Topic Highlight Open Access
Copyright ©2009 The WJG Press and Baishideng. All rights reserved.
World J Gastroenterol. Oct 7, 2009; 15(37): 4675-4685
Published online Oct 7, 2009. doi: 10.3748/wjg.15.4675
Use of agents stimulating erythropoiesis in digestive diseases
Rosario Moreno López, Department of Nephrology, San Juan de Dios Hospital, Paseo Colón, 14, 50006 Zaragoza, Spain; Department of Medicine, Universidad de Zaragoza, 50009 Zaragoza, Spain
Beatriz Sicilia Aladrén, Department of Medicine (Gastroenterology), Alcañiz Hospital, 44600 Alcañiz (Teruel), Spain
Fernando Gomollón García, Department of Gastroenterology, Clinical University Hospital “Lozano Blesa”, Department of Medicine, University of Zaragoza, IACS, CIBEREHD, 50009 Zaragoza, Spain
Author contributions: Moreno López R, Sicilia Aladrén B and Gomollón García F contributed equally to this work; Moreno López R designed and performed the research; Moreno López R, Sicilia Aladrén B and Gomollón García F wrote the paper; Gomollón García F revised it critically.
Correspondence to: Dr. Rosario Moreno López, Department of Nephrology, San Juan de Dios Hospital, Paseo Colón, 14, 50006 Zaragoza, Spain. charomorenol@gmail.com
Telephone: +34-976-271660 Fax: +34-976-252017
Received: July 23, 2009
Revised: July 30, 2009
Accepted: August 6, 2009
Published online: October 7, 2009

Abstract

Anemia is the most common complication of inflammatory bowel disease (IBD). Control and inadequate treatment leads to a worse quality of life and increased morbidity and hospitalization. Blood loss, and to a lesser extent, malabsorption of iron are the main causes of iron deficiency in IBD. There is also a variable component of anemia related to chronic inflammation. The anemia of chronic renal failure has been treated for many years with recombinant human erythropoietin (rHuEPO), which significantly improves quality of life and survival. Subsequently, rHuEPO has been used progressively in other conditions that occur with anemia of chronic processes such as cancer, rheumatoid arthritis or IBD, and anemia associated with the treatment of hepatitis C virus. Erythropoietic agents complete the range of available therapeutic options for treatment of anemia associated with IBD, which begins by treating the basis of the inflammatory disease, along with intravenous iron therapy as first choice. In cases of resistance to treatment with iron, combined therapy with erythropoietic agents aims to achieve near-normal levels of hemoglobin/hematocrit (11-12 g/dL). New formulations of intravenous iron (iron carboxymaltose) and the new generation of erythropoietic agents (darbepoetin and continuous erythropoietin receptor activator) will allow better dosing with the same efficacy and safety.

Key Words: Erythropoiesis-stimulating agents, Recombinant human erythropoietin, Darbepoetin, Continuous erythropoietin receptor activator, Inflammatory bowel disease, Anemia



INTRODUCTION
Table 1 Erythropoietic agents available.
Half-life (h)
PeriodicityInitial doseTarget levels
ivsc
Epoetin β9241-3 times per week100-150 IU/kg per week, (max 300 IU /kg)Hemoglobin: 11-12 g/dL, Hematocrit: 33%-36%, ↑ hemoglobin every 2 wk: 0.5-1 g/dL
Epoetin α7201-3 times per week100-150 IU/kg per week, (max 300 IU /kg)
Darbepoetin α2548Every 1-2 wk0.45 μg/kg every 2 wk
CERA133137Every 2-4 wk0.6 μg/kg every 2 wk

Anemia is a frequent complication in patients with digestive diseases, especially chronic processes such as inflammatory bowel disease (IBD)[1,2], and is associated with a higher rate of hospitalization and worse quality of life[3,4]. The main cause of anemia associated with IBD is iron deficiency, but there is also a component of anemia that is associated with chronic diseases. Therefore, when there is no good response to intravenous iron therapy, combination with erythropoietic agents, erythropoietin (EPO) or darbepoetin, may assist in the management of anemia[3,5-7]. The other subgroup of patients with digestive diseases in whom we can use erythropoiesis-stimulating agents (ESAs) are those being treated for chronic hepatitis C, whose anemia is caused by the use of rivabirin[8,9].

Human EPO is a glycoprotein hormone of 30.4 kDa, which is composed of 165 amino acids, and is the main regulator of erythropoiesis. It inhibits the apoptosis of erythroid progenitors and induces the clonal proliferation of normoblasts[10-12]. In adults, it is synthesized mainly in the kidney, which produces 90%-95% of the total circulating EPO; the remainder, about 10%, is synthesized by liver[13,14]. In addition to kidney and liver, it has been shown that other organs can secrete EPO, including peripheral endothelial cells, vascular smooth muscle cells, neurons, astrocytes, cardiomyocytes and microglia[15].

The basal production maintains a relatively constant level of EPO in plasma, within a range between 5 and 29 U/L, which can increase up to 100 times in the presence of serious anemia[16]. Tissue hypoxia is the most important trigger for increased synthesis of EPO[10,17].

In 1977, Miyake et al[18] purified EPO molecule, which enabled cloning of the gene in 1983, and the subsequent development of recombinant EPO in mammalian cell lines[19]. The clinical use of EPO was started in 1986[20] for the treatment of anemia of chronic kidney disease (CKD)[21]. Treatment with EPO was able to eliminate almost completely transfusion dependence in hemodialysis patients, who in turn achieved a significant improvement in quality of life[22-24]. Treatment of anemia with EPO has helped to reduce the need for transfusions and the associated risks: transmission of infection, allogeneic iron overload and immunological damage[25].

There is a general consensus, as stated by the recommendations of panels of international experts (The National Kidney Foundation Dialysis Outcomes Quality Initiative[26], the Canadian Society of Nephrology[27], the European Renal Association/European Dialysis and Transplantation Association[28,29], Kidney Disease: Improving Global Outcomes[30] and the Japanese Society for Dialysis Therapy[31,32]), that the partial correction of anemia in patients with CKD improves clinical parameters and quality of life compared with the lowest levels of hemoglobin[26-32]. At present, for instance, in the United States, > 90% of patients on chronic dialysis and 30% on pre-dialysis are treated with EPO, with an average hemoglobin level of 12.0 g/dL[33-35]. Subsequently, its use has been extended to the treatment of anemia associated with other diseases such as cancer[36-38], IBD[3,5-7], heart failure[39,40] and the anemia associated with hepatitis C virus treatment[8]. In addition to its role as an erythropoietic agent, EPO has other potential therapeutic uses currently under extensive investigation[41,42], for use as a cytoprotective agent in the central nervous system[43,44] and intestinal mucosa[45-47]. Other possible applications include are cytoprotection in peripheral neuropathy, retinopathy and myocardial ischemia[48,49].

TYPES OF EPO

In clinical practice there are several forms of EPO available for the treatment of anemia (Table 1). The first generation are two forms of recombinant human EPO (rHuEPO): epoetin α (Epogen, Amgen and Procrit/Eprex; Johnson & Johnson/Janssen-Cilag) and EPO β (NeoRecormon; Roche), which are administered three times a week[50]. The development during the last decade of ESAs with a higher degree of glycosylation and prolonged half-life has allowed less frequent administration. A preparation called long-acting darbepoetin α (Aranesp; Amgen) produces a similar physiological response compared with rHuEPO[51]. It has more chains of carbohydrates and sialic acidic residues, which gives it a different pharmacokinetic profile from that of rHuEPO, with a half-life approximately three times higher (25.3 h vs 8.5 h by iv administration), and a plasma clearance four times slower. This allows a frequency of administration of once weekly, or even every 2-4 wk[52,53]. The equivalence relationship between rHuEPO and darbepoetin α from the molecular weight of both proteins is 1:200[54]. In clinical practice, the multiplication factor is not so simple, as the required dose of rHuEPO can be higher, which probably is related to an increase in resistance to EPO[55]. A pegylated derivative, the continuous EPO receptor activator (CERA) (epoetin β-methoxy polyethylene glycol, CERA; Roche) is another erythropoietic agent that activates repeatedly the EPO receptor. It has an elimination half-life in humans of about 130 h, and so can be administered every 3-4 wk[56-59]. Several studies have shown an effect similar to EPO in maintaining hemoglobin levels[60-65]. CERA is not available in United States, but is currently used in Europe. An additional advantage is that CERA can be kept out of the fridge and used for up to 1 mo (at < 25°C).

There is a new generation of erythropoietic analogues: synthetic erythropoiesis protein and peptide mimetics of EPO. These new agents stimulate erythropoiesis through activation of EPO receptors[66-69]. Hematide (developed by Affymax) is a synthetic peptide agonist of the EPO receptor, and although it has no structural homology with EPO, it is able to activate the EPO receptor and stimulate erythropoiesis over a 1-mo period, with good tolerance and stability at room temperature[66].

SIDE EFFECTS OF ESAs

The use of ESAs is related to several common side effects that should be well known by clinicians. Hypertension is the most common side effect, with an overall incidence of 5%-24%[70]. Vascular access thrombosis occurs with higher incidence[71,72], although it is not found in other small studies[73,74]. The risk of serious cardiovascular events, such as thromboembolism and death, increases when hemoglobin levels increase rapidly (> 1 g/dL every 2 wk)[75]. The development of anti-EPO antibodies is a very rare but serious complication of treatment with erythropoietic agents. From 1998 to 2004, it was apparent that there was a significant increase in the number of patients who developed pure red-cell aplasia (PRCA) secondary to the appearance of neutralizing anti-EPO antibodies[76,77]. PRCA is characterized by severe anemia, high transfusion requirement and a total lack of response to increasing doses of rHuEPO. Most of the reported cases have been patients with chronic renal failure who received rHuEpo α (Eprex) subcutaneously. PRCA was related to a change of formulation of Eprex (replacement of human serum albumin by polysorbate 80, because of the risk of bovine spongiform encephalopathy) and formation of immunogenic micelles. Alternatively, it has been suggested that leachates released by the uncoated rubber stoppers of the pre-filled syringes may interact with polysorbate 80 and act as an adjuvant to the immune response. Failure in the cold chain is also a potential factor involved[78-80]. The number of cases reported has dropped significantly from 2003, with none in 2007. This may have resulted from a change in the route of administration (at present the iv route is used in most patients on dialysis), maintenance of the cold chain, or elimination of uncoated rubber syringe stoppers[75]. Should this complication occur, clinical guidelines for diagnosis and treatment are readily available[81-84]. It has been suggested that the use of the new analogue hematide in these cases may be effective[85].

Other possible side-effects are edema, fever, dizziness, insomnia, headache, pruritus, constipation, among other.

USEFULNESS OF ESAs IN DIGESTIVE DISEASES
IBD

Anemia is the most common complication of IBD[86,87]. Inadequate monitoring and treatment leads to a worse quality of life[88,89] and increased morbidity and hospitalization[90-92]. Repeated loss of blood, and to a lesser extent malabsorption of iron are the main causes of iron deficiency in IBD[86]. There is also a variable component of anemia that is related to chronic inflammation[3,4,7,87,93]. This involves failure of iron transport that is mediated by inflammatory cytokines, such as hepcidin, which is the main negative regulator of iron absorption in the small intestine and of iron sequestration by macrophages[94-101], and an inappropriately low production of EPO for the degree of anemia[16,90,101-103]. The management of anemia in IBD should focus on proper control of the inflammatory process, as well as iron supplementation, and in cases of resistance, to assess iron therapy in combination with erythropoietic agents[3,87,91,104]. Up to 25%-30% of patients with anemia associated with IBD combination therapy may require iron and erythropoietic agents to correct anemia[3,105,106]. In other diseases (cancer, rheumatoid arthritis, AIDS), EPO levels < 500 mU/mL (some authors suggest < 100 mU/mL) may respond to administration of rHuEPO[107-112].

In patients with anemia associated with IBD, high levels of transferrin (iron deficit indicators) as well as high levels of serum EPO (an indicator of a correct response to anemia) may predict a good response to treatment with iv iron. In contrast, low levels of serum EPO indicate the need to associate agents erythropoietic in addition to iron treatment[3].

Since the increased production of hepcidin in anemia of chronic diseases may limit the oral absorption of iron, it should be given by the iv route. The iv administration of iron has proven its efficacy, safety and tolerability, with iron sucrose[7,89] as the new formulation iron carboxymaltose, that allows the administration of 1 g of iron in 15 min[112,113]. The use of erythropoietic agents in the treatment of anemia associated with IBD is useful for patients who do not respond to treatment with iv iron, and in whom the aggressive treatment of IBD (including immunosuppressive therapy) has not abolished the mucosal inflammation, and who require additional blood transfusions[5,7,114-116].

Hemoglobin target

Previous studies on the use of EPO in patients with CKD have found different results concerning the desirable target level of hemoglobin and its effect on cardiovascular prognosis. In 1997, the KDOQI guidelines[117] recommended target levels for hemoglobin/hematocrit between 33% (11 g/dL) and 36% (12 g/dL). A similar recommendation was made in the 2006 update of the KDOQI guidelines[26] although on that occasion, an upper limit for hemoglobin was set, because there was no evidence to maintain a target ≥ 13 g/dL. The European Best Practice Guidelines Working Group did not recommend the complete correction of hemoglobin levels in patients with diabetes or cardiovascular disease[29].

The clinical benefits and adverse effects associated with normal or near normal hemoglobin values were evaluated in multiple randomized studies that assessed mortality and morbidity from cardiovascular or cerebrovascular events, good control of blood pressure, quality of life, functional status and vascular access thrombosis[71,118-126]. The results of these studies have not suggested any improvements after correction of anemia, except in quality of life. Despite differences in their populations, two large randomized studies published in November 2006, the CHOIR[127] and CREATE[128] studies have shown that attempts to correct anemia completely did not reduce mortality or cardiovascular disease in CKD patients, compared with partial correction. A meta-analysis that included these two studies concluded that patients with a higher target hemoglobin have a significantly higher risk of all-cause mortality and vascular access thrombosis[129].

In light of these data, the KDOQI guidelines were reviewed and updated in 2007, with a recommended hemoglobin level of 11-12 g/dL, and not exceeding 13 g/dL[130]. Also the European Best Practice Guidelines Working Group[75] has concluded that hemoglobin > 13 g/dL may be associated with cardiovascular events in these patients.

Factors that influence the increase in mortality with higher hemoglobin targets may include the impossibility of achieving the target hemoglobin, a too high hemoglobin target, the toxic effects of high doses of ESAs, the presence of comorbidity and other features[131-135]. These factors were evaluated in a second analysis of the CHOIR study[136] that found no clinical factor associated with risk, after adjustment and multivariate analysis, except for high dose of epoetin (> 20 000 U/wk), which was an independent risk factor for death, myocardial infarction, heart failure, or stroke. This increased risk was observed in the high and low hemoglobin groups, particularly among those who did not reach the target hemoglobin. These results suggest that increased mortality is due to high doses of ESAs rather than higher hemoglobin targets[137]. Epoetin α dose should not exceed 20 000 U/wk in patients with CKD, and probably in other diseases. These patients should be assessed for other causes of poor response to treatment with EPO. Some studies have suggested the possible relationship between the variability of the hemoglobin level and the patient[138,139]. Although there is variability in the results of different studies[120,131,140-143], the most consistent observation is that there are better results in terms of quality of life, with no increase in adverse reactions of hemoglobin in the range of 11-12 g/dL (hematocrit 33%) compared with lower levels[139-144]. There is a large study under way in relation to the normalization of hemoglobin. The Trial to Reduce Cardiovascular Events with Aranesp Therapy study is a randomized, placebo-controlled trial in pre-dialysis CKD patients with type 2 diabetes mellitus[145,146], which is due to end in 2011.

In clinical practice, given the difficulty of maintaining standards within the narrow target range of 11-12 g/dL[147-149], it’s accepted the range 10-12 g/dL, particularly in patients with good tolerance.

The target haemoglobin level in patients with IBD is still to be determined. Data from recent studies in CKD patients indicate increased morbidity and mortality in relation to high levels of hemoglobin (normal)[130-133], as in patients with cancer[103,104]. It seems appropriate to establish a target hemoglobin level of 11-12 g/dL, which demonstrates greater benefit in quality of life and cost-effectiveness in renal patients[120,133,139-145].

Dosage, monitoring and control

To maintain adequate levels of hemoglobin with erythropoietic agents iron stores must be normalized. Iron should be administered in sufficient quantity to achieve a transferrin saturation ≥ 20% and a ferritin level ≥ 100 ng/mL[7,87,150]. The response to EPO is dose dependent, but varies from patient to patient, depending on the frequency and route of administration (iv or sc), although to a lesser extent with darbepoetin[151,152]. The hypertension may complicate treatment, particularly if hemoglobin level rises quickly (> 1 g/dL every 2 wk)[153]. With the present preparations, sc and iv administration are indistinguishable; however, sc administration presents some advantages over iv, such as a lower incidence of hypertension, and a 25%-50% reduction in dose compared with iv administration[154-157]. Another important advantage of iv administration is a longer half-life (24 h vs 9 h)[158,159]. Daily sc EPO is more effective than administration 2-3 times weekly[160], although administration less frequently than every 2 wk is also effective[161-163]. Discomfort at the injection site is minimal. It is important to remember to maintain the cold chain at 4°C to preserve a high effectiveness[164].

EPO can be started at a dose of 100-150 U/kg per week sc with iron supplements. The dose can be increased by 25% every 2-4 wk to reach 300 U/kg per week. It is not worthwhile to continue increasing the dose in patients who do not respond after 12 wk, and in these patients, the dose should be kept to the minimum effective dose to avoid transfusion[97,131]. The appropriate response should increase the hemoglobin level at least 0.5 g/dL at 2-4 wk. It is recommended analytical control in this period of time and if the hemoglobin increase is over target (> 10-12 g/dL) or > 1 g/dL in 2 wk, we must reduce dose by 25%. In contrast, if the hemoglobin level is < 10 g/dL (with adequate iron deposits) or hemoglobin increase < 1 g/dL in 4 wk, then we must increase dose by 25%[101,104,165]. Children usually require higher doses than adults to achieve a similar response[29,166]. In practice, most patients are dosed per unit dose (syringe) rather than kg. There are wide range of doses in pre-filled syringes.

Darbepoetin α can be administered iv and sc, with the main advantage of the half-life three times longer than epoetin. Effectiveness of Darbepoetin has been proved with administration weekly, every 2 wk[167] and monthly[117,168,169]. The initial dose of darbepoetin is 0.45 μg/kg every 2 wk and that of CERA is 0.6 μg/kg every 2 wk. Once the patient has been stabilized, the monthly dose may be doubled. Several well-designed prospective studies in renal patients have demonstrated the safety and effectiveness of weekly or even monthly treatment with epoetin α[170-174] in a similar way to new formulations of ESAs with long half-life[175].

Resistance

Evidence of EPO resistance stems from studies with an inadequate response EPO in 5%-10% of patients[176] or in patients who develop EPO resistance after a good initial response. There is a resistance to EPO when a sufficient dose of it, equal to or greater than 300 U/kg per week is not reached the desired concentration of hemoglobin[28].

It has been shown that the most frequent and important cause of resistance to EPO is iron deficiency, but there are other less frequent factors[28,177].

Blood loss is the most frequent cause of absolute iron deficiency, which is defined by ferritin levels < 100 ng/mL, transferrin saturation < 20%, and/or hypochromic red cells increased by 10%. Relative or functional iron deficiency results from difficulty in transferring stored iron to red blood cells and is defined by the existence of transferrin saturation < 20% while maintaining high levels of ferritin > 100 ng/mL. The main causes of relative iron deficiency are acute and chronic inflammatory processes and chronic liver diseases[178]. Elevated levels of parathyroid hormone in CKD patients are another cause of non-negligible resistance to EPO[179]. The presence of an inflammatory disorder increases the resistance to treatment with erythropoietic agents, including the production of inflammatory cytokines that interfere with iron metabolism, reducing their availability in the bone marrow and causing functional iron deficiency. The process of dialysis may be associated with an increase in the induction of cytokines and the appearance of an inflammatory response syndrome[180].

In patients undergoing hemodialysis, carnitine metabolism is altered and carnitine deficiency is more likely in patients with a protein-deficient diet and high dialysis dose[181]. Carnitine may improve anemia in hemodialysis patients with EPO resistance[182] by mechanisms not yet known[183], or stabilizing the membrane as an antioxidant agent, or by stimulating erythropoiesis, by the increase in the number of reticulocytes demonstrated in some patients on hemodialysis treated with L-carnitine[184]. The dose used in patients with EPO resistence is 1 g iv post-hemodialysis[185].

Folic acid is involved in the process of regeneration and maturation of hematopoietic precursors. Folic acid deficiency is associated an ineffective erythropoiesis, and a megaloblastic anemia. Malnutrition, malabsorption, alcoholism, and various drugs that lower intestinal absorption, such as diphenylhydantoin, contraceptives and barbiturates, can cause folic acid deficiency. In dialysis patients with resistance to EPO, with normal ferritin levels, adjuvant treatment with folic acid may be attempted. It has been shown that the use of folic acid (10 mg/d) in hemodialysis patients improves the response to EPO, especially when presented high mean corpuscular volume, even with normal levels of folic acid[186].

The effectiveness of erythropoietic response to stimulation can be assessed by resistance index of ESAs. This expresses the relationship between the dose of erythropoietic agents and hemoglobin concentrations maintained (IU/kg per week divided by hemoglobin). Resistance index of ESAs varies from one patient to another and also in the same patient over time. These values range from 0 in patients able to maintain adequate hemoglobin level through the endogenous production of EPO, to > 50 IU/kg per week and per g/dL of hemoglobin in patients who cannot maintain adequate hemoglobin, even after high-dose EPO therapy (> 300 IU/kg per week)[187-189].

Anemia following treatment with ribavirin in HCV patients

Hemolytic anemia is a frequent side effect of early use of ribavirin in the treatment of hepatitis C. It has a negative impact on quality of life, and it can, in extreme cases, cause deterioration in brain function and even death. Furthermore it is a common reason for reduction or discontinuation of antiviral therapy, which compromises the effectiveness and reduces the sustained viral response. The administration of EPO can improve anemia, without the need to reduce the dose of ribavirin[190-194].

FUTURE EXPECTATIONS WITH THE USE OF EPO

It has been discovered in recent years that the EPO is also synthesized locally by many tissues, especially in response to metabolic stress. EPO functions as a protective molecule that inhibits apoptosis in a wide variety of cell types, and reduces inflammation and local edema, as well as improving tissue regeneration[195]. The mechanisms of tissue protection are mediated by a receptor. This receptor is different other than that mediates the effects erithropoyetics of EPO[196]. The future of EPO therapy in ischemic diseases, and as protective cytotoxic therapies appears promising. Of course clinical trials comparing its efficacy with other conventional therapies are needed[197]. Also being evaluated is the effect of EPO on intestinal endothelial cells[45], and in the maintenance and repair of the mucosa[46].

SUMMARY AND PROSPECTS

For nearly 25 years, the anemia of chronic renal failure has been treated with rHuEPO, which has resulted in a significant improvement in quality of life and survival and avoidance of dependence on repeated transfusions[22-24]. Subsequently, rHuEPO has been used in other conditions that occur with anemia of chronic diseases such as cancer, rheumatoid arthritis[109] or IBD[3,5,114-116], and anemia associated with the treatment of hepatitis C[190-194]. It has also been investigated for its protective effects in other acute diseases such as myocardial ischemia and brain and kidney diseases[198]. The classical dosing schedule of three times weekly has been simplified with the advent of new generations of erythropoietic agents such as darbepoetin α, which allows administration every 2 wk, and CERA, which has a longer half-life that allows prolonged administration monthly. Research continues to develop new biologically similar molecules such as agonists of the EPO receptor as hematide, which allows the treatment of patients with PRCA and monthly administration[85]. As well as searching for orally active formulations that will simplify the management of anemia[199-202]. There have also been negative aspects of treatment with EPO, as the cases of pure red cell aplasia[64,80], or poor outcomes in relation to death and cardio vascular events in study of normalization of hemoglobin (in connection especially with high doses of EPO in patients with poor response)[127-129,137] and worse survival in patients with cancer[103,104]. However, EPO has been shown to be effective and safe in the treatment of anemia of chronic renal failure and has improved significantly quality of life of patients with chronic anemia[22-25].

Similarly, the development of iv iron therapy was a major breakthrough in the management of chronic anemia. Iron sucrose has demonstrated its safety, efficacy and tolerance[7,86,87]. Other new formulations of iron that allow rapid iv administration of large doses with good efficacy and tolerance will make administration easier[5,110,202].

CONCLUSION

To summarize we can say that erythropoietic agents come to complete the range available therapeutic for treatment of anemia associated with IBD that begins by treating the inflammatory disease basis, as well as intravenous ferroterapia first choice. In cases of resistance to treatment with iron may raise a combined therapy with erythropoietic agents to try to achieve near-normal levels of hemoglobia/hematocrit (11-12 g/dL). The new formulations of iv iron (iron carboxymaltose) and the new generation of erythropoietic agents (darbepoetin and CERA) will allow a more comfortable and spaced dosage schedule, with the same efficacy and safety.

Footnotes

Peer reviewer: Luis Bujanda, Professor, Donostia Hospital,. Avda. Sancho El Sabio 21-3ºC, San Sebastián 20010, Spain

S- Editor Tian L L- Editor Kerr C E- Editor Ma WH

References
1.  Ebinger M, Leidl R, Thomas S, Von Tirpitz C, Reinshagen M, Adler G, Konig HH. Cost of outpatient care in patients with inflammatory bowel disease in a German University Hospital. J Gastroenterol Hepatol. 2004;19:192-199.  [PubMed]  [DOI]  [Cited in This Article: ]
2.  Werlin SL, Grand RJ. Severe colitis in children and adolescents: diagnosis. Course, and treatment. Gastroenterology. 1977;73:828-832.  [PubMed]  [DOI]  [Cited in This Article: ]
3.  Gasche C, Lomer MC, Cavill I, Weiss G. Iron, anaemia, and inflammatory bowel diseases. Gut. 2004;53:1190-1197.  [PubMed]  [DOI]  [Cited in This Article: ]
4.  Wilson A, Reyes E, Ofman J. Prevalence and outcomes of anemia in inflammatory bowel disease: a systematic review of the literature. Am J Med. 2004;116 Suppl 7A:44S-49S.  [PubMed]  [DOI]  [Cited in This Article: ]
5.  Gasche C, Dejaco C, Waldhoer T, Tillinger W, Reinisch W, Fueger GF, Gangl A, Lochs H. Intravenous iron and erythropoietin for anemia associated with Crohn disease. A randomized, controlled trial. Ann Intern Med. 1997;126:782-787.  [PubMed]  [DOI]  [Cited in This Article: ]
6.  Dohil R, Hassall E, Wadsworth LD, Israel DM. Recombinant human erythropoietin for treatment of anemia of chronic disease in children with Crohn's disease. J Pediatr. 1998;132:155-159.  [PubMed]  [DOI]  [Cited in This Article: ]
7.  Tsiolakidou G, Koutroubakis IE. Stimulating erythropoiesis in inflammatory bowel disease associated anemia. World J Gastroenterol. 2007;13:4798-4806.  [PubMed]  [DOI]  [Cited in This Article: ]
8.  Afdhal NH, Dieterich DT, Pockros PJ, Schiff ER, Shiffman ML, Sulkowski MS, Wright T, Younossi Z, Goon BL, Tang KL. Epoetin alfa maintains ribavirin dose in HCV-infected patients: a prospective, double-blind, randomized controlled study. Gastroenterology. 2004;126:1302-1311.  [PubMed]  [DOI]  [Cited in This Article: ]
9.  Dieterich DT, Wasserman R, Brau N, Hassanein TI, Bini EJ, Bowers PJ, Sulkowski MS. Once-weekly epoetin alfa improves anemia and facilitates maintenance of ribavirin dosing in hepatitis C virus-infected patients receiving ribavirin plus interferon alfa. Am J Gastroenterol. 2003;98:2491-2499.  [PubMed]  [DOI]  [Cited in This Article: ]
10.  Krantz SB. Erythropoietin. Blood. 1991;77:419-434.  [PubMed]  [DOI]  [Cited in This Article: ]
11.  Fisher JW. Erythropoietin: physiology and pharmacology update. Exp Biol Med (Maywood). 2003;228:1-14.  [PubMed]  [DOI]  [Cited in This Article: ]
12.  Jelkmann W. Erythropoietin: structure, control of production, and function. Physiol Rev. 1992;72:449-489.  [PubMed]  [DOI]  [Cited in This Article: ]
13.  Koury ST, Bondurant MC, Koury MJ, Semenza GL. Localization of cells producing erythropoietin in murine liver by in situ hybridization. Blood. 1991;77:2497-2503.  [PubMed]  [DOI]  [Cited in This Article: ]
14.  Eschbach JW, Adamson JW. Guidelines for recombinant human erythropoietin therapy. Am J Kidney Dis. 1989;14:2-8.  [PubMed]  [DOI]  [Cited in This Article: ]
15.  Maiese K, Li F, Chong ZZ. New avenues of exploration for erythropoietin. JAMA. 2005;293:90-95.  [PubMed]  [DOI]  [Cited in This Article: ]
16.  Gasche C, Reinisch W, Lochs H, Parsaei B, Bakos S, Wyatt J, Fueger GF, Gangl A. Anemia in Crohn's disease. Importance of inadequate erythropoietin production and iron deficiency. Dig Dis Sci. 1994;39:1930-1934.  [PubMed]  [DOI]  [Cited in This Article: ]
17.  Tan CC, Eckardt KU, Firth JD, Ratcliffe PJ. Feedback modulation of renal and hepatic erythropoietin mRNA in response to graded anemia and hypoxia. Am J Physiol. 1992;263:F474-F481.  [PubMed]  [DOI]  [Cited in This Article: ]
18.  Miyake T, Kung CK, Goldwasser E. Purification of human erythropoietin. J Biol Chem. 1977;252:5558-5564.  [PubMed]  [DOI]  [Cited in This Article: ]
19.  Lin FK, Suggs S, Lin CH, Browne JK, Smalling R, Egrie JC, Chen KK, Fox GM, Martin F, Stabinsky Z. Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci USA. 1985;82:7580-7584.  [PubMed]  [DOI]  [Cited in This Article: ]
20.  Winearls CG, Oliver DO, Pippard MJ, Reid C, Downing MR, Cotes PM. Effect of human erythropoietin derived from recombinant DNA on the anaemia of patients maintained by chronic haemodialysis. Lancet. 1986;2:1175-1178.  [PubMed]  [DOI]  [Cited in This Article: ]
21.  Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N Engl J Med. 1987;316:73-78.  [PubMed]  [DOI]  [Cited in This Article: ]
22.  Gimenez LF, Scheel PJ. Clinical application of recombinant erythropoietin in renal dialysis patients. Hematol Oncol Clin North Am. 1994;8:913-926.  [PubMed]  [DOI]  [Cited in This Article: ]
23.  Scigalla P. Effect of recombinant human erythropoietin treatment on renal anemia and body growth of children with end-stage renal disease. The European Multicenter Study Group. Contrib Nephrol. 1991;88:201-211; discussion 212-214.  [PubMed]  [DOI]  [Cited in This Article: ]
24.  Jones M, Ibels L, Schenkel B, Zagari M. Impact of epoetin alfa on clinical end points in patients with chronic renal failure: a meta-analysis. Kidney Int. 2004;65:757-767.  [PubMed]  [DOI]  [Cited in This Article: ]
25.  Fried W. Hematologic complications of chronic renal failure. Med Clin North Am. 1978;62:1363-1379.  [PubMed]  [DOI]  [Cited in This Article: ]
26.  KDOQI; National Kidney Foundation. KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Anemia in Chronic Kidney Disease. Am J Kidney Dis. 2006;47:S11-S145.  [PubMed]  [DOI]  [Cited in This Article: ]
27.  Barrett BJ, Fenton SS, Ferguson B, Halligan P, Langlois S, Mccready WG, Muirhead N, Weir RV. Clinical practice guidelines for the management of anemia coexistent with chronic renal failure. Canadian Society of Nephrology. J Am Soc Nephrol. 1999;10 Suppl 13:S292-S296.  [PubMed]  [DOI]  [Cited in This Article: ]
28.  European best practice guidelines for the management of anaemia in patients with chronic renal failure. Working Party for European Best Practice Guidelines for the Management of Anaemia in Patients with Chronic Renal Failure. Nephrol Dial Transplant. 1999;14 Suppl 5:1-50.  [PubMed]  [DOI]  [Cited in This Article: ]
29.  Locatelli F, Aljama P, Barany P, Canaud B, Carrera F, Eckardt KU, Horl WH, Macdougal IC, Macleod A, Wiecek A. Revised European best practice guidelines for the management of anaemia in patients with chronic renal failure. Nephrol Dial Transplant. 2004;19 Suppl 2:ii1-ii47.  [PubMed]  [DOI]  [Cited in This Article: ]
30.  Locatelli F, Nissenson AR, Barrett BJ, Walker RG, Wheeler DC, Eckardt KU, Lameire NH, Eknoyan G. Clinical practice guidelines for anemia in chronic kidney disease: problems and solutions. A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2008;74:1237-1240.  [PubMed]  [DOI]  [Cited in This Article: ]
31.  Gejyo F, Saito A, Akizawa T, Akiba T, Sakai T, Suzuki M, Nishi S, Tsubakihara Y, Hirakata H, Bessho M. 2004 Japanese Society for Dialysis Therapy guidelines for renal anemia in chronic hemodialysis patients. Ther Apher Dial. 2004;8:443-459.  [PubMed]  [DOI]  [Cited in This Article: ]
32.  Akizawa T, Pisoni RL, Akiba T, Saito A, Fukuhara S, Asano Y, Hasegawa T, Port FK, Kurokawa K. Japanese haemodialysis anaemia management practices and outcomes (1999-2006): results from the DOPPS. Nephrol Dial Transplant. 2008;23:3643-3653.  [PubMed]  [DOI]  [Cited in This Article: ]
33.  Hariharan S. Recommendations for outpatient monitoring of kidney transplant recipients. Am J Kidney Dis. 2006;47:S22-S36.  [PubMed]  [DOI]  [Cited in This Article: ]
34.  Kinney R. 2005 Annual Report: ESRD Clinical Performance Measures Project. Am J Kidney Dis. 2006;48:S1-S106.  [PubMed]  [DOI]  [Cited in This Article: ]
35.  USRDS: the United States Renal Data System. Am J Kidney Dis. 2003;42:1-230.  [PubMed]  [DOI]  [Cited in This Article: ]
36.  Aapro M, San Miguel J. Evolving treatment strategies for anaemia in cancer: experience with epoetin beta. Oncology. 2004;67 Suppl 1:17-22.  [PubMed]  [DOI]  [Cited in This Article: ]
37.  Rizzo JD, Lichtin AE, Woolf SH, Seidenfeld J, Bennett CL, Cella D, Djulbegovic B, Goode MJ, Jakubowski AA, Lee SJ. Use of epoetin in patients with cancer: evidence-based clinical practice guidelines of the American Society of Clinical Oncology and the American Society of Hematology. J Clin Oncol. 2002;20:4083-4107.  [PubMed]  [DOI]  [Cited in This Article: ]
38.  Bokemeyer C, Aapro MS, Courdi A, Foubert J, Link H, Osterborg A, Repetto L, Soubeyran P. EORTC guidelines for the use of erythropoietic proteins in anaemic patients with cancer. Eur J Cancer. 2004;40:2201-2216.  [PubMed]  [DOI]  [Cited in This Article: ]
39.  Caramelo C, Justo S, Gil P. [Anemia in heart failure: pathophysiology, pathogenesis, treatment, and incognitae]. Rev Esp Cardiol. 2007;60:848-860.  [PubMed]  [DOI]  [Cited in This Article: ]
40.  Roig E. [Is anemia a marker of advanced disease or a therapeutic target in heart failure?]. Rev Esp Cardiol. 2005;58:10-12.  [PubMed]  [DOI]  [Cited in This Article: ]
41.  Kaltwasser JP, Kessler U, Gottschalk R, Stucki G, Moller B. Effect of recombinant human erythropoietin and intravenous iron on anemia and disease activity in rheumatoid arthritis. J Rheumatol. 2001;28:2430-2436.  [PubMed]  [DOI]  [Cited in This Article: ]
42.  Donato H, Ferro H. [Human recombinant erythropoietin therapy]. Medicina (B Aires). 2006;66:51-69.  [PubMed]  [DOI]  [Cited in This Article: ]
43.  Juul S. Recombinant erythropoietin as a neuroprotective treatment: in vitro and in vivo models. Clin Perinatol. 2004;31:129-142.  [PubMed]  [DOI]  [Cited in This Article: ]
44.  Ghezzi P, Brines M. Erythropoietin as an antiapoptotic, tissue-protective cytokine. Cell Death Differ. 2004;11 Suppl 1:S37-S44.  [PubMed]  [DOI]  [Cited in This Article: ]
45.  Calhoun DA, Christensen RD. Hematopoietic growth factors in neonatal medicine: the use of enterally administered hematopoietic growth factors in the neonatal intensive care unit. Clin Perinatol. 2004;31:169-182.  [PubMed]  [DOI]  [Cited in This Article: ]
46.  Juul SE, Joyce AE, Zhao Y, Ledbetter DJ. Why is erythropoietin present in human milk? Studies of erythropoietin receptors on enterocytes of human and rat neonates. Pediatr Res. 1999;46:263-268.  [PubMed]  [DOI]  [Cited in This Article: ]
47.  Ledbetter DJ, Juul SE. Erythropoietin and the incidence of necrotizing enterocolitis in infants with very low birth weight. J Pediatr Surg. 2000;35:178-181; discussion 182.  [PubMed]  [DOI]  [Cited in This Article: ]
48.  Lewis LD. Preclinical and clinical studies: a preview of potential future applications of erythropoietic agents. Semin Hematol. 2004;41:17-25.  [PubMed]  [DOI]  [Cited in This Article: ]
49.  Brines M, Cerami A. Discovering erythropoietin's extra-hematopoietic functions: biology and clinical promise. Kidney Int. 2006;70:246-250.  [PubMed]  [DOI]  [Cited in This Article: ]
50.  Halstenson CE, Macres M, Katz SA, Schnieders JR, Watanabe M, Sobota JT, Abraham PA. Comparative pharmacokinetics and pharmacodynamics of epoetin alfa and epoetin beta. Clin Pharmacol Ther. 1991;50:702-712.  [PubMed]  [DOI]  [Cited in This Article: ]
51.  Macdougall IC, Gray SJ, Elston O, Breen C, Jenkins B, Browne J, Egrie J. Pharmacokinetics of novel erythropoiesis stimulating protein compared with epoetin alfa in dialysis patients. J Am Soc Nephrol. 1999;10:2392-2395.  [PubMed]  [DOI]  [Cited in This Article: ]
52.  Allon M, Kleinman K, Walczyk M, Kaupke C, Messer-Mann L, Olson K, Heatherington AC, Maroni BJ. Pharmacokinetics and pharmacodynamics of darbepoetin alfa and epoetin in patients undergoing dialysis. Clin Pharmacol Ther. 2002;72:546-555.  [PubMed]  [DOI]  [Cited in This Article: ]
53.  Nissenson AR, Swan SK, Lindberg JS, Soroka SD, Beatey R, Wang C, Picarello N, McDermott-Vitak A, Maroni BJ. Randomized, controlled trial of darbepoetin alfa for the treatment of anemia in hemodialysis patients. Am J Kidney Dis. 2002;40:110-118.  [PubMed]  [DOI]  [Cited in This Article: ]
54.  Vanrenterghem Y, Barany P, Mann JF, Kerr PG, Wilson J, Baker NF, Gray SJ. Randomized trial of darbepoetin alfa for treatment of renal anemia at a reduced dose frequency compared with rHuEPO in dialysis patients. Kidney Int. 2002;62:2167-2175.  [PubMed]  [DOI]  [Cited in This Article: ]
55.  Scott SD. Dose conversion from recombinant human erythropoietin to darbepoetin alfa: recommendations from clinical studies. Pharmacotherapy. 2002;22:160S-165S.  [PubMed]  [DOI]  [Cited in This Article: ]
56.  Provenzano R, Besarab A, Macdougall IC, Ellison DH, Maxwell AP, Sulowicz W, Klinger M, Rutkowski B, Correa-Rotter R, Dougherty FC. The continuous erythropoietin receptor activator (C.E.R.A.) corrects anemia at extended administration intervals in patients with chronic kidney disease not on dialysis: results of a phase II study. Clin Nephrol. 2007;67:306-317.  [PubMed]  [DOI]  [Cited in This Article: ]
57.  Locatelli F, Reigner B. C.E.R.A.: pharmacodynamics, pharmacokinetics and efficacy in patients with chronic kidney disease. Expert Opin Investig Drugs. 2007;16:1649-1661.  [PubMed]  [DOI]  [Cited in This Article: ]
58.  Levin NW, Fishbane S, Canedo FV, Zeig S, Nassar GM, Moran JE, Villa G, Beyer U, Oguey D. Intravenous methoxy polyethylene glycol-epoetin beta for haemoglobin control in patients with chronic kidney disease who are on dialysis: a randomised non-inferiority trial (MAXIMA). Lancet. 2007;370:1415-1421.  [PubMed]  [DOI]  [Cited in This Article: ]
59.  Johnson DL, Jolliffe LK. Erythropoietin mimetic peptides and the future. Nephrol Dial Transplant. 2000;15:1274-1277.  [PubMed]  [DOI]  [Cited in This Article: ]
60.  Sulowicz W, Locatelli F, Ryckelynck JP, Balla J, Csiky B, Harris K, Ehrhard P, Beyer U. Once-monthly subcutaneous C.E.R.A. maintains stable hemoglobin control in patients with chronic kidney disease on dialysis and converted directly from epoetin one to three times weekly. Clin J Am Soc Nephrol. 2007;2:637-646.  [PubMed]  [DOI]  [Cited in This Article: ]
61.  Saracho Rotaeche R. [Is CERA therapy every 2-4 weeks worse than usual EPO therapy 1-3 times per week?]. Nefrologia. 2008;28 Suppl 2:28-29.  [PubMed]  [DOI]  [Cited in This Article: ]
62.  Klinger M, Arias M, Vargemezis V, Besarab A, Sulowicz W, Gerntholtz T, Ciechanowski K, Dougherty FC, Beyer U. Efficacy of intravenous methoxy polyethylene glycol-epoetin beta administered every 2 weeks compared with epoetin administered 3 times weekly in patients treated by hemodialysis or peritoneal dialysis: a randomized trial. Am J Kidney Dis. 2007;50:989-1000.  [PubMed]  [DOI]  [Cited in This Article: ]
63.  Macdougall IC, Walker R, Provenzano R, de Alvaro F, Locay HR, Nader PC, Locatelli F, Dougherty FC, Beyer U. C.E.R.A. corrects anemia in patients with chronic kidney disease not on dialysis: results of a randomized clinical trial. Clin J Am Soc Nephrol. 2008;3:337-347.  [PubMed]  [DOI]  [Cited in This Article: ]
64.  Macdougall IC, Ashenden M. Current and upcoming erythropoiesis-stimulating agents, iron products, and other novel anemia medications. Adv Chronic Kidney Dis. 2009;16:117-130.  [PubMed]  [DOI]  [Cited in This Article: ]
65.  Canaud B, Mingardi G, Braun J, Aljama P, Kerr PG, Locatelli F, Villa G, Van Vlem B, McMahon AW, Kerloeguen C. Intravenous C.E.R.A. maintains stable haemoglobin levels in patients on dialysis previously treated with darbepoetin alfa: results from STRIATA, a randomized phase III study. Nephrol Dial Transplant. 2008;23:3654-3661.  [PubMed]  [DOI]  [Cited in This Article: ]
66.  Kochendoerfer GG, Chen SY, Mao F, Cressman S, Traviglia S, Shao H, Hunter CL, Low DW, Cagle EN, Carnevali M. Design and chemical synthesis of a homogeneous polymer-modified erythropoiesis protein. Science. 2003;299:884-887.  [PubMed]  [DOI]  [Cited in This Article: ]
67.  Sytkowski AJ, Lunn ED, Risinger MA, Davis KL. An erythropoietin fusion protein comprised of identical repeating domains exhibits enhanced biological properties. J Biol Chem. 1999;274:24773-24778.  [PubMed]  [DOI]  [Cited in This Article: ]
68.  Wrighton NC, Farrell FX, Chang R, Kashyap AK, Barbone FP, Mulcahy LS, Johnson DL, Barrett RW, Jolliffe LK, Dower WJ. Small peptides as potent mimetics of the protein hormone erythropoietin. Science. 1996;273:458-464.  [PubMed]  [DOI]  [Cited in This Article: ]
69.  Vadas O, Hartley O, Rose K. Characterization of new multimeric erythropoietin receptor agonists. Biopolymers. 2008;90:496-502.  [PubMed]  [DOI]  [Cited in This Article: ]
70.  Vaziri ND. Mechanism of erythropoietin-induced hypertension. Am J Kidney Dis. 1999;33:821-828.  [PubMed]  [DOI]  [Cited in This Article: ]
71.  Besarab A, Bolton WK, Browne JK, Egrie JC, Nissenson AR, Okamoto DM, Schwab SJ, Goodkin DA. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med. 1998;339:584-590.  [PubMed]  [DOI]  [Cited in This Article: ]
72.  Churchill DN, Muirhead N, Goldstein M, Posen G, Fay W, Beecroft ML, Gorman J, Taylor DW. Probability of thrombosis of vascular access among hemodialysis patients treated with recombinant human erythropoietin. J Am Soc Nephrol. 1994;4:1809-1813.  [PubMed]  [DOI]  [Cited in This Article: ]
73.  Moreno F, Sanz-Guajardo D, Lopez-Gomez JM, Jofre R, Valderrabano F. Increasing the hematocrit has a beneficial effect on quality of life and is safe in selected hemodialysis patients. Spanish Cooperative Renal Patients Quality of Life Study Group of the Spanish Society of Nephrology. J Am Soc Nephrol. 2000;11:335-342.  [PubMed]  [DOI]  [Cited in This Article: ]
74.  Furuland H, Linde T, Ahlmen J, Christensson A, Strombom U, Danielson BG. A randomized controlled trial of haemoglobin normalization with epoetin alfa in pre-dialysis and dialysis patients. Nephrol Dial Transplant. 2003;18:353-361.  [PubMed]  [DOI]  [Cited in This Article: ]
75.  Locatelli F, Covic A, Eckardt KU, Wiecek A, Vanholder R. Anaemia management in patients with chronic kidney disease: a position statement by the Anaemia Working Group of European Renal Best Practice (ERBP). Nephrol Dial Transplant. 2009;24:348-354.  [PubMed]  [DOI]  [Cited in This Article: ]
76.  Casadevall N, Nataf J, Viron B, Kolta A, Kiladjian JJ, Martin-Dupont P, Michaud P, Papo T, Ugo V, Teyssandier I. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N Engl J Med. 2002;346:469-475.  [PubMed]  [DOI]  [Cited in This Article: ]
77.  Cournoyer D, Toffelmire EB, Wells GA, Barber DL, Barrett BJ, Delage R, Forrest DL, Gagnon RF, Harvey EA, Laneuville P. Anti-erythropoietin antibody-mediated pure red cell aplasia after treatment with recombinant erythropoietin products: recommendations for minimization of risk. J Am Soc Nephrol. 2004;15:2728-2734.  [PubMed]  [DOI]  [Cited in This Article: ]
78.  Locatelli F, Aljama P, Barany P, Canaud B, Carrera F, Eckardt KU, Macdougall IC, Macleod A, Horl WH, Wiecek A. Erythropoiesis-stimulating agents and antibody-mediated pure red-cell aplasia: here are we now and where do we go from here? Nephrol Dial Transplant. 2004;19:288-293.  [PubMed]  [DOI]  [Cited in This Article: ]
79.  Bennett CL, Luminari S, Nissenson AR, Tallman MS, Klinge SA, McWilliams N, McKoy JM, Kim B, Lyons EA, Trifilio SM. Pure red-cell aplasia and epoetin therapy. N Engl J Med. 2004;351:1403-1408.  [PubMed]  [DOI]  [Cited in This Article: ]
80.  Rossert J, Casadevall N, Eckardt KU. Anti-erythropoietin antibodies and pure red cell aplasia. J Am Soc Nephrol. 2004;15:398-406.  [PubMed]  [DOI]  [Cited in This Article: ]
81.  Verhelst D, Rossert J, Casadevall N, Kruger A, Eckardt KU, Macdougall IC. Treatment of erythropoietin-induced pure red cell aplasia: a retrospective study. Lancet. 2004;363:1768-1771.  [PubMed]  [DOI]  [Cited in This Article: ]
82.  Duffield JS, Mann S, Horn L, Winney RJ. Low-dose cyclosporin therapy for recombinant erythropoietin-induced pure red-cell aplasia. Nephrol Dial Transplant. 2004;19:479-481.  [PubMed]  [DOI]  [Cited in This Article: ]
83.  Snanoudj R, Beaudreuil S, Arzouk N, Jacq D, Casadevall N, Charpentier B, Durrbach A. Recovery from pure red cell aplasia caused by anti-erythropoietin antibodies after kidney transplantation. Am J Transplant. 2004;4:274-277.  [PubMed]  [DOI]  [Cited in This Article: ]
84.  Macdougall IC, Roche A, Rossert J, Casadevall N, Francois P, Kemeny DM. Re-challenging patients who developed pure red cell aplasia with epoetin: can it be done? Nephrol Dial Transplant. 2004;19:2901-2905.  [PubMed]  [DOI]  [Cited in This Article: ]
85.  Woodburn KW, Fan Q, Winslow S, Chen MJ, Mortensen RB, Casadevall N, Stead RB, Schatz PJ. Hematide is immunologically distinct from erythropoietin and corrects anemia induced by antierythropoietin antibodies in a rat pure red cell aplasia model. Exp Hematol. 2007;35:1201-1208.  [PubMed]  [DOI]  [Cited in This Article: ]
86.  de la Morena F, Gisbert JP. [Anemia and inflammatory bowel disease]. Rev Esp Enferm Dig. 2008;100:285-293.  [PubMed]  [DOI]  [Cited in This Article: ]
87.  Gisbert JP, Gomollon F. Common misconceptions in the diagnosis and management of anemia in inflammatory bowel disease. Am J Gastroenterol. 2008;103:1299-1307.  [PubMed]  [DOI]  [Cited in This Article: ]
88.  Pizzi LT, Weston CM, Goldfarb NI, Moretti D, Cobb N, Howell JB, Infantolino A, Dimarino AJ, Cohen S. Impact of chronic conditions on quality of life in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2006;12:47-52.  [PubMed]  [DOI]  [Cited in This Article: ]
89.  Wells CW, Lewis S, Barton JR, Corbett S. Effects of changes in hemoglobin level on quality of life and cognitive function in inflammatory bowel disease patients. Inflamm Bowel Dis. 2006;12:123-130.  [PubMed]  [DOI]  [Cited in This Article: ]
90.  Gasche C, Waldhoer T, Feichtenschlager T, Male C, Mayer A, Mittermaier C, Petritsch W. Prediction of response to iron sucrose in inflammatory bowel disease-associated anemia. Am J Gastroenterol. 2001;96:2382-2387.  [PubMed]  [DOI]  [Cited in This Article: ]
91.  Kulnigg S, Gasche C. Systematic review: managing anaemia in Crohn's disease. Aliment Pharmacol Ther. 2006;24:1507-1523.  [PubMed]  [DOI]  [Cited in This Article: ]
92.  Cucino C, Sonnenberg A. Cause of death in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2001;7:250-255.  [PubMed]  [DOI]  [Cited in This Article: ]
93.  Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352:1011-1023.  [PubMed]  [DOI]  [Cited in This Article: ]
94.  Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood. 2003;101:2461-2463.  [PubMed]  [DOI]  [Cited in This Article: ]
95.  Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003;102:783-788.  [PubMed]  [DOI]  [Cited in This Article: ]
96.  Ganz T, Olbina G, Girelli D, Nemeth E, Westerman M. Immunoassay for human serum hepcidin. Blood. 2008;112:4292-4297.  [PubMed]  [DOI]  [Cited in This Article: ]
97.  Theurl I, Mattle V, Seifert M, Mariani M, Marth C, Weiss G. Dysregulated monocyte iron homeostasis and erythropoietin formation in patients with anemia of chronic disease. Blood. 2006;107:4142-4148.  [PubMed]  [DOI]  [Cited in This Article: ]
98.  Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, Ganz T. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004;113:1271-1276.  [PubMed]  [DOI]  [Cited in This Article: ]
99.  Kemna E, Pickkers P, Nemeth E, van der Hoeven H, Swinkels D. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS. Blood. 2005;106:1864-1866.  [PubMed]  [DOI]  [Cited in This Article: ]
100.  Theurl I, Theurl M, Seifert M, Mair S, Nairz M, Rumpold H, Zoller H, Bellmann-Weiler R, Niederegger H, Talasz H. Autocrine formation of hepcidin induces iron retention in human monocytes. Blood. 2008;111:2392-2399.  [PubMed]  [DOI]  [Cited in This Article: ]
101.  Truksa J, Peng H, Lee P, Beutler E. Different regulatory elements are required for response of hepcidin to interleukin-6 and bone morphogenetic proteins 4 and 9. Br J Haematol. 2007;139:138-147.  [PubMed]  [DOI]  [Cited in This Article: ]
102.  Schreiber S, Howaldt S, Schnoor M, Nikolaus S, Bauditz J, Gasche C, Lochs H, Raedler A. Recombinant erythropoietin for the treatment of anemia in inflammatory bowel disease. N Engl J Med. 1996;334:619-623.  [PubMed]  [DOI]  [Cited in This Article: ]
103.  Tsitsika A, Stamoulakatou A, Kafritsa Y, Paleologos G, Panayotou I, Premetis E, Roma E, Papassotiriou I. Erythropoietin levels in children and adolescents with inflammatory bowel disease. J Pediatr Hematol Oncol. 2005;27:93-96.  [PubMed]  [DOI]  [Cited in This Article: ]
104.  Gisbert JP, Bermejo F, Pajares R, Perez-Calle JL, Rodriguez M, Algaba A, Mancenido N, de la Morena F, Carneros JA, McNicholl AG. Oral and intravenous iron treatment in inflammatory bowel disease: Hematological response and quality of life improvement. Inflamm Bowel Dis. 2009;15:1485-1491.  [PubMed]  [DOI]  [Cited in This Article: ]
105.  Bodemar G, Kechagias S, Almer S, Danielson BG. Treatment of anaemia in inflammatory bowel disease with iron sucrose. Scand J Gastroenterol. 2004;39:454-458.  [PubMed]  [DOI]  [Cited in This Article: ]
106.  Cronin CC, Shanahan F. Anemia in patients with chronic inflammatory bowel disease. Am J Gastroenterol. 2001;96:2296-2298.  [PubMed]  [DOI]  [Cited in This Article: ]
107.  Osterborg A, Brandberg Y, Molostova V, Iosava G, Abdulkadyrov K, Hedenus M, Messinger D. Randomized, double-blind, placebo-controlled trial of recombinant human erythropoietin, epoetin Beta, in hematologic malignancies. J Clin Oncol. 2002;20:2486-2494.  [PubMed]  [DOI]  [Cited in This Article: ]
108.  Spivak JL. Recombinant human erythropoietin and the anemia of cancer. Blood. 1994;84:997-1004.  [PubMed]  [DOI]  [Cited in This Article: ]
109.  Pincus T, Olsen NJ, Russell IJ, Wolfe F, Harris ER, Schnitzer TJ, Boccagno JA, Krantz SB. Multicenter study of recombinant human erythropoietin in correction of anemia in rheumatoid arthritis. Am J Med. 1990;89:161-168.  [PubMed]  [DOI]  [Cited in This Article: ]
110.  Henry DH, Beall GN, Benson CA, Carey J, Cone LA, Eron LJ, Fiala M, Fischl MA, Gabin SJ, Gottlieb MS. Recombinant human erythropoietin in the treatment of anemia associated with human immunodeficiency virus (HIV) infection and zidovudine therapy. Overview of four clinical trials. Ann Intern Med. 1992;117:739-748.  [PubMed]  [DOI]  [Cited in This Article: ]
111.  Ludwig H, Fritz E, Leitgeb C, Pecherstorfer M, Samonigg H, Schuster J. Prediction of response to erythropoietin treatment in chronic anemia of cancer. Blood. 1994;84:1056-1063.  [PubMed]  [DOI]  [Cited in This Article: ]
112.  Kulnigg S, Stoinov S, Simanenkov V, Dudar LV, Karnafel W, Garcia LC, Sambuelli AM, D'Haens G, Gasche C. A novel intravenous iron formulation for treatment of anemia in inflammatory bowel disease: the ferric carboxymaltose (FERINJECT) randomized controlled trial. Am J Gastroenterol. 2008;103:1182-1192.  [PubMed]  [DOI]  [Cited in This Article: ]
113.  Lyseng-Williamson KA, Keating GM. Ferric carboxymaltose: a review of its use in iron-deficiency anaemia. Drugs. 2009;69:739-756.  [PubMed]  [DOI]  [Cited in This Article: ]
114.  Gasche C, Dejaco C, Reinisch W, Tillinger W, Waldhoer T, Fueger GF, Lochs H, Gangl A. Sequential treatment of anemia in ulcerative colitis with intravenous iron and erythropoietin. Digestion. 1999;60:262-267.  [PubMed]  [DOI]  [Cited in This Article: ]
115.  Demirturk L, Hulagu S, Yaylaci M, Altin M, Ozel M. Serum erythropoietin levels in patients with severe anemia secondary to inflammatory bowel disease and the use of recombinant human erythropoietin in patients with anemia refractory to treatment. Dis Colon Rectum. 1995;38:896-897.  [PubMed]  [DOI]  [Cited in This Article: ]
116.  Koutroubakis IE, Karmiris K, Makreas S, Xidakis C, Niniraki M, Kouroumalis EA. Effectiveness of darbepoetin-alfa in combination with intravenous iron sucrose in patients with inflammatory bowel disease and refractory anaemia: a pilot study. Eur J Gastroenterol Hepatol. 2006;18:421-425.  [PubMed]  [DOI]  [Cited in This Article: ]
117.  NKF-DOQI clinical practice guidelines for the treatment of anemia of chronic renal failure. National Kidney Foundation-Dialysis Outcomes Quality Initiative. Am J Kidney Dis. 1997;30:S192-S240.  [PubMed]  [DOI]  [Cited in This Article: ]
118.  McMahon LP, Mason K, Skinner SL, Burge CM, Grigg LE, Becker GJ. Effects of haemoglobin normalization on quality of life and cardiovascular parameters in end-stage renal failure. Nephrol Dial Transplant. 2000;15:1425-1430.  [PubMed]  [DOI]  [Cited in This Article: ]
119.  Foley RN, Parfrey PS, Morgan J, Barre PE, Campbell P, Cartier P, Coyle D, Fine A, Handa P, Kingma I. Effect of hemoglobin levels in hemodialysis patients with asymptomatic cardiomyopathy. Kidney Int. 2000;58:1325-1335.  [PubMed]  [DOI]  [Cited in This Article: ]
120.  Strippoli GF, Craig JC, Manno C, Schena FP. Hemoglobin targets for the anemia of chronic kidney disease: a meta-analysis of randomized, controlled trials. J Am Soc Nephrol. 2004;15:3154-3165.  [PubMed]  [DOI]  [Cited in This Article: ]
121.  Roger SD, McMahon LP, Clarkson A, Disney A, Harris D, Hawley C, Healy H, Kerr P, Lynn K, Parnham A. Effects of early and late intervention with epoetin alpha on left ventricular mass among patients with chronic kidney disease (stage 3 or 4): results of a randomized clinical trial. J Am Soc Nephrol. 2004;15:148-156.  [PubMed]  [DOI]  [Cited in This Article: ]
122.  Levin A, Djurdjev O, Thompson C, Barrett B, Ethier J, Carlisle E, Barre P, Magner P, Muirhead N, Tobe S. Canadian randomized trial of hemoglobin maintenance to prevent or delay left ventricular mass growth in patients with CKD. Am J Kidney Dis. 2005;46:799-811.  [PubMed]  [DOI]  [Cited in This Article: ]
123.  Parfrey PS. Target hemoglobin level for EPO therapy in CKD. Am J Kidney Dis. 2006;47:171-173.  [PubMed]  [DOI]  [Cited in This Article: ]
124.  Volkova N, Arab L. Evidence-based systematic literature review of hemoglobin/hematocrit and all-cause mortality in dialysis patients. Am J Kidney Dis. 2006;47:24-36.  [PubMed]  [DOI]  [Cited in This Article: ]
125.  Ritz E, Laville M, Bilous RW, O'Donoghue D, Scherhag A, Burger U, de Alvaro F. Target level for hemoglobin correction in patients with diabetes and CKD: primary results of the Anemia Correction in Diabetes (ACORD) Study. Am J Kidney Dis. 2007;49:194-207.  [PubMed]  [DOI]  [Cited in This Article: ]
126.  Parfrey PS, Foley RN, Wittreich BH, Sullivan DJ, Zagari MJ, Frei D. Double-blind comparison of full and partial anemia correction in incident hemodialysis patients without symptomatic heart disease. J Am Soc Nephrol. 2005;16:2180-2189.  [PubMed]  [DOI]  [Cited in This Article: ]
127.  Drueke TB, Locatelli F, Clyne N, Eckardt KU, Macdougall IC, Tsakiris D, Burger HU, Scherhag A. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med. 2006;355:2071-2084.  [PubMed]  [DOI]  [Cited in This Article: ]
128.  Singh AK, Szczech L, Tang KL, Barnhart H, Sapp S, Wolfson M, Reddan D. Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med. 2006;355:2085-2098.  [PubMed]  [DOI]  [Cited in This Article: ]
129.  Phrommintikul A, Haas SJ, Elsik M, Krum H. Mortality and target haemoglobin concentrations in anaemic patients with chronic kidney disease treated with erythropoietin: a meta-analysis. Lancet. 2007;369:381-388.  [PubMed]  [DOI]  [Cited in This Article: ]
130.  KDOQI Clinical Practice Guideline and Clinical Practice Recommendations for anemia in chronic kidney disease: 2007 update of hemoglobin target Am J Kidney Dis. 2007;50:471-530.  [PubMed]  [DOI]  [Cited in This Article: ]
131.  Ofsthun N, Labrecque J, Lacson E, Keen M, Lazarus JM. The effects of higher hemoglobin levels on mortality and hospitalization in hemodialysis patients. Kidney Int. 2003;63:1908-1914.  [PubMed]  [DOI]  [Cited in This Article: ]
132.  Roberts TL, Foley RN, Weinhandl ED, Gilbertson DT, Collins AJ. Anaemia and mortality in haemodialysis patients: interaction of propensity score for predicted anaemia and actual haemoglobin levels. Nephrol Dial Transplant. 2006;21:1652-1662.  [PubMed]  [DOI]  [Cited in This Article: ]
133.  Kilpatrick RD, Critchlow CW, Fishbane S, Besarab A, Stehman-Breen C, Krishnan M, Bradbury BD. Greater epoetin alfa responsiveness is associated with improved survival in hemodialysis patients. Clin J Am Soc Nephrol. 2008;3:1077-1083.  [PubMed]  [DOI]  [Cited in This Article: ]
134.  Bradbury BD, Wang O, Critchlow CW, Rothman KJ, Heagerty P, Keen M, Acquavella JF. Exploring relative mortality and epoetin alfa dose among hemodialysis patients. Am J Kidney Dis. 2008;51:62-70.  [PubMed]  [DOI]  [Cited in This Article: ]
135.  Fishbane S, Besarab A. Mechanism of increased mortality risk with erythropoietin treatment to higher hemoglobin targets. Clin J Am Soc Nephrol. 2007;2:1274-1282.  [PubMed]  [DOI]  [Cited in This Article: ]
136.  Szczech LA, Barnhart HX, Inrig JK, Reddan DN, Sapp S, Califf RM, Patel UD, Singh AK. Secondary analysis of the CHOIR trial epoetin-alpha dose and achieved hemoglobin outcomes. Kidney Int. 2008;74:791-798.  [PubMed]  [DOI]  [Cited in This Article: ]
137.  Rosner MH, Bolton WK. The mortality risk associated with higher hemoglobin: is the therapy to blame? Kidney Int. 2008;74:695-697.  [PubMed]  [DOI]  [Cited in This Article: ]
138.  Yang W, Israni RK, Brunelli SM, Joffe MM, Fishbane S, Feldman HI. Hemoglobin variability and mortality in ESRD. J Am Soc Nephrol. 2007;18:3164-3170.  [PubMed]  [DOI]  [Cited in This Article: ]
139.  Gilbertson DT, Ebben JP, Foley RN, Weinhandl ED, Bradbury BD, Collins AJ. Hemoglobin level variability: associations with mortality. Clin J Am Soc Nephrol. 2008;3:133-138.  [PubMed]  [DOI]  [Cited in This Article: ]
140.  Double-blind, placebo-controlled study of the therapeutic use of recombinant human erythropoietin for anemia associated with chronic renal failure in predialysis patients. The US Recombinant Human Erythropoietin Predialysis Study Group. Am J Kidney Dis. 1991;18:50-59.  [PubMed]  [DOI]  [Cited in This Article: ]
141.  Pickett JL, Theberge DC, Brown WS, Schweitzer SU, Nissenson AR. Normalizing hematocrit in dialysis patients improves brain function. Am J Kidney Dis. 1999;33:1122-1130.  [PubMed]  [DOI]  [Cited in This Article: ]
142.  McMahon LP, McKenna MJ, Sangkabutra T, Mason K, Sostaric S, Skinner SL, Burge C, Murphy B, Crankshaw D. Physical performance and associated electrolyte changes after haemoglobin normalization: a comparative study in haemodialysis patients. Nephrol Dial Transplant. 1999;14:1182-1187.  [PubMed]  [DOI]  [Cited in This Article: ]
143.  Foley RN, Curtis BM, Parfrey PS. Erythropoietin therapy, hemoglobin targets, and quality of life in healthy hemodialysis patients: a randomized trial. Clin J Am Soc Nephrol. 2009;4:726-733.  [PubMed]  [DOI]  [Cited in This Article: ]
144.  Tonelli M, Winkelmayer WC, Jindal KK, Owen WF, Manns BJ. The cost-effectiveness of maintaining higher hemoglobin targets with erythropoietin in hemodialysis patients. Kidney Int. 2003;64:295-304.  [PubMed]  [DOI]  [Cited in This Article: ]
145.  Rao M, Pereira BJ. Prospective trials on anemia of chronic disease: the Trial to Reduce Cardiovascular Events with Aranesp Therapy (TREAT). Kidney Int Suppl. 2003;64:S12-S19.  [PubMed]  [DOI]  [Cited in This Article: ]
146.  Pfeffer MA. An ongoing study of anemia correction in chronic kidney disease. N Engl J Med. 2007;356:959-961.  [PubMed]  [DOI]  [Cited in This Article: ]
147.  Berns JS, Elzein H, Lynn RI, Fishbane S, Meisels IS, Deoreo PB. Hemoglobin variability in epoetin-treated hemodialysis patients. Kidney Int. 2003;64:1514-1521.  [PubMed]  [DOI]  [Cited in This Article: ]
148.  Lacson E Jr, Ofsthun N, Lazarus JM. Effect of variability in anemia management on hemoglobin outcomes in ESRD. Am J Kidney Dis. 2003;41:111-124.  [PubMed]  [DOI]  [Cited in This Article: ]
149.  Fishbane S, Berns JS. Hemoglobin cycling in hemodialysis patients treated with recombinant human erythropoietin. Kidney Int. 2005;68:1337-1343.  [PubMed]  [DOI]  [Cited in This Article: ]
150.  Auerbach M, Ballard H, Trout JR, McIlwain M, Ackerman A, Bahrain H, Balan S, Barker L, Rana J. Intravenous iron optimizes the response to recombinant human erythropoietin in cancer patients with chemotherapy-related anemia: a multicenter, open-label, randomized trial. J Clin Oncol. 2004;22:1301-1307.  [PubMed]  [DOI]  [Cited in This Article: ]
151.  Eschbach JW. Erythropoietin 1991--an overview. Am J Kidney Dis. 1991;18:3-9.  [PubMed]  [DOI]  [Cited in This Article: ]
152.  Muirhead N, Bargman J, Burgess E, Jindal KK, Levin A, Nolin L, Parfrey P. Evidence-based recommendations for the clinical use of recombinant human erythropoietin. Am J Kidney Dis. 1995;26:S1-S24.  [PubMed]  [DOI]  [Cited in This Article: ]
153.  Nissenson AR. Novel erythropoiesis stimulating protein for managing the anemia of chronic kidney disease. Am J Kidney Dis. 2001;38:1390-1397.  [PubMed]  [DOI]  [Cited in This Article: ]
154.  McMahon LP, Dawborn JK. Experience with low dose intravenous and subcutaneous administration of recombinant human erythropoietin. Am J Nephrol. 1990;10:404-408.  [PubMed]  [DOI]  [Cited in This Article: ]
155.  Paganini EP, Eschbach JW, Lazarus JM, Van Stone JC, Gimenez LF, Graber SE, Egrie JC, Okamoto DM, Goodkin DA. Intravenous versus subcutaneous dosing of epoetin alfa in hemodialysis patients. Am J Kidney Dis. 1995;26:331-340.  [PubMed]  [DOI]  [Cited in This Article: ]
156.  Kaufman JS, Reda DJ, Fye CL, Goldfarb DS, Henderson WG, Kleinman JG, Vaamonde CA. Subcutaneous compared with intravenous epoetin in patients receiving hemodialysis. Department of Veterans Affairs Cooperative Study Group on Erythropoietin in Hemodialysis Patients. N Engl J Med. 1998;339:578-583.  [PubMed]  [DOI]  [Cited in This Article: ]
157.  Besarab A, Reyes CM, Hornberger J. Meta-analysis of subcutaneous versus intravenous epoetin in maintenance treatment of anemia in hemodialysis patients. Am J Kidney Dis. 2002;40:439-446.  [PubMed]  [DOI]  [Cited in This Article: ]
158.  Kindler J, Eckardt KU, Ehmer B, Jandeleit K, Kurtz A, Schreiber A, Scigalla P, Sieberth HG. Single-dose pharmacokinetics of recombinant human erythropoietin in patients with various degrees of renal failure. Nephrol Dial Transplant. 1989;4:345-349.  [PubMed]  [DOI]  [Cited in This Article: ]
159.  Besarab A. Physiological and pharmacodynamic considerations for route of EPO administration. Semin Nephrol. 2000;20:364-374.  [PubMed]  [DOI]  [Cited in This Article: ]
160.  Granolleras C, Branger B, Beau MC, Deschodt G, Alsabadani B, Shaldon S. Experience with daily self-administered subcutaneous erythropoietin. Contrib Nephrol. 1989;76:143-147; discussion 147-148.  [PubMed]  [DOI]  [Cited in This Article: ]
161.  Parker KP, Sands JM. Weekly subcutaneous erythropoietin maintains hematocrit in chronic hemodialysis patients. J Am Soc Nephrol. 1993;3:1717-1718.  [PubMed]  [DOI]  [Cited in This Article: ]
162.  Locatelli F, Baldamus CA, Villa G, Ganea A, Martin de Francisco AL. Once-weekly compared with three-times-weekly subcutaneous epoetin beta: results from a randomized, multicenter, therapeutic-equivalence study. Am J Kidney Dis. 2002;40:119-125.  [PubMed]  [DOI]  [Cited in This Article: ]
163.  Mircescu G, Garneata L, Ciocalteu A, Golea O, Gherman-Caprioara M, Capsa D, Mota E, Gusbeth-Tatomir P, Ghenu A, Baluta S. Once-every-2-weeks and once-weekly epoetin beta regimens: equivalency in hemodialyzed patients. Am J Kidney Dis. 2006;48:445-455.  [PubMed]  [DOI]  [Cited in This Article: ]
164.  Grabe DW. Update on clinical practice recommendations and new therapeutic modalities for treating anemia in patients with chronic kidney disease. Am J Health Syst Pharm. 2007;64:S8-S14; quiz S23-S25.  [PubMed]  [DOI]  [Cited in This Article: ]
165.  Gonzalez-Baron M, Ordonez A, Franquesa R, Constenla M, Montalar J, Gili F, Camps C, Sancho JF, Perez-Cachot P. Response predicting factors to recombinant human erythropoietin in cancer patients undergoing platinum-based chemotherapy. Cancer. 2002;95:2408-2413.  [PubMed]  [DOI]  [Cited in This Article: ]
166.  Alexander SR. Pediatric uses of recombinant human erythropoietin: the outlook in 1991. Am J Kidney Dis. 1991;18:42-53.  [PubMed]  [DOI]  [Cited in This Article: ]
167.  Locatelli F, Olivares J, Walker R, Wilkie M, Jenkins B, Dewey C, Gray SJ. Novel erythropoiesis stimulating protein for treatment of anemia in chronic renal insufficiency. Kidney Int. 2001;60:741-747.  [PubMed]  [DOI]  [Cited in This Article: ]
168.  Jadoul M, Vanrenterghem Y, Foret M, Walker R, Gray SJ. Darbepoetin alfa administered once monthly maintains haemoglobin levels in stable dialysis patients. Nephrol Dial Transplant. 2004;19:898-903.  [PubMed]  [DOI]  [Cited in This Article: ]
169.  Ling B, Walczyk M, Agarwal A, Carroll W, Liu W, Brenner R. Darbepoetin alfa administered once monthly maintains hemoglobin concentrations in patients with chronic kidney disease. Clin Nephrol. 2005;63:327-334.  [PubMed]  [DOI]  [Cited in This Article: ]
170.  Piccoli A, Malagoli A, Komninos G, Pastori G. Subcutaneous epoetin-alpha every one, two, and three weeks in renal anemia. J Nephrol. 2002;15:565-574.  [PubMed]  [DOI]  [Cited in This Article: ]
171.  Provenzano R, Bhaduri S, Singh AK. Extended epoetin alfa dosing as maintenance treatment for the anemia of chronic kidney disease: the PROMPT study. Clin Nephrol. 2005;64:113-123.  [PubMed]  [DOI]  [Cited in This Article: ]
172.  Benz R, Schmidt R, Kelly K, Wolfson M. Epoetin alfa once every 2 weeks is effective for initiation of treatment of anemia of chronic kidney disease. Clin J Am Soc Nephrol. 2007;2:215-221.  [PubMed]  [DOI]  [Cited in This Article: ]
173.  McGowan T, Vaccaro NM, Beaver JS, Massarella J, Wolfson M. Pharmacokinetic and pharmacodynamic profiles of extended dosing of epoetin alfa in anemic patients who have chronic kidney disease and are not on dialysis. Clin J Am Soc Nephrol. 2008;3:1006-1014.  [PubMed]  [DOI]  [Cited in This Article: ]
174.  Spinowitz B, Germain M, Benz R, Wolfson M, McGowan T, Tang KL, Kamin M. A randomized study of extended dosing regimens for initiation of epoetin alfa treatment for anemia of chronic kidney disease. Clin J Am Soc Nephrol. 2008;3:1015-1021.  [PubMed]  [DOI]  [Cited in This Article: ]
175.  Macdougall IC. Optimizing the use of erythropoietic agents-- pharmacokinetic and pharmacodynamic considerations. Nephrol Dial Transplant. 2002;17 Suppl 5:66-70.  [PubMed]  [DOI]  [Cited in This Article: ]
176.  López-Gómez JM, Valderrábano F. Resistencia al tratamiento con eritropoyetina. Nefrologia. 1999;19 Suppl 3:S4-S11.  [PubMed]  [DOI]  [Cited in This Article: ]
177.  Valderrabano F. Erythropoietin in chronic renal failure. Kidney Int. 1996;50:1373-1391.  [PubMed]  [DOI]  [Cited in This Article: ]
178.  Lacombe C. Resistance to erythropoietin. N Engl J Med. 1996;334:660-662.  [PubMed]  [DOI]  [Cited in This Article: ]
179.  Rao DS, Shih MS, Mohini R. Effect of serum parathyroid hormone and bone marrow fibrosis on the response to erythropoietin in uremia. N Engl J Med. 1993;328:171-175.  [PubMed]  [DOI]  [Cited in This Article: ]
180.  Sitter T, Bergner A, Schiffl H. Dialysate related cytokine induction and response to recombinant human erythropoietin in haemodialysis patients. Nephrol Dial Transplant. 2000;15:1207-1211.  [PubMed]  [DOI]  [Cited in This Article: ]
181.  Lago M, Pérez García R, Arenas J, De los Reyes B, Anaya F, Garcia MS,  Dall’Anesse C, Valderrábano F. Pérdidas de carnitina en hemodiálisis (HD): influenciade diferentes dializadores y su relación con el estado nutricional. Nefrologia. 1995;15:55-61.  [PubMed]  [DOI]  [Cited in This Article: ]
182.  Kooistra MP, Struyvenberg A, van Es A. The response to recombinant human erythropoietin in patients with the anemia of end-stage renal disease is correlated with serum carnitine levels. Nephron. 1991;57:127-128.  [PubMed]  [DOI]  [Cited in This Article: ]
183.  Bommer J. Saving erythropoietin by administering L-carnitine? Nephrol Dial Transplant. 1999;14:2819-2821.  [PubMed]  [DOI]  [Cited in This Article: ]
184.  de los Reyes B, Navarro JA, Perez-Garcia R, Liras A, Campos Y, Bornstein B, Arenas J. Effects of L-carnitine on erythrocyte acyl-CoA, free CoA, and glycerophospholipid acyltransferase in uremia. Am J Clin Nutr. 1998;67:386-390.  [PubMed]  [DOI]  [Cited in This Article: ]
185.  Eknoyan G, Latos DL, Lindberg J. Practice recommendations for the use of L-carnitine in dialysis-related carnitine disorder. National Kidney Foundation Carnitine Consensus Conference. Am J Kidney Dis. 2003;41:868-876.  [PubMed]  [DOI]  [Cited in This Article: ]
186.  Pronai W, Riegler-Keil M, Silberbauer K, Stockenhuber F. Folic acid supplementation improves erythropoietin response. Nephron. 1995;71:395-400.  [PubMed]  [DOI]  [Cited in This Article: ]
187.  Pérez-García R, Rodríguez-Benítez P, Villaverde MT, Valderrábano F. [Is the index of response to erythropoietin (IRE) a good marker of adequate dialysis?]. Nefrologia. 2001;21:606-607.  [PubMed]  [DOI]  [Cited in This Article: ]
188.  Kaysen GA, Muller HG, Ding J, Chertow GM. Challenging the validity of the EPO index. Am J Kidney Dis. 2006;47:166.  [PubMed]  [DOI]  [Cited in This Article: ]
189.  Lopez-Gomez JM, Portoles JM, Aljama P. Factors that condition the response to erythropoietin in patients on hemodialysis and their relation to mortality. Kidney Int Suppl. 2008;47:S75-S81.  [PubMed]  [DOI]  [Cited in This Article: ]
190.  Sherman M, Cohen L, Cooper MA, Elkashab M, Feinman V, Fletcher D, Girgrah N, Heathcote J, Levstik M, McNaull WB. Clinical recommendations for the use of recombinant human erythropoietin in patients with hepatitis C virus being treated with ribavirin. Can J Gastroenterol. 2006;20:479-485.  [PubMed]  [DOI]  [Cited in This Article: ]
191.  Yoshida EM, Dar Santos A, Partovi N, Ford JA. Erythropoietin and hepatitis C therapy: useful adjuvant therapy but remember to treat the patient and not just a number. Can J Gastroenterol. 2006;20:519-520.  [PubMed]  [DOI]  [Cited in This Article: ]
192.  Tseng KC, Chen LH, Chen CY, Chang TT, Chou AL, Wu IC, Cheng PN. Low dose erythropoietin-beta improves anemia and maintains ribavirin dose in chronic hepatitis C patients receiving combination therapy with ribavirin plus pegylated interferon Alfa-2b. Hepatol Res. 2009;39:539-545.  [PubMed]  [DOI]  [Cited in This Article: ]
193.  Kamar N, Guitard J, Ribes D, Esposito L, Rostaing L. A monocentric observational study of darbepoetin alfa in anemic hepatitis-C-virus transplant patients treated with ribavirin. Exp Clin Transplant. 2008;6:271-275.  [PubMed]  [DOI]  [Cited in This Article: ]
194.  Kearney KR, Thornton JJ, Navarro VJ. Taribavirin for the treatment of chronic hepatitis C. Expert Opin Pharmacother. 2008;9:3243-3249.  [PubMed]  [DOI]  [Cited in This Article: ]
195.  Brines M, Cerami A. Erythropoietin-mediated tissue protection: reducing collateral damage from the primary injury response. J Intern Med. 2008;264:405-432.  [PubMed]  [DOI]  [Cited in This Article: ]
196.  Joyeux-Faure M. Cellular protection by erythropoietin: new therapeutic implications? J Pharmacol Exp Ther. 2007;323:759-762.  [PubMed]  [DOI]  [Cited in This Article: ]
197.  Brines M, Patel NS, Villa P, Brines C, Mennini T, De Paola M, Erbayraktar Z, Erbayraktar S, Sepodes B, Thiemermann C. Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc Natl Acad Sci USA. 2008;105:10925-10930.  [PubMed]  [DOI]  [Cited in This Article: ]
198.  Mikhail A, Covic A, Goldsmith D. Stimulating erythropoiesis: future perspectives. Kidney Blood Press Res. 2008;31:234-246.  [PubMed]  [DOI]  [Cited in This Article: ]
199.  Macdougall IC. Novel erythropoiesis-stimulating agents: a new era in anemia management. Clin J Am Soc Nephrol. 2008;3:200-207.  [PubMed]  [DOI]  [Cited in This Article: ]
200.  Bunn HF. New agents that stimulate erythropoiesis. Blood. 2007;109:868-873.  [PubMed]  [DOI]  [Cited in This Article: ]
201.  Locatelli F, Del Vecchio L. Optimizing the management of renal anemia: challenges and new opportunities. Kidney Int Suppl. 2008;109:S33-S37.  [PubMed]  [DOI]  [Cited in This Article: ]
202.  Provenzano R, Schiller B, Rao M, Coyne D, Brenner L, Pereira BJ. Ferumoxytol as an intravenous iron replacement therapy in hemodialysis patients. Clin J Am Soc Nephrol. 2009;4:386-393.  [PubMed]  [DOI]  [Cited in This Article: ]