
Abstract
Cancer is one of the most important diseases of humans, for which

no cure has been found so far. Understanding the causes of cancer can
pave the way for its treatment. Alteration in genetic elements such as
oncogenes and tumor suppressor genes results in cancer. The most
recent theory for the origin of cancer has been provided by cancer stem
cells (CSCs). Tumor-initiating cells (T-ICs) or CSCs are a small popu-
lation isolated from tumors and hematologic malignancies. Since
CSCs are similar to embryonic stem cells (ESCs) in many aspects
(such as pluripotency and self-renewal), recognizing the signaling
pathways through which ESCs maintain their stemness can also help
identify CSC signaling. One component of these signaling pathways is
non-coding RNAs (ncRNAs). ncRNAs are classified in two groups:
microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). miRNAs
undergo altered expression in cancer. In this regard, they are classi-
fied as Onco-miRNAs or tumor suppressor miRNAs. Some miRNAs play
similar roles in ESCs and CSCs, such as let-7 and miR-302. This review

focuses on the miRNAs involved in stemness of ESCs and CSCs by pre-
senting a summary of the role of miRNAs in other tumor cells.  

Introduction

Cancer stem cells form a small population of cells that are very sim-
ilar to stem cells within the tumor tissue. One theory is that tumors
arise from a small population of cells called tumor-initiating cells (T-
ICs) or cancer stem cells (CSCs). CSCs were first isolated from hema-
tologic malignancies,1 and then from solid tumors and breast cancer.2

In 1961, it was found that there are cells in tumor tissue capable of pro-
ducing a variety of tumors.3 There are three methods to isolate CSCs:
i) isolation using flow cytometry based on Hoechst stain; ii) isolation
based on surface marker expression; iii) sphere culture. Prominin-1
(CD133)4,5 and CD446,7 are two major cell surface markers used to iso-
late CSCs. These cells must have three properties: tumorigenicity, self-
renewal and pluripotency.8,9 Classic treatments for cancer include
chemotherapy, radiotherapy and antiangiogenic therapy against prolif-
erating transit-amplifying cells. After a while, due to the presence of
therapy-resistant cancer stem cells in tumor tissue, the cancer will
appear again. Therefore, treatment should be performed simultane-
ously against these cells. For this purpose, the differentiation therapy
strategy causes differentiation of these cells to proliferating transit-
amplifying cells sensitive to classic treatments. This strategy, in which
targeting of intracellular and extracellular signaling pathways causes
disruption of stemness in CSCs, has proved to some extent to be suc-
cessful.10,11

These cells undergo the same signaling pathways as embryonic
stem cells (ESCs) such as Oct-4, Notch, Wnt, Sonic hedgehog (SHH)
and Bmi-1.12,13 Most of these signaling pathways are involved in self-
renewal of ESCs or tissue adult stem cells and cancer. Mutation and
deregulated expression of some components of these signaling path-
ways has been shown in many human tumors, and hyperactivation of
these pathways mostly contribute to tumor regeneration.14-18 Oct-4 is a
core transcriptional regulatory circuitry in ESCs,19 and is necessary for
reprograming somatic cells into pluripotent state;20 it is also known as
a pluripotency factor. Pluripotency helps CSCs to maintain an undiffer-
entiated state, supporting the structure of tumor mass. Oct-4 and its
partner Nanog have been shown to be expressed in many human
tumors, and their downregulation causes a reduction in CSC stemness
and resistance to chemotherapy.21-24

Contrary to mRNAs, as their name implies, non-coding RNAs
(ncRNAs) do not encode for proteins. They are classified in two
groups: those with less than 200 nucleotides (e.g. miRNAs), and those
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with more than 200 nucleotides, such as long non-coding RNAs
(lncRNAs) and long intergenic non-coding RNAs (lincRNAs).
Meanwhile, it has been shown that p53 activates a lincRNA known as
lincRNA-p21, inhibiting the transcription of many genes involved in
p53 response.25 There is now an increasing trend to identify these
lncRNAs and lincRNAs in cancers.26–28

MiRNAs are a better-known group of ncRNAs. The first miRNA was
discovered in Caenorhabditis elegans.29 MiRNAs are non-coding RNAs,
20-25d-nt long, commonly binding the 3’ untranslated region (3’UTR)
of their targets, inhibiting their translation and regulating their stabil-
ity.30 It has also been shown that some miRNAs can activate gene
expression in a specific manner named RNA activatory (RNAa) by tar-
geting regulatory regions (e.g. promoters).31,32 MiRNAs, like other
genes, undergo altered expression in cancer (oncogenes/tumor sup-
pressor genes). This altered expression is attributed to such mecha-
nisms as chromosomal rearrangements, amplification, mutation and
genomic deletion33 which are epigenetic mechanisms usually in frag-
ile sites of the genome.34,35 The miRNAs are in the form of onco-miR in
regions where they are amplified (like miR-17-19 cluster), and are in
the form of tumor suppressor miR in the regions where they are delet-
ed, such as miR-15a, 16-1 cluster. The first report on the relationship
between miRNAs and cancer was published in 2002. It was found that
deletion of a locus on chromosome 13, which contains miR-15 and miR-
16-1 in chronic lymphocytic leukemia (CLL), is involved in pathogene-
sis of the disease. These two miRs bind the anti-apoptotic protein
BCL2. In fact, the absence of these miRs inhibits the induction of apop-
tosis in these cells.34

Sometimes, miRNAs have a contradictory role in cancer cells. For
example, miR-17-92 locus plays the role of tumor suppressor in human
B-cell line by inhibiting proliferation,35 and in another cell has an onco-
miRNA role along with MYC and inhibition of apoptosis.36 Studies have
also shown that pri-miRs are involved in cancer independent of their
active form (Table 1).37-61

MicroRNAs and embryonic stem cells

Nearly 25% of the 110,000 known miRNAs are encoded by four clus-
ters: miR-17-92 cluster, miR-21 loci, miR-290-295 cluster and miR-15b-
16 cluster. The transcription factors Nanog/Oct4/Tcf3 bind the promot-
er of the miR-302, miR-290/371 cluster, miR-363 cluster, miR-148/152,
miR-135b, miR-124, miR-615 and miR-708 clusters in the form of occu-
pancy, and regulate their expression.62,63 Core transcriptional regulato-
ry circuitry in ESCs includes Nanog/Oct4/Sox2,19 which along with Tcf3
causes the expression of Lin28, the latter subsequently inhibiting the
processing of let-7. In this regulatory loop, let-7 has a negative effect on
the expression of Lin-28. Incoherent feed forward is one of the regula-
tory mechanisms of miRNAs in ESCs. In fact, we can say that miRNAs
are the regulatory arm of transcription factors in expression regulation
of downstream genes.64 Many studies have been performed on the
effect of miRNAs in ESCs. MiR-145 inhibits pluripotency through inhi-
bition of Oct-4, Sox2 and Klf4.65 In addition to being able to target 3’
UTR in mRNA, miRNAs can target the coding sequence (CDS). MiR-
296, miR-134 and miR-470 can target CDS regions in Oct4, Nanog and
Sox2.66 

A subset of miR-290 clusters known as regulators of the cell cycle is
called embryonic stem cell cycle (ESCC). This subset includes miR-291-
3p, miR-294 and miR-295.67 One theory about the origin of CSCs is
reprogramming of somatic cells into dedifferentiation state and CSC
formation. When the cells are divided, replication nucleosomes are
temporarily removed, and transcription factors can access open chro-
matin. Therefore, active cell cycle can promote production of induced

pluripotency stem cells (iPS).68 Some ESCC miRNAs can enhance iPS
production by targeting cell cycle inhibitors. hsa-miR-302b and hsa-
miR-372 promote iPS production by targeting G1-S inhibitors.69 In
another study, miR-92b promoted G1-S transition by targeting P57KIP2
as CDK inhibitor.70

C-Myc is an important factor for reprogramming, especially in its
early stages,71 controlling miRNAs expression by binding to their regu-
latory regions. It has been shown that c-Myc binds to miR-290-295,72

miR-141, miR-200 and miR-429 promoters.73 miRNAs profiles are
changed during differentiation and reprogramming. Let-7 family, miR-
210, miR-301, miR-136, miR-145, miR-29a/b, the miR-30 family and
some other miRNAs are down-regulated during reprogramming,71,74

and some are up-regulated, such as miR-17-92, miR-106b-25 clusters,
miR-18371,74 and miR-302 cluster.75 Therefore, miRNAs promoting
reprogramming and dedifferentiation can be proper candidates for
knockdown and differentiation therapy studies. (For more details about
the role of miRNAs in stemness and reprogramming, see52,62,76).

MicroRNAs and cancer stem cells

As mentioned above, reprogramming of differentiated cells into a
dedifferentiation state is a stage in CSCs development. Therefore,
some mechanisms that take place during reprogramming are involved
in tumor development and CSCs formation. Fully differentiated cells
undergo epithelial-mesenchymal transition (EMT) by losing adherent
molecules (e.g. E-cadherin) and becoming migratory cells. Some fac-
tors involved in EMT, such as TGF-β, Notch1, Wnt, ZEB1/2 and Klf8
induce EMT by repressing E-cadherin expression.77 These cells are
metastatic, and if they undergo mesenchymal-epithelial transition
(MET), they can form CSCs.78

A number of miRNAs are involved in EMT as inducers or repressors
(Table 2). The most well-known miRNA inhibitor of EMT is the miR-200
family. The miR-200 family and miR-205 inhibit TGF-β induced-EMT by
targeting ZEB1 and SIP1, and downregulation of these miRNAs is
required for induction of EMT in cancer cells.79 It is interesting that
ZEB1 also blocks the expression of the miR-200 family and miR-141 by
binding to their promoters.48 P53 is a repressor of EMT by binding to
miR-200c promoter and activating its expression.49 It has been shown
that miR-200c is down-regulated in breast cancer stem cells.50 By
inhibiting klf4 transcription factor and polycomb repressor BMI1, miR-
200c inhibits the stemness property of CSCs, the reduced expression of
which is observed in breast cancer.50,51 As it has previously been
observed that p53 induces the differentiation of ESCs by binding to the
regulatory region of Nanog gene,57 it is worth noting that the inhibition
of stemness by p53 is also indirectly carried out by activating miRNAs
such as miR-200 family members that inhibit BMI1, Sox2, Klf4 and
Notch signaling.50,51,58 miR-22 indirectly inhibits miR-200 expression
and EMT induction in breast cancer by targeting TET and demethyla-
tion  inhibition of miR-200 promoter.59 This study showed that miR-22
plays a role in epigenetic modification and enhances CSCs character-
istics. In addition, it has been shown that miR-22 is up-regulated in
myelodysplastic syndrome (MDS) and leukemia, and can be considered
as a prognostic factor in these patients with low survival. miR-22 tar-
gets Methyl cytosine dioxygenase TET2, developing hematopoietic
stem cell self-renewal and maintaining stemness.60

Another inducer of EMT is the miR-106b-25 cluster, which can pro-
mote EMT and CSCs characters in breast cancer model by targeting
Smad7 (a negative regulator for TGF-β/BMP signaling pathway).61 miR-
203 can revert the EMT back to MET by targeting �NP63�, a predominant
p63 isoform and oncogene which promotes CSCs proliferation in breast
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cancer cells. Forced expression of miR-203 caused reduction in CD44+

CD24– CSC population, and increased differentiation to luminal epithe-
lial cells.55,56 (For more details about the role of miRNAs in EMT, see
53,54).

miR-34a, which is activated by p53,80 directly inhibits CD44 in
prostate cancer stem cells; it causes inhibition of metastasis and pre-
vents regeneration of cancer.81 In colon CSCs, tumor suppressor miR-
34 targets Notch1 mRNA to disturb the balance between self-renewal
and differentiation in Notch signaling. In this study, it was found that
miR-34 determines cell fate in colon CSCs.82

miR-9 and miR-9* (miR-9/9*) are expressed in CD133+ glioblastoma
stem cells, and promote cell growth and maintain stemness by target-
ing Calmodulin-binding transcription activator 1 (CAMTA1), which is
seen as a tumor suppressor.83 Inhibition of miR-9/9* causes glioblas-
toma stem cell differentiation.84 It has been shown that miR-128
inhibits proliferation and self-renewal in glioma CSCs.85 miR-130b pro-
motes stemness and tumorigenicity in CD133+ hepatocellular carcino-
ma (HCC) CSCs through inhibition of Tumor Protein P53 Inducible
Nuclear Protein 1 (TP53INP1). Interestingly, forced expression of mir-
130b in CD133– cells assists in self-renewal activity and chemotherapy
resistance.86

As mentioned, miR-145 causes differentiation of ESCs by inhibiting
the stemness factors.65 Interestingly, the expression of miR-145 in
prostate and renal cancer cells is inhibited.87,88 In addition, miR-21 has
been shown to induce stemness in colon cancer cells by modulating
TGFβR2.89 Another miRNA down-regulated in CSCs is miR-140. This
tumor suppressor miR reduces CSC self-renewal in breast CSCs by tar-
geting Sox9 and ALDH1.90 Reduced expression of miR-30 has been
shown in CSCs in breast cancer. Increased expression of miR-30 will
reduce self-renewal and will increase apoptosis in these cells.91 miR-
495, which up-regulates and targets E-cadherin, contributes to metas-
tasis and DNA damage-inducible transcript 4 (DDIT4) to assist in pro-
liferation and hypoxia resistance in breast CSCs.92 (For more details
about the role of miRNAs in breast CSCs, see93). 

Altered expression of miR-142-3p, miR-451, miR-106a, miR-249 142-
5p, miR-15b, miR-20a, miR-106b, miR-25, and miR-486 has been
observed in lung cancer progenitor cells.94

It has been shown that the expression of miR-302, specific for ES
cells, causes the expression of stemness factors such as Nanog, Oct-4
and Sox2 in cancer cells, conferring a stem cell-like property to them,
likely reprogramming these cells to CSCs.95 miR-328 helps in drug
resistance and metastasis of colon CSCs by targeting ABCG2 and
Matrix Metallopeptidase 16.96
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Table 2. miRNAs involved in cancer stem cells.

microRNA Targets Roles in cancer stem cells

miR-200 family ZEB1 and SIP1, Bmi-1, Klf4 Inhibition induction of EMT, inhibit BMI1, Sox2, Klf4 and Notch signaling and reduce stemness in CSCs
Let-7 Lin28, H-RAS and HMGA2 Differentiation of CSCs
miR-302 Genes involved in differentiation Facilitate dedifferentiation of human tumor cells
miR-30 ITGB3 and Ubc9 Reduce self-renewal and increases apoptosis
miR-140 Sox9 and ALDH1 Reduce CSCs self-renewal
miR-145 Oct-4, Sox2 and Klf4 Inhibit stemness properties
miR-128 Bmi-1 Disrupting self-renewal of CSCs
MiR-34a CD44 and Notch1 Inhibition of self-renewal
miR-203 ΔNP63α Revert EMT to MET and reduction of CSCs population
miR-22 TET Indirectly repress miR-200 expression and enhance EMT and self-renewal
miR-106b-25 Smad7 Cause EMT and promote CSCs properties
miR-9/9* CAMTA1 Maintain stemness property
miR-130b TP53INP1 Assist self-renewal activity and chemotherapy resistance
miR-21 TGFβR2 Enhance stemness properties
miR-495 E-cadherin and DDIT4 Promote metastasis, proliferation and hypoxia resistance of CSCs
miR-328 ABCG2 and MMP16 Assist metastasis and drug resistance
CSCs, cancer stem cells; EMT, epithelial-mesenchymal transition; MET, mesenchymal-epithelial transition.

Table 1. miRNAs involved in cancer.

MicroRNAs Cancer correlation Function References

miR-15, miR-16 Induce apoptosis and decrease tumorigenicity, suppress Bcl-2 TS 38,39

miR-34a Induce apoptosis, suppress E2F3, MYCN, CDK4 TS 40-42

miR-143,miR-145 Down-regulated in cancers TS 43

miR-137, miR-193a Suppress CDK6, E2F TS 44

Let-7 Induce apoptosis and differentiation. Suppress Ras, c-Myc and HMGA2 TS 45-47

miR-21 Anti-apoptosis, targets Bcl-2, TPM1, PDCD4 OG 48-51

miR-155 Up-regulated in lymphoma and breast cancer OG 52-54

miR-27 Targets ZBTB10, RYBP, MYT1 OG 55,56

miR-17-19 cluster Up-regulated in lymphomas and many types of cancers. Targets E2F1, Bim, PTEN and Rb TS/OG 57-61

TS, tumor suppressor; OG, oncogene.
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Finally, the reduced expression of let-7 has been demonstrated in
many cancers.97–99 Let-7 inhibits H-RAS and HMGA2.100 This factor is
controlled by Lin-28; however, methylation of its gene has been
observed in lung cancer.101 Differentiation of ES cells increases its
level; therefore, its expression is expected to decrease in CSCs. As
expected, let-7 is significantly decreased in breast CSCs.102

Discussion

Recognizing CSCs as factors of resistance to chemotherapy and
recurrence of tumor tissue requires identification of the mechanisms
that regulate these cells for therapeutic targets. Since these cells show
signaling similar to ESCs and have the two main features of stemness,
including pluripotency and self-renewal, they appear to have similari-
ties in expression of stemness factors. Thus, for differentiation thera-
py purposes, intra- and extracellular mechanisms that maintain this
stemness should be further identified. Understanding transcriptome of
pluripotency would help find more targets in differentiation therapy of
cancer.  

Since no specific research has been conducted to identify the miRNAs
in various types of CSCs to identify miRNA profiling, we can resort to
identifying the miRNAs of ESCs, which are very similar to CSCs. In addi-
tion, it has been shown that many of the miRNAs act in nucleus in upreg-
ulation of genes by binding to the promoters or antisense transcripts.103

Therefore, it would be interesting if such miRNAs that cause upregulation
of tumor suppressor genes or differentiation in CSCs can be found. An
interesting study using RNAseq technique showed that most of the
miRNA are transported to nucleus after maturation in cytoplasm.104 The
interesting point is that miRNAs that are important in maintaining stem-
ness and differentiation induction in ESCs like mir-145, miR-302 and let-
7 play similar roles in CSCs. Further studies are required to better under-
stand the role of miRNAs in CSCs. Focusing on this topic can help find
new drugs and more effective treatments for cancer. Finally, in line with
basic research for finding new targets for treatment, attempts at specific
delivery of miRNAs into tumor cells, especially CSCs, should also be
approved. Use of active delivery instead of passive delivery by using tar-
geted nanoparticles showed more specificity in drug delivery, and phase
I/II clinical trials are ongoing.105 (For more details about nanoparticle
drug delivery, see 106).
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