariate model and this decrease was demonstrated across all levels of 
censoring. Similar results were observed with high correlation levels 
of ρ12=0.9, ρ13=0.85, and ρ23=0.8 (Table 3). In this context, under the 
multivariate model we observed a decrease in bias, MSEa and MSEb 
by an average of 40%, 15% and 20% respectively. These results suggest 
that regardless of the correlation and censoring levels modeling all 
outcomes simultaneously in the likelihood function and accounting 

Parameter Trivariate model Bivariate model†

γ1
♣=3.5, γ2

♣=2.7, γ3
♣=3.0 Bias_1*100

Bias_2*100
Bias_3*100
MSEa_1*103

MSEa_2*103

MSEa_3*100
MSEb_1*100
MSEb_2*10
MSEb_3*100

-0.007
-0.028
-0.119
0.144
0.853
0.127
0.102
0.091
0.215

-0.021
-0.076
 0.163
0.205
0.909
0.187
0.113
0.094
0.567

γ1
♣=4.2, γ2

♣=4.8, γ3
♣=5.1 Bias_1*100

Bias_2*100
Bias_3*100
MSEa_1*103

MSEa_2*103

MSEa_3*100
MSEb_1*100
MSEb_2*10
MSEb_3*100

-0.012
-0.151
-0.132
0.140
0.805
0.154
0.104
0.097
0.266

0.022
0.343
0.346
0.150
0.856
0.173
0.116
0.110
0.611

γ1
♣=7.8, γ2

♣=7.5, γ3
♣=7.2 Bias_1*100

Bias_2*100
Bias_3*100
MSEa_1*103

MSEa_2*103

MSEa_3*100
MSEb_1*100
MSEb_2*10
MSEb_3*100

-0.073
-0.303
-0.126
0.132
0.083
0.182
0.107
0.099
0.335

0.101
-0.310
-0.237
0.161
0.921
0.214
0.115
0.109
0.588

1 2 3 1 2 3

2 2 2 2 2 2
0 3.0, 0.255, 0.269, 1.417, 0.078, 0.08, 0.14β β β ε ε εγ σ σ σ σ σ σ= − = = = = = =

1♣, first outcome; 2♣, second outcome; 3♣, third outcome; Bivariate model† mean 
bias, mean MSEa, mean MSEb of the pairwise bivariate model estimates. 
Table 1: Comparisons of the performance of the trivariate and bivariate models, 

1 2 1 3 2 3
0.1,  0.2,  0.3β β β β β βρ ρ ρ= = = .

Parameter Trivariate model Bivariate model†

γ1
♣=3.5, γ2

♣=2.7, γ3
♣=3.0 Bias_1*100

Bias_2*100
Bias_3*100
MSEa_1*103

MSEa_2*103

MSEa_3*100
MSEb_1*100
MSEb_2*10

MSEb_3*100

-0.011
0.015
0.041
0.133
0.797
0.125
0.103
0.098
0.219

0.015
0.141
0.144
0.146
0.846
0.169
0.112
0.111
0.593

γ1
♣=4.2, γ2

♣=4.8, γ3
♣=5.1 Bias_1*100

Bias_2*100
Bias_3*100
MSEa_1*103

MSEa_2*103

MSEa_3*100
MSEb_1*100
MSEb_2*10

MSEb_3*100

-0.016
-0.204
-0.147
0.142
0.841
0.135
0.105
0.099
0.234

0.054
-0.265
-0.177
0.158
0.922
0.168
0.115
0.111
0.611

γ1
♣=7.8, γ2

♣=7.5, γ3
♣=7.2 Bias_1*100

Bias_2*100
Bias_3*100
MSEa_1*103

MSEa_2*103

MSEa_3*100
MSEb_1*100
MSEb_2*10

MSEb_3*100

-0.114
-0.413
-0.158
0.133
0.899
0.129
0.105
0.102
0.228

-0.123
-0.513
-0.234
0.140
0.921
0.199
0.114
0.113
0.636

1 2 3 1 2 3

2 2 2 2 2 2
0 3.0, 0.255, 0.269, 1.417, 0.078, 0.08, 0.14β β β ε ε εγ σ σ σ σ σ σ= − = = = = = =

1♣, first outcome; 2♣, second outcome; 3♣, third outcome; Bivariate model† mean 
bias, mean MSEa, mean MSEb of the pairwise bivariate model estimates.

Table 2: Comparisons of the performance of the trivariate and bivariate models, 

1 2 1 3 2 3
0.4,  0.4,  0.5β β β β β βρ ρ ρ= = = .

Parameter Trivariate model Bivariate model†

γ1
♣=3.5, γ2

♣=2.7, γ3
♣=3.0 Bias_1*100

Bias_2*100
Bias_3*100
MSEa_1*103

MSEa_2*103

MSEa_3*100
MSEb_1*100
MSEb_2*10

MSEb_3*100

-0.064
-0.078
-0.071
0.143
0.777
0.132
0.116
0.121
0.270

-0.107
 -0.128
0.091
0.146
0. 810
0.198
0.121
0.122
0.617

γ1
♣=4.2, γ2

♣=4.8, γ3
♣=5.1 Bias_1*100

Bias_2*100
Bias_3*100
MSEa_1*103

MSEa_2*103

MSEa_3*100
MSEb_1*100
MSEb_2*10

MSEb_3*100

-0.055
-0.178
-0.048
0.139
0.839
0.148
0.119
0.124
0.264

-0.111
-0.443
-0.141
0.152
0.892
0.205
0.122
0.124
0.615

γ1
♣=7.8, γ2

♣=7.5, γ3
♣=7.2 Bias_1*100

Bias_2*100
Bias_3*100
MSEa_1*103

MSEa_2*103

MSEa_3*100
MSEb_1*100
MSEb_2*10

MSEb_3*100

-0.135
-0.479
-0.216
0.140
0.801
0.165
0.120
0.119
0.317

-0.183
-0.648
-0.241
0.154
0.958
0.195
0.121
0.125
0.666

1 2 3 1 2 3

2 2 2 2 2 2
0 3.0, 0.255, 0.269, 1.417, 0.078, 0.08, 0.14β β β ε ε εγ σ σ σ σ σ σ= − = = = = = =

1♣, first outcome; 2♣, second outcome; 3♣, third outcome; Bivariate model† mean 
bias, mean MSEa, mean MSEb of the pairwise bivariate model estimates.

Table 3: Comparisons of the performance of the trivariate and bivariate models, 

1 2 1 3 2 3
0.9,  0.85,  0.8β β β β β βρ ρ ρ= = = .
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for the correlations among them reduced the bias and MSEs associated 
with slope estimates and thus increased accuracy of estimation in 
comparison to modeling only two of the outcomes and ignoring the 
rest. Feasibility of the model to fit high dimensional outcomes was 
also verified via a small simulation study conducted at a high level of 
censoring. In this context we showed successful convergence of our 
model and slope estimates for 7 outcomes were attained with average 
bias of 0.006, MSEa of 0.0017 and MSEb of 0.012, as well as those for 
10 outcomes with associated average bias of 0.008, MSEa of 0.0097, and 
MSEb of 0.059. Thus, joint modeling of multivariate slope outcomes, 
their correlations, and the censoring process was implemented and 
convergence on different dimensions of the outcomes was successfully 
achieved.

Cohort of Renal Transplant
The multivariate model was illustrated using a cohort of renal 

transplantation at the Medical University of South Carolina. A total 
of 110 patients who underwent kidney transplant in the calendar year 
2000 were followed and demographical information along with a three 
year repeated measures of their kidney function using the markers 
serum creatinine, BUN and eGFR were recorded. The normal values 
for creatinine are in the range of 0.7 to 1.3 mg per 100 ml of blood, 
for BUN are between 8 and 25 mg per 100 ml of blood and for eGFR 
is approximately 90 and 120 mL/min/1.73 m2 for men and women 
respectively. A decrease in eGFR and an increase in creatinine and 
BUN could be an indication of disease progression. Repeated measures 
on these markers were recorded between the years 2000 and 2003 
yielding seven data points registered at baseline pre-transplantation 
(month 0), and post-transplantation at months 1, 3, 6,12, 24 and 36. 
Patients were followed at predetermined time points following a pre-
specified schedule for all outcomes and measurements were taken 
repeatedly until graft failure is encountered. In this situation, patients 
revert back to dialysis treatment and acquisition of their renal markers 
is no longer possible. This leads to patient dropout from the follow-up 
study resulting in 19% informative right censoring due to graft failure. 

For every individual we use the baseline adjusted model by 
incorporating the baseline measure as a covariate in the model as such: 

2
1 2 0 3ijk ik ijk k ik ik ijk ijky t y t eβ β β= + + +  where i=1,…,n, j=1,…, mi and 

k=1,…,q. In Figure 1a and 1b) we present the mean levels of BUN and 
eGFR, and those of creatinine respectively against follow-up months. 
A curvilinear relationship between follow-up months and each marker 
was shown, so in order to linearize it we log transformed and we 
introduced a quadratic term in the model’s equation. The logarithmic 
transformation linearized this relationship to a certain extent but not 
fully so we still needed to include the quadratic term. 

The mean levels of the outcomes (BUN, eGFR, and creatinine) 
were plotted against the number of visits that range from 2 to 7 Figure 
2a for BUN and eGFR and Figure 2b for creatinine. This figure shows 
that patients with high number of visits (5 and above) appear to have 
lower BUN and creatinine levels and higher eGFR levels on average 
compared to those with lower number of visits (below 5 visits). Since, 
the lower the creatinine and BUN, and the higher the eGFR the better 
the prognosis of kidney disease, this figure therefore indicates that the 
length of stay in the study measured by number of visits is determined 
by the levels of these markers.	

Our proposed multivariate model was applied to the renal transplant 
dataset, to estimate population and individual slopes pertaining to 
the renal markers creatinine, BUN and eGFR. We assumed that the 
number of visits follow a truncated geometric distribution. The 

associated goodness-of-fit test confirmed that the number of visits is 
adequately modeled using the specified geometric distribution with 
test statistics P-value=0.6, X2=0.3 DF=1. The estimated population 
slope for creatinine, BUN and eGFR were respectively βcreatinine=-0.089 
(SE=0.0117), βBUN=-0.142 (SE=0.011), and βeGFR=0.302 (SE=0.0155) 
with P-value<0.0001. The estimated variance-covariance matrix of iβ ′
was

2 2 2 2 2 2
, , ,0.255, 0.269, 1.417,  0.148,  0.4,  0.3.cr BUN eGFR cr BUN cr eGFR BUN eGFRσ σ σ σ σ σ= = = = = − = −  

The mean values of the estimated individual slopes were 
iCreatininemeanβ

of -0.086 ± 0.494, 
i BUNmeanβ of -0.20 ± 0.515, and 

ieGFRmeanβ of 
0.348 ± 1.178. The censoring parameters for all three markers were 
γcreatinine=-0.093, γBUN=-0.0584, γeGFR=0.091 (P-value<0.0001). The 
significance in the censoring parameters for all three markers indicates 
that the censoring process was informative and significantly dependent 
on all three markers. 

Discussion
In this article we propose a joint likelihood based approach for 

a multivariate mixed model that is an extension of the bivariate 
model by Jaffa et al. [21]. The proposed multivariate model generates 
maximum likelihood estimates for the population slopes and empirical 
Bayes estimates for the individual slopes that are adjusted for 
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Figure 1: BUN, eGFR (a), and Serum creatinine mean levels (b) respectively 
plotted against follow-up months.
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informative right censoring. To account for this type of censoring a 
discrete distribution for the number of visits was assumed. Random 
slopes for the outcomes and the correlation between them were also 
concomitantly incorporated in the maximum likelihood function. 
The proposed multivariate model was applied to the cohort of renal 
transplant patients and the three biomarkers serum creatinine, BUN 
and eGFR that are typically measured to assess renal function over 
time following transplantation were modeled and their corresponding 
slopes were estimated. Moreover, individual slope for every patient 
was obtained thus making it viable to monitor disease progression 
on an individual and population basis. In this study we aimed at 
demonstrating the feasibility of the joint multivariate approach to fit 
the likelihood function for high dimensional outcomes (3, 7 and 10 
outcomes) using standard software and successfully obtaining the 
population and individual slopes with minimal bias and MSEs for 
the different dimension of the multivariate outcomes. The model is 
not necessarily just limited to up to 10 outcomes but could be also 
extended to higher dimensions. Joint modeling approach proposed 
in this research work has always been considered advantageous yet 

challenging to implement compared to other methods such as pairwise 
model fitting proposed to handle situations of high dimensional 
outcomes. Specifically, our proposed joint modeling approach is 
favored over the pairwise model fitting since it increases efficiency and 
accuracy of the estimates [24]. In this context, our simulation study 
showed that fitting the full multivariate model had negligible bias and 
mean squared errors associated with slope estimates and that accuracy 
of estimates increased with this approach compared to the pairwise 
bivariate model. Joint modeling of the multivariate outcomes has its 
established advantages compared to the univariate separate analysis. 
The latter approach ignores the intrinsic correlations between the 
outcomes while the multivariate joint analysis exploits this correlation 
to generate more accurate estimates, and controls for type 1 error 
that might emanate from the univariate analysis when conducted 
without accounting for multiple comparisons [31]. Moreover, we have 
recently shown that joint bivariate analysis results in more precise 
estimates compared to the univariate separate analysis and the same 
conclusion should follow in the multivariate setting [21]. In a recent 
study, Jaffa conducted a sensitivity analysis on this model and it was 
shown that the proposed model is robust for assumptions about the 
underlying distributions for the number of visits mi [32]. In this regard, 
an average increase of 18% was detected for bias and MSEs when the 
underlying distribution of the number of visits was mispecified and 
wrong assumptions were considered. In addition, we were also able 
to verify that violation of the normality assumption for the outcomes 
had a minor effect on the accuracy of the estimates and less than 10% 
increase in bias and MSEs was captured for the non-normal compared 
to normal outcomes. This robustness to assumptions misspecification 
makes it plausible for the proposed model to be applied to a wider range 
of datasets with multivariate high dimensional longitudinal outcomes. 
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