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EAE – What is it?

When seen in its entirety, the animal model experimental 
autoimmune encephalomyelitis (EAE) bears signifi‑

cant similarities to multiple sclerosis (MS) and its different 
varieties. Depending on the model used, EAE may develop in 
highly distinct forms such as acute, relapsing‑remitting, and 
primary or even secondary progressive. Although the model 
was discovered and developed already in the 1930s,[1] it was 
only in the 1980s that it was clearly proven that T cells are the 
major driver of disease when mice are immunized by CNS 
antigen in complete Freund’s adjuvant (CFA). The major evi‑
dence came from adoptive transfer experiments using T cell 
lines in rats and mice.[2‑5] Even though many similarities are 
observed between MS and its animal model, major concerns 
still exist about the etiology and the mechanism (s) of disease 
development of MS. For example, the autoimmune etiology 
of MS is still questioned and some researches claim that in‑
fections with, for example, Epstein–Barr virus, may play an 
important role in MS immunopathology.[6,7] Others suggested 
for some subforms of MS, a primary degenerative scenario 
with immune‑mediated damage playing a secondary role in 
the disease.[8‑12] Also, the composition of CNS‑infiltrating 
cell types differs between EAE and MS; for example, CD8+ 
T cells, which may be seen as the dominating T cell population 
in MS histology,[13,14] are not essential for EAE.[15] Another 

difference might be the presence and the role of neutrophils 
in MS versus EAE, with EAE being dependent on neutrophils 
whereas MS seems to lack a clear association with neutro‑
phils. Still, it needs to be emphasized that the pathogenesis in 
the induced EAE model (but not in spontaneous models) is 
time wise well controlled and the effect of a certain cellular 
population can be effectively observed and tested, whereas in 
MS the timing of the immune response is out of sight and can 
only be observed during or after acute attacks when the role 
of populations such as neutrophils may already be blunted.[16]

In the standard model most frequently used, EAE is 
induced by immunization using a water‑in‑oil emulsion of 
CFA into which the autoantigen such as myelin oligoden‑
drocyte glycoprotein (MOG), myelin basic protein (MBP), 
or proteolipid protein (PLP) is mixed. CFA contains high 
amounts of heat‑inactivated Mycobacterium tuberculosis. 
This emulsion is usually injected subcutaneously in the back 
skin next to the tail base. Also, pertussis toxin injections are 
given the same day and 2 days later intraperitoneally. EAE 
normally develops after about 10 days when scores with 
ascending paralysis usually become visible.

T cells in EAE

T cell differentiation is highly influenced and dependent 
on the cytokine milieu present in the draining lymph nodes 

T cells are major initiators and mediators of disease in multiple 
sclerosis (MS) and in its animal model experimental autoimmune 
encephalomyelitis (EAE). EAE is an antigen‑driven autoimmune model 
in which immunization against myelin autoantigens elicits strong T cell 
responses which initiate its pathology with CNS myelin destruction. T cells 
cause pathogenic events by several mechanisms; some work in a direct fashion 
in the CNS, such as direct cytokine‑induced damage, granzyme‑mediated 
killing, or glutamate‑induced neurotoxicity, whereas most are indirect 
mechanisms, such as activation of other cell types like macrophages, 
B cells, or neutrophils. This review aims to describe and discuss the 
molecular effector mechanism by which T cells harm the CNS during EAE. 
(Biomed J 2015;38:183-193)
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during T cell receptor (TCR) stimulation. In infections, 
the type of cytokines that are induced is determined by 
the type of the infectious agent. Sensing of this is realized 
by antigen presenting cells (APCs) or also directly by the 
T cells via toll‑like receptors (TLRs) activated by distinct 
pathogen‑associated molecular patterns (PAMPs) produced 
by the invaders.[17,18] Therefore, the use of M. tuberculosis 
in CFA provides a clear bias to a specific immune response, 
namely, the one T cells normally initiate in tuberculosis 
infection to which differentiation to Th1 or Th17 cells (see 
below) also belongs. Thereby, the pathway by which autoim‑
munity is elicited, either by active induction or by creation 
of TCR transgenic animals, may subvert the type of immune 
response and the associated molecular mechanisms lead‑
ing to disease. Also, the type of antigen, or rather the exact 
epitope used for immunization, was shown to govern the 
response type and also the disease pattern in EAE. Certain 
antigens elicit a predominant Th17 and cerebellar disease, 
while other antigens evoke a mixed Th1/Th17 response with 
typical lumbar inflammation.[19]

EAE, when induced using CFA, is, in the majority of 
cases, a CD4+ T helper cell‑mediated disease. There are some 
CD8+ T cell‑mediated EAE models (see below), though the 
major culprit in inducing cytotoxic T cell responses is the use 
of CFA as it funnels in the typical major histocompatibility 
class (MHC) class II presentation pathway of APCs for T cell 
activation. Since the discovery of distinct T helper subpopu‑
lations in the late 1980s by Mossman and Coffman,[20] EAE 
was thought to be a prototypical Th1 autoimmune disease 
due to its strong association with interferon‑gamma (IFN‑g) 
secreting T cells found in the CNS.[21,22] Findings with trans‑
ferred TCR transgenic Th2 cells eliciting an allergic form of 
EAE already perturbed this picture.[23] A further challenge to 
a Th1 view of EAE was the reports published in the 1990s 
showing that mice deficient for IFN‑g,[24] its receptor,[25] or 
the cytokine subunit interleukin (IL)‑12‑p35 (necessary for 
Th1 cell differentiation)[26,27] or the IL‑12 specific receptor 
subunit IL‑12Rb2[28] developed normal or even stronger 
progression of EAE than their wild‑type (WT) control 
animals. It was soon shown that this discrepancy was due 
to another form of an immune response, namely, the IL‑23/
Th17 axis.[29‑31] It turned out that the major important im‑
mune response of T cells in EAE was not Th1 but was 
dominated by T helper cells producing IL‑17 (IL‑17A and 
IL‑17F) after immunization. These Th17 cells are now con‑
sidered the initiators of disease in the standard EAE model. 
Th17 cells need external IL‑23 and the master transcription 
factors retinoid‑related orphan receptor gamma t (RORgt)[32] 
as well as RORa .[33] These cells were later shown to switch 
their phenotype and co‑produce IFN‑g and granulocyte 
macrophage‑colony stimulating factor (GM‑CSF) and, 
for a major part, also lose the expression of IL‑17 in the 

CNS completely.[34,35] The latter finding also explains why 
EAE was seen initially as a Th1 disease. Many experts in 
this field see such multi‑cytokine‑producing cells as most 
pathogenic, especially since co‑expression of the Th1 master 
transcription factor Tbet was shown to be mandatory for the 
encephalogenicity of Th17 cells.[36] The Th17 supportive 
cytokine IL‑23 was indeed shown to induce Tbet expres‑
sion in Th17 cells,[35,37] but the role of IFN‑g production 
by Th1/Th17 cells remains elusive. IFN‑g is a pleiotropic 
cytokine with potent immune‑stimulating features and, on 
the other hand, with immune‑suppressing features. These 
include containment of T cell expansion,[38] suppression of 
IL‑1b induction by M. tuberculosis in EAE,[39] induction of 
T regulatory (Treg) cells,[40] and induction of multiple im‑
munosuppressive secondary molecules such as Indoleamine 
2,3‑dioxygenase (IDO)[41] or Programmed death‑ligand 
1 (PD‑L1).[42]

T helper cells – How do they do it?

As described above, the autoantigen‑containing CFA 
emulsion needs to be taken up by endocytosis from APCs. 
This pathway is luminal and not cytosolic; therefore, most 
of the injected antigen will be loaded on MHC class II in 
the endolysosomal MIIC compartment. A further bias for 
the CD4+ T cell induction by contemporary protocols (e.g., 
MOG peptide 35–55) is that these are long peptides which 
contain immunodominant epitopes defined for binding to 
MHC class II molecules. These peptides then stimulate 
autoantigen‑specific T cells that escaped thymic negative 
selection. CD4+ effector T cells that are commonly induced 
in EAE start with the expression of IL‑17 in the lymph nodes. 
Some days later, already in the lymph nodes, plasticity of 
these Th17 cells, which is driven by IL‑23,[35] initiates the 
multi‑cytokine program with co‑expression of RORgt and 
Tbet. Finally in the CNS, effector T cells are found to ex‑
press either IL‑17 or IFN‑g or GM‑CSF or combinations of 
all these three cytokines [Figure 1].[34,35,43]

As pointed out earlier, most EAE models are primarily 
based on activation of encephalitogenic CD4+ T helper cells. 
Their major mechanism is to govern the response mechanism 
of other cells by secreting cytokines and by direct interaction 
with these cells via CD40L–CD40 interaction.[44‑46] Cyto‑
kines are very interesting molecules, most of them acting 
by distinct so‑called Janus kinase (JAK)/Signal Transducer 
and Activator of Transcription (STAT) pathways. Although 
activation of the STATs can be measured by phosphostain‑
ing, the type of responses induced by cytokines is hard to 
predict. Most cytokines act in minute amounts, and can 
elicit robust and also dangerous responses. Therefore, their 
expression and secretion is highly regulated.
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Early infiltration – Th17 cells

T cell infiltration into the CNS occurs around day 8 or 
9, and these T cells mostly express IL‑17.[47] The IL‑17 fam‑
ily is composed of six members, IL‑17A–F,[48] that belong 
to the cysteine knot family. They are structurally unrelated 
to other cytokines, but have distant similarities to neuro‑
trophins.[49] IL‑17A, F, and C signal by a unique pathway, 
utilizing NF‑kB activator 1 (ACT1)/tumor necrosis factor 
receptor associated factor (TRAF) 6,[50,51] with nuclear fac‑
tor kappa‑light‑chain‑enhancer of activated B cells (NF‑kB) 
playing an important role as the downstream pathway.[50,52] 
Of the IL‑17 family, IL‑17A and IL‑17F are the most highly 
related with about 50% amino acid sequence identity.[53] 
They are thought to mediate highly similar responses in 
target tissues. IL‑17C is secreted directly by the epithelial 

tissue cells[54] and signals very similar to IL‑17A/F.[54,55] The 
cytokines IL‑17A and IL‑17F are secreted by activated ab 
CD4+ T cells (Th17),[56] gd T cells,[57] natural killer (NK) 
T cells,[58] lymphoid tissue inducer cells,[59] and innate 
lymphoid cells type 3 (ILC3) subsets.[60] Furthermore, 
IL‑17 was shown to be also expressed by mast cells[61] and 
neutrophils.[62‑64] IL‑7A/F acts mostly on the tissue cells by 
signaling via the heterodimeric IL‑17 receptor composed 
of IL‑17RA[65] and IL‑17RC.[66,67] The action of IL‑17 is 
manifold, as it was shown to induce the secretion of matrix 
metalloproteases (MMP1, MMP3, MMP9, MMP12, and 
MMP13) and cytokines like GM‑CSF, IL‑6, and a bunch 
of chemokines (CCL2, CCL7, CCL20, CXCL1, CXCL2, 
and CXCL5) by local tissue cells. This cocktail is thought 
to prepare the tissue and attract further T cells and myeloid 

Figure 1: T cell effector mechanisms in EAE. T cells enter the CNS via postcapillary venules and have to cross the blood brain barrier, composed 
of endothelial cells, the basement membrane, and the parenchymal basement membrane of the glia limitans.[137] They often accumulate in 
the perivascular space between the two basement membranes. Penetration of the parenchymal basement membrane is facilitated by matrix 
metalloproteases (MMP2 and MMP9) secreted by T cells, macrophages, and neutrophils. T cells in the CNS are reactivated by macrophages, 
DCs, and B cells presenting myelin autoantigens and secrete, among others, the cytokines IL‑17, IFN‑g, TNF and GM‑CSF. IL‑17 induces 
secondary cytokines, chemokines and MMPs, which help in the breakdown of BBB and in the attraction of monocytes and neutrophils. GM‑CSF 
(together with G‑CSF) has long‑distance effects on neutrophil mobilization, but possibly also has direct influences on inflammatory monocytes 
and their capacity to polarize T helper cell differentiation. It probably works additionally by inhibiting Treg function via IL‑6 induction in 
myeloid cells. Cytokines secreted by T cells also influence astrocytes and oligodendrocyte precursor cells (NG2 cells) in their differentiation 
and in their proliferation capacity.[138] IFN‑g and TNF may have direct toxic effects on ODC, but most of all stimulate myeloid effector cells 
such as inflammatory monocytes, macrophages, and neutrophils. Stimulation of these cells leads to damage of myelin by the secreted reactive 
oxygen species followed by myelin attack and ingestion by macrophages. Macrophages are also activated by antibodies bound to myelin via 
FC receptors and by the complement products activated by these antibodies. Myelin‑specific antibodies may be released from antibodysecreting 
plasma cells or plasma blasts originating from myelin‑specific B cells activated by T cells in the CNS or in peripheral lymph nodes. Th17 cells 
damage axons also directly by secretion of glutamate, whereas cytotoxic CD8+ T cells secrete perforin, granzymes, and IFN‑g to directly attack 
ODCs. Abbreviations: E: Endothelial cell; P: Pericyte; T: T cell; B: B cell; PC: Plasma cell; Mo: Monocyte; Ac: Astrocyte; N: Neutrophil, 
MΦ: Macrophage; ODC: Myelin forming oligodendrocyte; DC: Dendritic cell; ROS: Reactive oxygen species.
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cell populations into the developing CNS lesion. IL‑17 
probably also acts directly on the blood–brain barrier (BBB) 
integrity by induction of reactive oxygen species (ROS) in 
endothelial cells.[68] IL‑17 was also shown to induce down‑
stream mediators of angiogenesis in rheumatoid arthritis 
and tumor models and in psoriasis.[69‑71] Lack of IL‑17 
signaling hindered efficient erythema formation, which is 
a typical feature of imiquimod‑induced dermatitis, a mouse 
model for psoriasis.[72] Some of its downstream cytokines, 
such as granulocyte‑colony stimulating factor (G‑CSF) and 
GM‑CSF, also have long‑distance effects like neutrophil mo‑
bilization, as also observed in EAE. Therefore, a major role 
of IL‑17, at least in mice, is to attract the neutrophils into the 
CNS and activate the latter.[73] This probably occurs rather in‑
directly by secondary cytokines and chemokines induced by 
IL‑17A together with tumor necrosis factor (TNF) or other 
cytokines such as IL‑1b or IL‑22. Recently, it was shown that 
the neutrophils express the IL‑17RA and IL‑17RC chains[62] 
and can react directly with IL‑17 in an autocrine manner. 
Neutrophils enter the CNS early in disease.[74,75] Depletion 
of neutrophils or blockade of CXCR2, the main chemokine 
receptor for CXCL1/2 on the neutrophils, inhibited BBB 
breakdown and EAE manifestation, induced either actively 
or passively via transfer of myelin‑specific T cells.[76,77] The 
actual role neutrophils play in the CNS is not yet clarified, 
but they were shown to contribute to destruction of the 
BBB.[78] Furthermore, it was recently shown that neutrophils 
play an important part in maturation of local APCs in the 
CNS.[79] Other target cells of IL‑17 in the CNS may be the 
NG2‑expressing oligodendrocyte precursor cells. Deletion 
of the IL‑17 signaling molecule ACT1 in these cells was 
shown to have a major impact on EAE.[80] Since ACT1 may 
be activated by other pathways also, these experiments did 
not prove that NG2 cells are, indeed, the targets of IL‑17 in 
EAE. Chemokines induced by IL‑17 can also attract other 
cell types such as monocytes and other T cells to perpetuate 
the initial inflammation. IL‑17 acts mostly in synergy with 
TNF or with IL‑22, both cytokines, which are also expressed 
by infiltrating Th17 cells in MOG

35–55
–induced EAE. IL‑22, 

which is co‑produced not only by Th17 but also by Th1 cells, 
does not seem to play a major role in EAE, as the knockout 
mice did not show a change in EAE course compared to WT 
controls.[81] There might be some hint though that its func‑
tion may rather be protective in EAE and MS, as the mice 
deficient for the IL‑22 scavenger protein IL‑22BP develop 
lower EAE than WT controls.[82] Interestingly, variants of 
IL‑22BP were independently described as risk factor in MS 
and EAE.[83,84]

Although IL‑17 bears all these important functions, 
it must be pointed out that IL‑17 is not absolutely manda‑
tory for active EAE induction, as IL‑17RA[85] and IL‑17RC 
knockout animals still develop some residual disease[66] (and 
our unpublished data) and mice which lack IL‑17F and are 

treated with neutralizing antibody against IL‑17A remain 
susceptible to EAE induction.[86] Further indication for 
this is that mice lacking RORgt are only partially resistant 
to EAE,[32,33] as some mice even develop a very strong 
pathology with a delayed kinetic (our unpublished data). 
Furthermore, small interfering RNA (siRNA)‑mediated[87] 
or pharmacological inhibition of RORgt up to now, in most 
cases, failed to fully inhibit EAE, showing rather a shift 
in disease onset[88‑90] (and our unpublished observations). 
In summary, the major function of IL‑17 may be to allow 
initial entry of myeloid cells. In the absence of IL‑17, other 
cytokines or T cell populations may suffice to induce a 
delayed form of the disease, though with a lower incidence.

What are IL‑23 and GM‑CSF doing?

The enigma originated by the findings that T cells 
n either needed IL‑17 nor IFN‑g to induce EAE, leaving the 
question about the effector mechanism of T cells to induce 
pathology. It was known that the cytokine which instructs 
T cells and cannot be replaced in EAE induction is IL‑23. 
But which T cell effector mechanism downstream of IL‑23 
is the important one? In 2011, two groups independently 
reported that GM‑CSF secreted by T cells is a cytokine in‑
duced by IL‑23 in T cells and is the irre placeable cytokine 
of T cells in EAE.[43,91] Although the proof for whether the 
major task of IL‑23 is to induce GM‑CSF in T cells is still 
lacking, namely, transgenic overexpression of GM‑CSF 
specifically in T cells of mice which are deficient for IL‑23, 
these findings were a major step forward and may lead to 
new treatment options in the future. The question of how 
GM‑CSF, indeed, performs its task is still an enigma. It 
seems not to influence the number of inflammatory dendritic 
cells (DCs) in the CNS in EAE,[92,93] but may rather influ‑
ence the polarization capacity of monocyte‑derived DCs for 
T cells to differentiate into Th17 cells in EAE. This was re‑
cently shown by depletion of C‑C chemokine receptor type 2 
(CCR 2)‑positive monocyte‑derived DCs.[93] Together with 
the earlier reports, this would fall back again on the IL‑17 
cytokine. Therefore, probably other mechanisms of IL‑23, 
besides GM‑CSF and IL‑17 induction, may also play a role 
in EAE. Alternatively, GM‑CSF itself may work by inhibi‑
tion of Tregs via induction of IL‑6[94] (another irreplaceable 
cytokine in EAE).[95] Finally, GM‑CSF may play different 
roles during the peripheral priming phase and in the effector 
phase in the CNS.

T cells activate macrophages in EAE

Macrophages play several roles in the pathogenesis of 
EAE. First, they act by destroying the parenchymal base‑
ment membrane formed by astrocytes in the BBB through 
secretion of matrix metalloproteases (MMP2 and MMP9)[96] 
which allow leukocytes to leave the perivascular space and 
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infiltrate the CNS parenchyma. Second, macrophages dam‑
age myelin efficiently by ROS generation.[97,98] In EAE and 
MS lesions, macrophages have been observed to take up 
large parts of myelin.[99] T cells do activate this process by 
direct interaction with the macrophages and by the cytokines 
IFN‑g and TNF. Macrophage expression of Fc receptors may 
also be important in mediating the pathogenic effects by 
autoantibodies in the CNS in EAE. For a long time, it was 
not really clear whether microglia cells in the CNS become 
activated in EAE and perform the same duties as macro‑
phages differentiating from infiltrating monocytes. Recently, 
the group of Ransohoff demonstrated by serial block‑face 
scanning electron microscopy that monocyte‑derived mac‑
rophages are the cells initiating demyelination at the nodes 
of Ranvier, whereas microglia were rather found as cells 
clearing the debris.[100]

T cells in spontaneous EAE models

As described above, the standard model of EAE is 
induced by peptide or protein immunization. Some TCR 
transgenic mouse strains bearing TCRs for specific myelin 
autoantigens develop spontaneous demyelinating disease. 
This was first found by Goverman et al. under animal hous‑
ing conditions which were less microbial controlled than 
the standard specific pathogen free (SPF) conditions.[101] 
Also, other TCR transgenic strains develop spontaneous 
EAE, but mostly with high incidence only in the recom‑
bination‑activating gene (RAG) knockout background,[102] 
presumably due to lack of efficient Treg development in 
these animals.[103] One strain, the RR mouse on the SJL/J 
background, also developed EAE with high incidence in 
normal housing condition without crossing to the RAG 
knockout background.[104] TCR transgenic T cells in these 
animals activate MOG‑recognizing B cells of the endog‑
enous repertoire very early in life. These mice, therefore, 
develop EAE with high MOG‑specific antibody titers which 
are complement fixing. Early depletion of B cells in these 
animals prevented plasma cell development and antibody ti‑
ter formation, and ultimately EAE pathogenesis. This model 
is dependent on B cells and pathogenic antibodies, whereas 
another spontaneous model of EAE with Devic‑like disease, 
in which 2D2 mice[105] were crossed with BCR transgenic 
IgHMOG mice[106] (both recognizing MOG epitopes), has been 
observed not to depend on antibodies.[105,107‑109] Here, B cells 
probably act rather as efficient APCs and cytokine produc‑
ers for pathogenic T cell development, reminiscent of the 
situation in MS where depletion of B cells by Rituximab 
(an anti‑CD20 monoclonal antibody) also shows a beneficial 
effect independent of the plasma antibody levels found.[110] 
Molecular interactions in these B cell‑antibody dependent 
models probably occur via TCR/MHCII and CD40L–CD40, 

as well as by the cytokines produced from T cells. In the 
RR model, intra‑CNS antibody secretion, presumably by 
plasma cells, can be observed. This shows similarities to 
the follicular structures described in the meninges of MS 
patients.[111] Despite the lack of CFA usage in these spontane‑
ous models, T cells in the CNS express IL‑17 and/or IFN‑g, 
similar to that in the induced EAE models. Nevertheless, 
one has to keep in mind that the TCRs used in these models 
descend from T cells of mice previously immunized against 
myelin antigens.

Direct mechanisms of damage by T helper 
cells?

One of the rare direct mechanisms through which 
T helper cells act in EAE pathology was recently demonstrated.
[112] Siffrin et al. showed that specifically Th17 cells form im‑
munosynapses with axons, leading to fast axonal damage. This 
pathway of neurotoxicity was unique as it was independent 
of MHCII–TCR interactions with the neurons. It was shown 
that Th17 cells elicited neurotoxicity by secretion of glutamate 
and that calcium flux in axons associated with Th17 cells was 
followed by axonal degeneration. The pathway of axonal 
damage and recognition of neurons remains to be discovered.

T helper cells can probably also harm the CNS cells 
directly by their cytokines, as it was shown in culture 
that both IFN‑g and TNF can directly kill oligodendro‑
cytes (ODCs).[113‑116] Since ODCs, the myelin‑producing 
cells of the CNS, do not express or upregulate MHC class II 
in inflammation, the damage by cytokines in the CNS could 
occur as a side effect. This occurs when T cells are acti‑
vated by monocyte‑derived macrophages/DCs in the CNS 
which present myelin antigen on MHC class II molecules. 
In vivo, the role of direct damage by cytokines versus indirect 
damage is hard to distinguish since the same cytokines also 
activate macrophages. The usage of conditional cytokine 
receptor knockout mice should demonstrate inasmuch their 
ligands have direct effects on ODCs or neurons in vivo.

CD8+ T cells in EAE?

CD8+ T cells are equipped with a very efficient cyto‑
toxic killing mechanism containing perforin and granzymes, 
which they use to kill virus‑infected cells. Granzymes are 
serine proteases, which are released into the cytosol of target 
cells with the help of perforin, a Ca2+‑dependent pore‑form‑
ing protein.[117,118] Inside the cytosol, the granzymes induce 
apoptosis by different mechanisms.[119,120] Cytotoxic T cells 
are very interesting cell types in EAE since MHC class I 
expression can be found on activated ODCs. Therefore, 
CD8+ T cells are able to directly recognize myelin pep‑
tides presented by ODCs and kill the latter. Furthermore, 
CD8+ T cells may be important players in MS.[121,122]
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As described above, the standard models of EAE in‑
duction, which use antigens emulsified in CFA,[123] seem 
to be largely independent of CD8+ T cells. In line with 
this were findings with perforin knockout mice, which 
showed a higher disease score than controls.[124,125] This 
pointed rather to a regulatory role of the perforin–gran‑
zyme pathway, maybe as part of Tregs or of CD8+ suppres‑
sor T cells in EAE. Nevertheless, some reports showed that 
myelin‑specific CD8+ T cells, indeed, are able to induce 
EAE including demyelination. First, Joan Goverman’s 
group described the MBP‑derived peptide MBP

79–87 
pre‑

sented by the MHC class I molecule Kk, which was able 
to induce CD8+ T cells in MBP‑deficient C3H‑shiverer 
mice.[126] In vitro‑activated CD8+ T cell clones against this 
epitope, which were isolated from immunized WT C3H 
mice, were able to transfer EAE with severe demyelination 
with a majority of lesions in brain parenchyma.[127] Al‑
though signs of major cytotoxic damage were visible in this 
model, the role of perforin or granzymes was not investi‑
gated; but a role for IFN‑g was demonstrated in this model. 
Another group also reported that MOG‑specific CD8+ T 
cells, in vitro‑expanded from mice immunized against 
MOG

35–55
,
 
are able to transfer EAE with demyelination.[128] 

The mechanism of pathology by these transferred CD8+ T 
cells was not investigated. Apparently, MOG

35–55 
contains 

nested epitopes, MOG
37–46 

and MOG
44–54

, which can be 
presented by the MHC class I molecule Db and are able to 
stimulate CD8+ T cells.[129,130] Apparently, these cells do not 
seem to play an important role in primary immunizations, 
but can grow out from in vitro cultures under IL‑2 stimu‑
lation. More recently, Huber et al. described the presence 
of CD8+ T cells expressing IL‑17A, so‑called Tc17 cells, 
in lymph nodes and in the inflamed CNS of EAE animals 
immunized with MOG

37–55
.[131] These cells were later shown 

to play a supportive function for Th17 cells in EAE.[132] 
In their system, Tc17 cells needed to express IL‑17A to 
render transferred CD4+ T cells pathogenic. Surprisingly, 
pathogenicity of the transferred CD4+ T cells was inde‑
pendent of their own expression of IL‑17A.

In addition, several CD8‑based TCR transgenic models 
for CNS inflammation were developed by different groups. 
Two groups created mice expressing neo‑antigens in ODCs. 
Na et al. expressed ovalbumin (OVA) cytosolically in ODCs 
and found a very early fulminant demyelinating CNS inflam‑
mation in double‑transgenic animals co‑expressing the OT‑1 
transgenic TCR.[133,134] Also, this group did not investigate 
inasmuch the perforin–granzyme pathway was implicated in 
disease. Like in the C3H MBP system by Goverman’s group, 
they found that IFN‑g played an important role in pathoge‑
nicity, probably via activation of ODCs through upregulation 
of MHC class I and co‑stimulatory molecules. The group 
of Lennart Mars crossed hemagglutinin (HA)‑specific 

TCR transgenic CL4‑TCR mice with mice expressing HA 
in ODCs.[135] In this model, a role for perforin–granzyme 
mediated killing of ODCs was suggested, as CD8+ T cells 
containing polarized granzyme‑filled vesicles in direct 
contact with ODCs were found. Recently, Cabarrocas et al. 
reported a new CD8+ TCR transgenic mouse (BG1 TCR) 
recognizing the astrocyte‑specific glial fibrillary acidic 
protein (GFAP) peptide 264–274 presented by Kb. Upon 
activation of these adoptively transferred cells by infection 
with recombinant GFAP‑expressing viruses, EAE scores 
developed with infiltrating CD8+ T cells expressing high 
levels of granzyme B and IFN‑g.[136]

Although several CD8+ T cell‑mediated EAE models 
have been developed, the detailed molecular mechanisms 
of pathology by these cells have not yet been clarified. 
Open questions include the role of perforin and whether 
granzymes and specifically which granzymes play a role in 
pathology and which proteins in ODCs or neurons are targets 
of the proteases in CD8+ T cell‑mediated EAE. Though the 
common molecule needed, as opposed to EAE mediated 
by CD4+ T cells, is IFN‑g Its major function may be to up‑
regulate MHC class I on target tissue cells for recognition 
of cytotoxic T cells.

Conclusion

Very distinct EAE models were developed in the 
past years. These models show different characteristics in 
disease phenotype, histopathology, and their cellular and 
molecular players, and thereby do reflect distinct features 
of MS. T cells in these different models come with differ‑
ent flavors and may use different molecules to interact and 
communicate with other cells and to direct pathological 
events. Therefore, certain molecular pathways are impor‑
tant in one model, but negligible or redundant in the other. 
Major non‑redundant cytokines in basically all the models 
are IL‑23, GM‑CSF, and IL‑6, whereas the role of IL‑17 and 
IFN‑g may be pleiotropic and model‑specific.
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