CC BY-NC-ND 4.0 · World J Nucl Med 2020; 19(01): 8-14
DOI: 10.4103/wjnm.WJNM_26_19
Original Article

Prognostic value of metabolic parameters measured by 18F-fluorodeoxyglucose positron emission tomography-computed tomography in surgically resected non-small cell lung cancer patients

Boon Mathew
Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
,
Nilendu C. Purandare
Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
,
Ameya Puranik
Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
,
Sneha Shah
Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
,
Archi Agrawal
Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
,
C.S. Pramesh
1   Department of Surgical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
,
George Karimundackal
1   Department of Surgical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
,
Sabita Jiwnani
1   Department of Surgical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
,
Venkatesh Rangarajan
Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
› Author Affiliations

Abstract

18F-fluorodeoxyglucose positron emission tomography-computed tomography-derived metabolic parameters can play a role in prognostication. We investigated the prognostic value of various metabolic parameters such as maximum standardized uptake value (SUVmax), mean SUV (SUVmean), whole-body metabolic tumor volume (WBMTV), and whole-body total lesion glycolysis (WBTLG) in surgically resected non-small cell lung cancer (NSCLC) patients. We retrospectively reviewed 153 patients with NSCLC who underwent surgical resection. The SUVmax, SUVmean, WBMTV, and WBTLG of the tumor were measured. Continuous PET parameters were stratified by receiver operating characteristic curve analysis. Prognostic factors were estimated using the Kaplan–Meier method and Cox proportional hazards model. The median follow-up was 36.9 months. Fifty-six patients died and 78 patients had recurrence. On univariate analysis, tumor-node-metastasis (TNM) stage; male sex; no adjuvant treatment; and higher SUVmax, SUVmean, WBMTV, and WBTLG were statistically significant and were associated with poor overall survival (OS). TNM stage; no adjuvant treatment; and higher SUVmax, SUVmean, WBMTV, and WBTLG were statistically significant and were associated with poor disease-free survival (DFS). On multivariate analysis, higher WBTLG (hazard ratio [HR] = 3.08, P = 0.007) for DFS and higher WBTLG (HR = 2.70, P = 0.041) and TNM staging (HR = 1.63, P = 0.035) for OS were statistically significant. Whole-body tumor burden assessment with TLG has independent prognostic value in patients with operated lung cancer. Incorporation of TLG into clinical practice can identify patients benefitted from additional therapy.

Financial support and sponsorship

Nil.




Publication History

Received: 24 March 2019

Accepted: 18 May 2019

Article published online:
19 April 2022

© 2020. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Purandare NC, Rangarajan V. Imaging of lung cancer: Implications on staging and management. Indian J Radiol Imaging 2015;25:109-20.
  • 2 Fischer B, Lassen U, Mortensen J, Larsen S, Loft A, Bertelsen A, et al. Preoperative staging of lung cancer with combined PET-CT. N Engl J Med 2009;361:32-9.
  • 3 van Tinteren H, Hoekstra OS, Smit EF, van den Bergh JH, Schreurs AJ, Stallaert RA, et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: The PLUS multicentre randomised trial. Lancet 2002;359:1388-93.
  • 4 Finkelstein DM, Ettinger DS, Ruckdeschel JC. Long-term survivors in metastatic non-small-cell lung cancer: An eastern cooperative oncology group study. J Clin Oncol 1986;4:702-9.
  • 5 Paesmans M. Prognostic and predictive factors for lung cancer. Breathe 2012;9:112-21.
  • 6 Kerr KM, Nicolson MC. Prognostic factors in resected lung carcinomas. EJC Suppl 2013;11:137-49.
  • 7 Berghmans T, Dusart M, Paesmans M, Hossein-Foucher C, Buvat I, Castaigne C, et al. Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): A systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol 2008;3:6-12.
  • 8 Dooms C, van Baardwijk A, Verbeken E, van Suylen RJ, Stroobants S, De Ruysscher D, et al. Association between 18F-fluoro-2-deoxy-D-glucose uptake values and tumor vitality: Prognostic value of positron emission tomography in early-stage non-small cell lung cancer. J Thorac Oncol 2009;4:822-8.
  • 9 Wang XY, Zhao YF, Liu Y, Yang YK, Wu N. Prognostic value of metabolic variables of [18F]FDG PET/CT in surgically resected stage I lung adenocarcinoma. Medicine (Baltimore) 2017;96:e7941.
  • 10 Chen X, Zhao J, Guan YH, Lu S, Zuo CT, Hua FC, et al. Prognostic value of 2-[18F]fluoro-2-deoxy-D-glucose uptake as measured by PET scan in patients with non-small cell lung cancer. Mol Med Rep 2008;1:889-93.
  • 11 Chen HH, Chiu NT, Su WC, Guo HR, Lee BF. Prognostic value of whole-body total lesion glycolysis at pretreatment FDG PET/CT in non-small cell lung cancer. Radiology 2012;264:559-66.
  • 12 Wang D, Zhang M, Gao X, Yu L. Prognostic value of baseline 18F-FDG PET/CT functional parameters in patients with advanced lung adenocarcinoma stratified by EGFR mutation status. PLoS One 2016;11:e0158307.
  • 13 Zhang H, Wroblewski K, Appelbaum D, Pu Y. Independent prognostic value of whole-body metabolic tumor burden from FDG-PET in non-small cell lung cancer. Int J Comput Assist Radiol Surg 2013;8:181-91.
  • 14 Zhang H, Wroblewski K, Liao S, Kampalath R, Penney BC, Zhang Y, et al. Prognostic value of metabolic tumor burden from (18)F-FDG PET in surgical patients with non-small-cell lung cancer. Acad Radiol 2013;20:32-40.
  • 15 Park SY, Cho A, Yu WS, Lee CY, Lee JG, Kim DJ, et al. Prognostic value of total lesion glycolysis by 18F-FDG PET/CT in surgically resected stage IA non-small cell lung cancer. J Nucl Med 2015;56:45-9.
  • 16 Im HJ, Pak K, Cheon GJ, Kang KW, Kim SJ, Kim IJ, et al. Prognostic value of volumetric parameters of (18)F-FDG PET in non-small-cell lung cancer: A meta-analysis. Eur J Nucl Med Mol Imaging 2015;42:241-51.
  • 17 Liu J, Dong M, Sun X, Li W, Xing L, Yu J. Prognostic value of 18F-FDG PET/CT in surgical non-small cell lung cancer: A meta-analysis. PLoS One 2016;11:e0146195.