CC BY-NC-ND 4.0 · Indian J Radiol Imaging 2012; 22(03): 195-208
DOI: 10.4103/0971-3026.107182
ORIGINAL ARTICLE

Imaging in oral cancers

Supreeta Arya
Department of Radio diagnosis, Tata Memorial Hospital, Mumbai, Maharashtra
,
Devendra Chaukar
Department of Surgical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra
,
Prathamesh Pai
Department of Surgical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra
› Author Affiliations
Source of Support: Nill.

Abstract

Oral cavity squamous cell cancers form a significant percentage of the cancers seen in India. While clinical examination allows direct visualization, it cannot evaluate deep extension of disease. Cross-sectional imaging has become the cornerstone in the pretreatment evaluation of these cancers and provides accurate information about the extent and depth of disease that can help decide the appropriate management strategy and indicate prognosis. Early cancers are treated with a single modality, either surgery or radiotherapy while advanced cancers are offered a combination of surgery, radiotherapy and chemotherapy. Imaging can decide resectability, help plan the precise extent of resection, and indicate whether organ conservation therapy should be offered. Quality of life issues necessitate preservation of form and function and pretreatment imaging helps plan appropriate reconstruction and counsel patients regarding lifestyle changes. Oral cavity has several subsites and the focus of the review is squamous cancers of the gingivobuccal region, oral tongue and retromolar trigone as these are most frequently encountered in the subcontinent. References for this review were identified by searching Medline and PubMed databases. Only articles published in English language literature were selected. This review aims to familiarize the radiologist with the relevant anatomy of the oral cavity, discuss the specific issues that influence prognosis and management at the above subsites, the optimal imaging methods, the role of imaging in accurately staging these cancers and in influencing management. A checklist for reporting will emphasize the information to be conveyed by the radiologist.



Publication History

Article published online:
04 October 2021

© 2012. Indian Radiological Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Sankaranarayan R, Masuyer E, Swaminathan R, Ferley J, Whelan S. Head and neck cancer: A global perspective on epidemiology and prognosis. Anticancer Res 1998;18:4779-86.
  • 2 Close L, Larson D, Shah JP. Essentials of Head and Neck Oncology. Stuttgart, Germany: Thieme Medical Publishers; 1998.
  • 3 Som PM, Curtin HD. Head and Neck Imaging. 5th ed. Mosby: Elsevier; 2011. p. 1623-8.
  • 4 Shah JP, Gil Z. Current concepts in management of oral cancer-surgery. Oral Oncol 2009;45:394-401.
  • 5 NCCN Guidelines Version 1.2012, Cancer of the Oral Cavity, National Comprehensive Cancer Care Clinical Practice Guidelines in Oncology (NCCN Guidelines). NCCN.org.
  • 6 Misra S, Chaturvedi A, Misra NC. Management of gingivobuccal complex cancer. Ann R Coll Surg Engl 2008;90:546-53.
  • 7 Walvekar RR, Chaukar DA, Deshpande MS, Pai PS, Chaturvedi P, Kakade AC, et al. Prognostic factors for loco-regional failure in early stage (I and II) squamous cell carcinoma of the gingivobuccal complex. Eur Arch Otorhinolaryngol 2010;267:1135-40.
  • 8 Walvekar RR, Chaukar DA, Deshpande MS, Pai PS, Chaturvedi P, Kakade A, et al. Squamous cell carcinoma of the gingivobuccal complex: Predictors of locoregional failure in stage III-IV cancers. Oral Oncol 2009;45:135-40.
  • 9 Kimura Y, Sumi M, Sumi T, Ariji Y, Ariji E, Nakamura T. Deep extension from carcinoma arising from the gingiva: CT and MR imaging features. AJNR Am J Neuroradiol 2002;23:468-72.
  • 10 Yen TC, Chang JT, Ng SH, Chang YC, Chan SC, Wang HM, et al. Staging of untreated squamous cell carcinoma of buccal mucosa with 18F-FDG PET: Comparison with head and neck CT/MRI and histopathology. J Nucl Med 2005;46:775-81.
  • 11 Ng SH, Yen TC, Liao CT, Chang JT, Chan SC, Ko SF, et al. 18F-FDG PET and CT/MRI in oral cavity squamous cell carcinoma: A prospective study of 124 patients with histologic correlation. J Nucl Med 2005;46:1136-43.
  • 12 Mukherji SK, Isaacs DL, Creager A, Shockley W, Weissler M, Armao D. CT detection of mandibular invasion by squamous cell carcinoma of the oral cavity. AJR Am J Roentgenol 2001;177:237-43.
  • 13 Imaizumi A, Yoshino N, Yamada I, Nagumo K, Amagasa T, Omura K, et al. A potential pitfall of MR imaging for assessing mandibular invasion of squamous cell carcinoma in the oral cavity. AJNR Am J Neuroradiol 2006;27:114-22.
  • 14 Seitz O, Chambron-Pinho N, Middendorp M, Sader R, Mack M, Vogl TJ, et al. 18F-Fluorodeoxyglucose-PET/CT to evaluate tumor, nodal disease, and gross tumor volume of oropharyngeal and oral cavity cancer: Comparison with MR imaging and validation with surgical specimen. Neuroradiology 2009;51:677-86.
  • 15 Schöder H, Carlson DL, Kraus DH, Stambuk HE, Gönen M, Erdi YE, et al. 18F-FDG PET/CT for detecting nodal metastases in patients with oral cancer staged N0 by clinical examination and CT/MRI. J Nucl Med 2006;47:755-62.
  • 16 Weissman JL, Carrau RL. "Puffed-cheek" CT improves evaluation of the oral cavity. AJNR Am J Neuroradiol 2001;22:741-4.
  • 17 Henrot P, Blum A, Toussaint B, Troufleau P, Stines J, Roland J. Dynamic maneuvers in local staging of head and neck malignancies with current imaging techniques: Principles and clinical applications. Radiographics 2003;23:1201-13.
  • 18 Spector ME, Gallagher KK, McHugh JB, Mukherji SK. Correlation of radiographic and pathologic findings of dermal lymphatic invasion in head and neck squamous cell carcinoma. AJNR Am J Neuroradiol 2012;33:462-4.
  • 19 Liao CT, Ng SH, Chang JT, Wang HM. T4b oral cavity cancer below the mandibular notch is resectable with a favorable outcome. Oral Oncol 2007;43:570-9.
  • 20 Cummings C, Flint PW, Harker LA. Otolaryngology, Head and Neck surgery. 4th ed. Elsevier Mosby.
  • 21 Standring S. Gray′s Anatomy, The Anatomical Basis of Clinical Practice. 40th ed. Philadelphia: Churchill Livingstone Elsevier; 2011.
  • 22 Ginsberg LE. Perineural tumor spread associated with head and neck malignancies. In: Som PM, Curtin HD, editors. Head and Neck Imaging. 5th ed. St Louis, Missouri, USA: Elsevier Mosby; 2011. p. 1021-39.
  • 23 Pathak KA, Agarwal R, Deshpande MS. Marginal mandibulectomy for lateral sulcus tumours. Eur J Surg Oncol 2004;30:804-6.
  • 24 Pathak KA, Shah BC. Marginal mandibulectomy: 11 years of institutional experience. J Oral Maxillofac Surg 2009;67:962-7.
  • 25 Rao LP, Das SR, Mathews A, Naik BR, Chacko E, Pandey M. Mandibular invasion in oral squamous cell carcinoma: Investigation by clinical examination and orthopantomogram. Int J Oral Maxillofac Surg 2004;33:454-7.
  • 26 Close LG, Burns DK, Merkel M, Schaefer SD. Computed tomography in the assessment of mandibular invasion by intraoral carcinoma. Ann Otol Rhinol Laryngol 1986;95:383-7.
  • 27 Shaha AR. Preoperative evaluation of the mandible in patients with carcinoma of the floor of the mouth. Head Neck 1991;13:398-402.
  • 28 Brown JS, Griffith JF, Phelps PD, Browne RM. A comparison of different imaging modalities and direct inspection after periosteal stripping in predicting the invasion of the mandible by oral squamous cell carcinoma. Br J Oral Maxillofac Surg 1994;32:347-59.
  • 29 van den Brekel MW, Runne RW, Smeele LE, Tiwari RM, Snow GB, Castelijns JA, et al. Assessment of tumor invasion into the mandible: The value of different imaging techniques. Eur Radiol 1998;8:1552-7.
  • 30 Lane AP, Buckmire RA, Mukherji SK, Pillsbury HC, Meredith SD. Use of computed tomography in the assessment of mandibular invasion in carcinoma of the retromolar trigone. Otolaryngol Head Neck Surg 2000;122:673-7.
  • 31 Curran AJ, Toner M, Quinn A, Wilson G, Timon C. Mandibular invasion diagnosed by SPECT. Clin Otolaryngol 1996;21:542-5.
  • 32 Weissman RA, Kimmelman CP. Bone scanning in the assessment of mandibular invasion by oral cavity carcinomas. Laryngoscope 1982;92:1-4.
  • 33 Brockenbrough JM, Petruzzelli GJ, Lomasney L. Denta Scan as an accurate method of predicting mandibular invasion in patients with squamous cell carcinoma of the oral cavity. Arch Otolaryngol Head Neck Surg 2003;129:113-7.
  • 34 Vidiri A, Guerrisi A, Pellini R, Manciocco V, Covello R, Mattioni O, et al. Multi-detector row computed tomography (MDCT) and magnetic resonance imaging (MRI) in the evaluation of the mandibular invasion by squamous cell carcinomas (SCC) of the oral cavity. Correlation with pathological data. J Exp Clin Cancer Res 2010:29:73.
  • 35 Handschel J, Naujoks C, Depprich RA, Kübler NR, Kröpil P, Kuhlemann J, et al. CT- scan is a valuable tool to detect mandibular involvement in oral cancer patients. Oral Oncol 2012:48:361-6.
  • 36 Elango JK, Gangadharan P, Sumithra S, Kuriakose MA. Trends of head and neck cancers in urban and rural India. Asian Pac J Cancer Prev 2006;7:108-12.
  • 37 Dammann F, Horger M, Mueller-Berg M, Schlemmer H, Claussen CD, Hoffman J, et al. Rational diagnosis of squamous cell carcinoma of the head and neck region: Comparative evaluation of CT, MRI, and 18FDG PET. AJR Am J Roentgenol 2005;184:1326-31.
  • 38 Lufkin RB, Wortham DG, Dietrich RB, Hoover LA, Larrsen SG, Kangarloo H, et al. Tongue and oropharynx: Findings on MR imaging. Radiology 1986;161:69-75.
  • 39 Sigal R, Zagdanski AM, Schwaab G, Bosq J, Auperin A, Laplanche A, et al. CT and MR imaging of squamous cell carcinoma of tongue and floor of mouth. Radiographics 1996;16:787-810.
  • 40 Yasumoto M, Shibuya H, Takeda M, Korenaga T. Squamous cell carcinoma of the oral cavity: MR findings and value of T1- versus T2-weighted fast spin-echo images. AJR Roentgenol 1995;164:981-7.
  • 41 El-Naaj IA, Leiser Y, Shveis M, Sabo E, Peled M. Incidence of oral cancer occult metastasis and survival of T1-T2N0 oral cancer patients. J Oral Maxillofac Surg 2011;69:2674-9.
  • 42 Huang SH, Hwang D, Lockwood G, Goldstein DP, O′Sullivan B. Predictive value of tumor thickness for cervical lymph-node involvement in squamous cell carcinoma of the oral cavity: A Meta-analysis of Reported Studies. Cancer 2009;115:1489-97.
  • 43 Arakawa A, Tsuruta J, Nishimura R, Sakamoto Y, Korogi Y, Baba Y, et al. MR imaging of lingual carcinoma: Comparison with surgical staging. Radiat Med 1996;14:25-9.
  • 44 Iwai H, Kyomoto R, Ha-Kawa SK, Lee S, Yamashita T. Magnetic resonance determination of tumor thickness as predictive factor of cervical metastasis in oral tongue carcinoma. Laryngoscope 2002;112:457-61.
  • 45 Lam P, Au-Yeung KM, Cheng PW, Wei WI, Yuen AP, Trendell-Smith N, et al. Correlating MRI and histologic tumor thickness in the assessment of oral tongue cancer. AJR Am J Roentgenol 2004;182:803-8.
  • 46 Preda L, Chiesa F, Calabrese L, Latronico A, Bruschini R, Leon ME, et al. Relationship between histologic thickness of tongue carcinoma and thickness estimated from preoperative MRI. Eur Radiol 2006;16:2242-8.
  • 47 Okura M, Iida S, Aikawa T, Adachi T, Yoshimura N, Yamada T, et al. Tumor thickness and paralingual distance of coronal MR imaging predicts cervical node metastases in oral tongue carcinoma. AJNR Am J Neuroradiol 2008;29:45-50.
  • 48 Kodama M, Khanal A, Habu M, Iwanaga K, Yoshioka I, Tanaka T, et al. Ultrasonography for intraoperative determination of tumor thickness and resection margin in tongue carcinomas. J Oral Maxillofac Surg 2010;68:1746-52.
  • 49 Natori T, Koga M, Anegawa E, Nakashima Y, Tetsuka M, Yoh J, et al. Usefulness of intra-oral ultrasonography to predict neck metastasis in patients with tongue carcinoma. Oral Dis 2008;14:591-9.
  • 50 Som PM. Detection of metastasis in cervical lymph nodes: CT and MR criteria and differential diagnosis. AJR Am J Roentgenol 1992;158:961-9.
  • 51 Fasunla AJ, Greene BH, Timmesfeld N, Wiegand S, Werner JA, Sesterhenn AM. A meta-analysis of the randomized controlled trials on elective neck dissection versus therapeutic neck dissection in oral cavity cancers with clinically node-negative neck. Oral Oncol 2011;47:320-4.
  • 52 D′Cruz AK, Dandekar MR. Elective versus therapeutic neck dissection in the clinically node negative neck in early oral cavity cancers: Do we have the answer yet? Oral Oncol 2011;47:780-2.
  • 53 D′Cruz AK, Siddachari RC, Walvekar RR, Pantvaidya GH, Chaukar DA, Deshpande MS, et al. Elective neck dissection for the management of the N0 neck in early cancer of the oral tongue: Need for a randomized controlled trial. Head Neck 2009;31:618-24.
  • 54 de Bondt RB, Nelemans PJ, Hofman PA, Casselman JW, Kremer B, van Engelshoven JM, et al. Detection of lymph node metastases in head and neck cancer: A meta-analysis comparing US, USgFNAC, CT and MR imaging. Eur J Radiol 2007;64:266-72.
  • 55 de Bondt RB, Nelemans PJ, Bakers F, Casselman JW, Peutz-Kootstra C, Kremer B, et al. Morphological MRI criteria improve the detection of lymph node metastases in head and neck squamous cell carcinoma: Multivariate logistic regression analysis of MRI features of cervical lymph nodes. Eur Radiol 2009;19:626-33.
  • 56 Sumi M, Sakihama N, Sumi T, Morikawa M, Uetani M, Kabasawa H, et al. Discrimination of metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer. AJNR Am J Neuroradiol 2003;24:1627-34.
  • 57 Perrone A, Guerrisi P, Izzo L, D′Angeli I, Sassi S, Mele LL, et al. Diffusion-weighted MRI in cervical lymph nodes: Differentiation between benign and malignant lesions. Eur J Radiol 2011;77:281-6.
  • 58 Som PM, Brandwein-Gensler MS. Lymph Nodes of the Neck. In: Som PM, Curtin HD, editors, Head and Neck Imaging. Vol 2. 5th ed. Philadelphia: Elsevier Mosby; 2011. p. 2287-383.
  • 59 Yousem DM, Gad K, Tufano RP. Resectability issues with head and neck cancer. AJNR Am J Neuroradiol 2006;27:2024-36.