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Introduction

This paper arose out of the analysis of a specific substantive problem:
the relationship between the research and development (R&D) expenditures of
firms and the number of patents applied for and received by them. There are
two salient aspects of the data we wish to analyze. 1) Our dependent

variable is a count of the total number of patents applied for by a

particular firm in a given year. It varies from zero to several or even

many, for some firms. 2) We have repeated observations for the same firms.
That is, our data form a combined time-series cross—section panel. 1In this

paper, we focus, therefore, on developing and adapting statistical models of
counts (non-negative integers) in the context of panel data and using them to
analyze the relationship between patents and R&D expenditures. This is not,
however, the only possible application for the methods discussed in this
paper. ' A variety of other economic data come in the form of repeated counts
of some individual actions or events. The number of annual visits to
dentists, the number of records purchased per month, the number of cars

owned, or the number of jobs held during a year, all have non-negligible

*MIT, NBER, Palo Alto, and Harvard University, respectively.
We are indebted to NSF Grants SES79-24108, S0C78-04279, and PRA79-13740

for financial support of this work.



probabilities of zero and are non-negative integers.

The statistical models we develop are applications and generalizations
of the Poisson distribution., After rewriting the Poisson distribution as a
function of a number of independent variables we have to deal with two addi-
tional issues: (1) Given the panel nature of our data, how can we allow for
separate persistent individual (fixed or random) effects? and (2) How does
one introduce the equivalent of disturbances-in-the-equation into the analy-
sis of Poisson and other discrete probability functions?

The first problem is solved by conditioning on the total sum of outcomes
over the observed years, while the second problem is solved by introducing an
additionél source of randomness, allowing the Poisson parameter to be itself
randomly distributed, and compounding the two distributions. The relevant
likelihood functions and the associated computational methods are described
in the body of the paper.

The substantive application continues the work of Pakes and Griliches
(1980a and b). In that work patent data for 8 years (1968-~1975) and 121 U.S.
companies were analyzed as function of their current and lagged R&D expendi-
tures. A log-log functional form was used and the "zero value" problem was
"solved" by (a) choosing companies so as to minimize this problem (only 8
percent of the observations were zero in any one year) and (b) setting zeroes
equal to one and adding a dummy variable to allow the equation to choose
implicitly another value between zero and one. The questions of interest
were (a) the strength (fit) of the relationship between patents and R&D, (b)

the elasticity of patents with respect to R&D expenditures, (c) the



shape of the distributed lag of R&D effects, and (d) the presence and sign of
a trend in this relationship. The major findings were: A high fit (R? = .9)
cross-sectionally and a lower (R? = .3) though still statistically
significant fit in the "within" time series dimension of the data. The
estimated elasticity was around 1.0 in the cross-sectional dimension,
dropping to about .5 in the within, shorter-run time dimension. The shape of
the distributed lag was not well defined, with some indication of lag-
truncation bias (the possible influence of pre-sample unmeasured R&D
expenditures) which could not, however, be well distinguished from a fixed
firm effect.* A negative time trend was found in most of the examined data
subsets.

In this paper we wish to reexamine the earlier findings using a more
appropriate model for such data, a model that reflects explicitly its integer
nature. We do not expect the results to change much since the "zero" problem
is relatively minor in this sample (8 percent). We are‘interested, however,

n de

ng this methodology because the sample is being expanded to encom-

oo
-

pass many more smaller firms with a concomitant increase in the importance of
such issues. We use a sample of 128 firms for the 7 years 1968~1974. The
patent data were fabulated for us by the Office of Technology Assessment and
Forecasting of the U.S. Patent Office and the R&D data were taken from the
Computstat tape and other sources (see Pakes and Griliches, 1980, for more
detail on sample derivation and construction), and deflated by an approximate

R&D cost deflator.

*It is difficult to distinguish in a short time series between a left-out
pre-sample cumulated R&D value whose effect is dying out slowly and a

" ermaneqt fixed" in ivgdual.firm effect, See Griliches and Pakes, 1980, for
farther discussion of these issues.



The rest of the paper is organized as follows: Section 1 presents the
simple Poisson regression model and applies it to our data. Section 2
develops a generalization which allows each firm to have its own average
propensity to patent by conditioning separately the count distribution of
each firm on the sum of its patents for the whole period. Section 3 allows
for the "over-dispersion'" in the data by letting each firm's Poisson
parameter have random distribution of its own, leading to the estimation of a
negative-binomial model for these data. Section 4 explores in our non-linear
context the parallels to the "within" - '"between" dichotomy in linear models.
Section 5 summarizes the major methodological and substantive results and

discusses some possible future lines of work.



1. The Poisson Model and Application

The Poisson distribution is often a reasonable description for events

which occur both "randomly and independently" in time.! It seems a natural

first assumption for many counting problems in econometrics. Let us denote
the Poisson parameter as A, and consider specifications of the form log A =

Xp where X is a vector of regressors which describe the characteristics of an

observation unit in a given time period. Denote n,, as the observed event

count for unit i during the time period t. The advantages of the Poisson
specification are: (1) in many ways it is analogous to the familiar

econometric regression specification. In particular, E(nit’xit) = Ait'

Furthermore, estimation of unknown parameters is straightforward and is done
either by an iterative weighted least squares technique or by a maximum
likelihood algorithm. The log likelihood function is globally concave so

that maximization routines converge rapidly. (2) The “zero problem," n,, =

0, is a natural outcome of the Poisson specification. 1In contrast to the
usual logarithmic regression specification we need not truncate an arbitrary
continuous distribution. Likewise, the integer property of the outcomes n,.
is handled directly. For large n.. a continuous approximation often

suffices. But for small n.., a specification which models the counting

properties of the data (both large and small) seems in order. (3) The
Poisson specification allows for convenient time aggregation so long as its
basic assumption of time independence holds true. Thus, if the counting

process is Poisson over time t=1,T with parameter Xit’ then the aggregate

T

data over period zero to T are also Poisson with parameter X,t = I A,t.
i i
t=1



This property permits the convenient generalization of the Poisson model

to be developed below. The time independence property

is also a potential weakness of our specification given the often noted
serial correlation of residuals in econometric specifications. We will
attempt to distinguish carefully between true time independence versus
apparent dependence due to unobserved heterogeneity of the individual units.

Our basic Poisson probability specification is

-A. n.

e 1t A 1t
_ - it

(1.1) pr(nit) = f(nit) .

In our application, i indexes firms and t indexes years and we specify log Ait =

XitB' Note that Ait is a deterministic function of Xit’ and the randomness in

the model arises from the Poisson specification for the N The moment
A de
generating function of the Poisson distribution is m(t) = e “e so that the
first two moments are E(n, ) = X . and V(n., ) = X\. . The regression
1t 1t it 1t
property of this specification arises from E(nit) = Ait’ but it is not

uncommon to find that the variance of n.. is larger than the mean

empirically, implying "overdispersion'" in the data. After an initial
exploration of the Poisson model, we shall consider the possibility of such

overdispersion,

The log likelihood of a sample of N firms over T time periods for the

Poisson specification is



N T
= - - 1
L(B) ‘z | xlt oo 1ogxit g, ]
1=1 t=1
(1.2)
N T X.. B
it
= I I [cl - e + nitxitB]
1=1 t=1
where Cl is a constant. The gradient and Hessian take the forms-
. B
oL _ it
3§ =l lt(nlt € )]
(1.3)
2 X, B
a L (g it
papr -~ L[ (%] X; Je I

The first order conditions indicate that an iterative nonlinear weighted

least squares program with Ny, Xit as the '"residual could be used to

estimate B by maximum likelihood (ML). The Hessian demonstrates that the

likelihood function is globally concave so long as X is of full column rank

X. B
and e '° does not go to zero for all Xit' With a globally concave likeli-

hood function, a wide choice of ML algorithms can be used. In our
applications convergence to the global maximum was always rapid. The
variance matrix of the asymptotic distribution V(B) is calculated from the
Hessian matrix evaluated at B.

We fit our initial Poisson specification to a model with current R&D and
five lagged values of R&D, and a time trend. The results are found in Table
1. We also present the corresponding estimates of a least squares regression
of 1og(nit) = X, B+ e, where log (nit) is set to zero and a dummy variable

used when n., = 0 . The results of the Poisson model are broadly similar to
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Correlation of the Standardized Residuals for the Poisson Model

Table la

68 69 70 71 72 73 74
68 1.0
69 .88 1.0
70 .80 .89 1.0
71 .74 .82 .87 1.0
72 .69 .77 .79 .89 1.0
73 .64 .77 .77 .82 .86 1.0
74 .55 .62 .62 .67 .75 .82 1.0
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OLS although note that the estimated standard errors of the Poisson estimates
are approximately three times smaller. The coefficient of current R&D is
higher but the sum of the lag coefficients are quite similar. We note an
exogeneous decrease in patents of 6% per year. Lastly, we have the somewhat
disturbing pattern of a U-shaped distributed lag which may well indicate a
substantial truncation effect. This problem will be eliminated shortly when
we specify firm specific effects.

We now consider alternative specifications of the basic Poisson model.
In column 4 of Table I we delete all lagged R&D. It turns out that when firm
specific effects are added that the lagged effects become quite small. Note
that the coefficient of current R&D is very close to the sum of the
coefficients in our initial specification. The exogenous time effect has now
decreased in magnitude to 4% per year. 1In column 5 we find very similar
though slightly lower results from the OLS regression. Lastly, in column 6
we add a dummy variable for the scientific sector which includes firms in the
drug, computer, scientific instruments, chemical, and electronic equipment
industries. We also add a variable for the inflation ad justed book value of
the firm in 1971. Both variables have strong positive effects on the
expected number of patents. 1In addition, we interact R&D with time to
attempt to sort out a pure exogenous effect of time from a decrease in the
effectiveness of R&D over time. The estimates indicate that the effect of
R&D seems to be decreasing since the estimated coefficient is -—.02 while the
time coefficient has now switched sign to +.04. Both effects are precisely
estimated and they tend to persist when we move to more elaborately specified

models.
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To evaluate the adequacy of the Poisson specification we now turn to an
investigation of the residuals. Starting with the Poisson residual u, = ong

A
. . . A .. . .
- Xit we define the standardized residual as uitd1v1ded by its estimated

. . A A o .
standard deviation: €. = (n. - A. )Y/VA. . We use these residuals to
it it it 1t

test our model specification in three related ways. First the independence

A 1
assumption can be tested by forming the 7 x 7 covariance matrix I =N
Noa A . . o .
% (e.e.') where Ei 1s a vector of residuals for firm i. One potential
1=1

A A
problem arises here. Since a common B is used to form u, under the null

hypothesis of zero covariance of the true uit’S’ induced covariance of order

1

A
(1/NT) exists among the u, 's. But since NT=896 in our sample , this problem

1t

and the associated Cox-Snell (1969) corrections are quite small . The
estimated correlation matrix for the specification of column 6 of Table 1 is
found in Table la. Note that significant correlation exists which casts

serious doubts on the adequacy of our Poisson specification.? Next we

consider the variance property. Given the Poisson specification the variance
. . . A2 1
of the €:p 8 should be unity. 1In Figure 1 we show a log~log plot of o, = Lo
-2 . -_1_AN~ = 1 _A .
I(e. = €.) for e.= = I e. against A, == I A. . We do not find the
it 1 1 T ¢ it 1 T ¢ 1t

expected one-to-one relationship at all. The variance increases considerably
. . . A2 -
more rapidly than does the mean. A simple regression of log o, on log Ai

A -—
takes the form, log oi = -.,68 + 1.42 log Xi. Thus, we need also turn our
i

attention to this failure of our initial specification. Lastly, we consider

the omnibus Pearson X2 type test for
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goodness of fit. Because we have estimated the coefficients by maximum
likelihood, the Chernoff-Lehmann (1954) problem of appropriate degrees of

freedom arises. However W = ZZeitz = 18,900 for column 2 of Table 1 which

far exceeds normal significance levels for even 896 degrees of freedom,
Likewise W = 15,655 for our last specification in column 6. The Pearson test
confirms our other results that a more general form than the simple Poisson

specification is required for an adequate representation of the patent data.
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2. Firm Specific Effects

Investigation of the standardized residuals from the Poisson estimation
clearly indicates the presence of serial correlation. Such a finding is not
uncommon in panel data of the type we are using. If unobserved firm specific
effects exist, the residuals for a given firm might all be of the same sign
indicating the way in which the firm deviates from thé "average firm." Also,
the finding of a U-shaped distributed lag indicates the possible presence of
firm specific truncation effects. We know from the anaiysis of linear panel
data models that there are two methods which can be used for this type of
problem. We explore first the random effects specification. In the
regression model this implies an equicorrelafed covariance matrix and is
sometimes sufficient to explain the apparent serial correlation. In our
Poisson specification the random effect has somewhat similar implications.

We specify Xit = Aitai where Ei is a random firm specific effect. The
Poisson parameter Xit is now also a random variable rather than a
deterministic function of Xit' Correlation of Xit and Xit' (¢t # t') arises
from the Ei while Xit and th are uncorrelated by the assumption of
independent Ei.

The other approach to firm specific effects is to condition on the o,

and apply conditional maximum likelihood techniques of Andersen (1970, 1972).
We then have a fixed effects specification. While asymptotic efficiency is
sacrificed by the conditioning, no distribution need be specified for the Ei.

Perhaps more important while we might specify the a. to be random,
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conditional on the Xit they may no longer be randomly distributed or

exchangeable, using diFinetti's approach. For example, firms which are
better at producing patents for unobserved reasons may invest more in R&D
because they obtain a higher return to the expenditure. The random effects
specification is then no longer valid.! We use Hausman's (1978) test to
decide whether there exists a significant non-random correlation between the
Xit and the ai's.

We first consider the random effects specification. Note that an
important difference exists between the random effects Poisson specification
and the random effects regression specification. Here the estimated B's
are inconsistent if the random effect is omitted from the specification. In
the regression specification, on the other hand, the random effects raise

~

only problems of efficiency. Because xit needs to be positive, we write it
X, B+ u,
1t "

. ~ i . . ‘s
in the form Ait = Aitai = e where W 1s the firm specific effect.

The Poisson probability specification then becomes

X. + .
1tB ul X. B+ u. n.
e-—e (e 1t 1) 1t
pr(nitlxit,Ui) = n. !
it
(2.1)
- eui . n
it iy it
_ e (Aite )
N !
it

The joint density of (nil’°"’nit) and u, takes the form
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LX) = pr(nil,...,n.

it PILITERER SP LR

e “ -
Mt Hiza, | 5.
A. ~-e it . it
T it i t e L{t ( )
Tt nit! | ° | £
N J -/

where g(ui) is the probability density function of u. 1In equation (2.2) we
have made the important assumption that the conditional density of My given

Xit equals the unconditional density of My Thus, the n's are assumed to be

randomly distributed across firms.

Since My is an unobservable random variable we now integrate it out from

u.
. i, . .
equation (2.2). To do so, we assume that}oci = e is distributed as a gamma

. . 2 . .
random variables with parameters (y,8) . We integrate by parts to find

n.
[;. it] o Zh, Ing,
00 it

_ t t
(2.3) pr(nil""’niT|Xil""’XiT) = Of HLTT;;;!! e oy f(ai)dai
rd
it
it 8 Ingy T(Znge +7)
=1 ! z + 6 (Zkit + 8] r(y)
t 1t 1t

Fd

w z-]

where T(+) is the gamma function, [(z) = Of £ " e "4t for z > 0. For this

. . . . 2
model the expectation of n., is Ykit/ﬁ and the variance 1is Ykit(xit + 8)/67.

t

Therefore, the ratio of the variance to the mean is now (Ait + 8)/8 so the

smaller § is, the larger the average ratio is. The variance to mean
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ratio grows with Xit which is what we observed previously in the residuals.
The log likelihood for this random effects specification takes the form

(2.5) L(B, v, 8) = C, - Nlogl'(y) + Nylog$ + f[f“it(xitg)
X. B

1t
- (y + Znit) log (Ze + §) + log I‘(Znit + v)]

t t

Maximum likelihood estimation of equation (2.5) is straightforward although
we can no longer prove global concavity due to the addition of the y and §
parameters. Evaluation of the log gamma function and its derivative (the
digamma function) is akin to calculation of a logarithm on a computer.
Starting values are provided by the initial Poisson estimates and guesses of
the gamma parameters using the moments Ea = v/8 and V(a) = Y/62.

Results of the random effects Poisson specification are given in columns
I to 3 of Table 2. We see that the U-shaped lag structure of R&D is somewhat
attenuated from that in Table 1, but there is still a significant positive
coefficient on the last lag. The ratio of the variance to the mean of the
firm effect implied by the model is approximately 10, except in column 3,
wherevwe have included two firm specific variables. When we include these
variables, the ratio drops almost to one. These results imply that the
random effects model fails to account completely for firm effects and we
proceed, therefore, to specify a fixed effects model.

We emphasized in our derivation of the random effects specification of

equation (2.3) the requirement that the unconditional and conditional density

of My given Xit was identical. This requirement can be dropped when a

conditional maximum likelihood approach is used to develop a fixed effects
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specification. But we cannot simply estimate separate M parameters in

equation (2.1) because for T held fixed and N large we have the incidental
parameter problem and maximum likelihood need not be consistent [See Neymann
and Scott (1948), Andersen (1973), and Haberman (1977).] Instead, we use the
conditional maximum likelihood approach of Andersen (1970, 1972) and

condition on the sum of patents Znit. Since the Poisson distribution is a
t
member of the exponential family, a sufficient statistic exists for Tki =
Zkit and it 1is Enit' Since Znit is distributed as Poisson with parameter
t

Ziit= aiZAit, conditional maximum likelihood follows in a straightforward
t

manner. Furthermore, it is known in the literature, e.g. Rao (1952), that

the distribution of a.. conditional on Znit gives a multinomial distribution
t

(2.6) T T-1
iy . 1Zn. = sy e . Zn, - In. In.
pr(nll, ’anl nlt) pr(nll, ’nl,T-l’ Mt nlt)/pr( n1t)
t=1 t=1
-0,
g b m, Cie
© t
In ~ n
! ! {
t(nit J (t lt)' I it it
= = t P
-Ix £n T/, X
~ ]
L e t( it!) . it
e (i)
t
(Zl’l,t '
t 1
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Table 2

Estimates of the Poisson Model with Firm Effects

Random Effects Fixed Effects‘

1 2 3 4 5 6
log RO .36 (.02) 45 (.01) .48  (.01) .31 (.04) .35 (.03) .48 (.03
log R_4 .03 (.04) .02 (.05)
log R_2 .06 (.05) .04 (.06)
log R_3 .08 (.05) .07 (.06)
log R_4 -.07 (.05) -.07 (.07)
log R_5 .13 (.03) .07 (.05)
time -.04 (.01) -.03 (.005) .037 (.003) | -.03 (.003) +.027 (.002)| .037 (0O
time-log R | -.017 (.006) ! -.017 (00
dummy (scien- .18 (.16) i -
tific sector) ? ,
log book .32 (oW | -
Y 1.20 (.15) .98 (.14) 11.40 (.15)
) .12 (.02) .070(.013) .85 (.14)
sum of log R .59 .45 AR .43 .35 LA1*
coefficients
log likelihood | -3827.5 -3846.18 -3779.6 ~3009.4 -3014.4 -2979.0
Test for - 15.2 13.7 .01
correlated firm
effects

Hi

Random effects a,= e ~, a; distributed independently as a gamma random

variable with parameters Y and 82,

Fixed effects: Estimates conditional on the sum of patents over all T years,

*"Sum" evaluated at T = 4,
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TABLE Z2a

Estimated Correlation of the BLUS-transformed Residuals

69 70 71 72 73 74
69 1.0
70 .21 1.0
71 -.05 .27 1.0
72 -.22 07 32 1.0
73 g -.22 -.09 .08 41 1.0
74 | ~.36 -.20 -.02 38 59 1.0

These residuals were computed using the parameter estimates in the

last column of Table 2.
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Furthermore, for our particular specification we have
X. + u. . + U, X, X.
_. 1t6 “1/(Zex B+ u ) B 5 B
Pit £
which is the so-called multinomial logit specification used by McFadden

(1974) in the discrete choice problem.? Define the share of patents for

firm i in a given year by Sip T nit/Z n.. - The logit model then explains the

share of total patents in each year given the firms' total number of patents
in T years.
The log likelihood function takes the form
N T T -, =X, )8
(2.7) L(B) =C,- £ I n. logZe
3 . it
i=1 t=1 s=1
It differs from the discrete choice likelihood function because here in

general all the sit's are non—zero instead of only one non-zero value for the

choice which is made. We define'ZitS = Xit - Xis and calculate the gradient

and Hessian

n. ~Z 3
(2.8) L oppIE g ST g
a8 . -Z. B 1ts
1t its s
Le
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2 . -Z.
oL _ _ 5 nlt S e 1tsB 7 '
383B! Z. its its
t 1
Mt Zits Cits '
+ —_ ! .
L 2 (Z € ths](Z € 1ts)
1t Z. S
_Zit
where Zi =L e ® . The Hessian takes the usual weighted cross product
S
-Z,
its

form. It is globally concave since by the Cauchy inequality I I I e
A its

—Zits _Zits !
) )

1
! i .
Z. Z. > f f 7 (z e Zite Le its so long as B remains

bounded. Existing logit programs can be altered to maximize equation (2.7).
Our computational experience found rapid convergence because of the global
concavity property.

The results for the conditional Poisson are given in columns 4 to 6 of
Table 2. 1In thé original specification with 5 lags, only the current value

of R&D contributes very much to Ait' Patents lagged one year as well as the

U-shape of the distributed lag no longer play a role. The firm specific

effect @, now stands for the accumulated stock of knowledge from past R&D in

the firm" and the sum of the lag coefficients is now .43 rather than the .59
value in the random effects specification.?®

In column 5 we estimate a model which contains only current R&D since a
X25 test took the value 10 which is not significant at the 5% level. We find
that current R&D has a coefficient of .35 which is 20% below the sum of the
coefficients in the previous specification. The time coefficient remains at

=-3% per year. 1In column 6 we redo the specification with a time and R&D
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interaction. This specification corresponds to that of column 3 where the
scientific sector dummy and book value variables have been absorbed into the
fixed effect. The coefficient of current R&D now rises to .48 while our
earlier findings about the potency of R&D are repeated., Time itself has a
positive coefficient of 47 per year while the interaction with R&D has a
coefficient of -.02. We find again that the effectiveness of R&D has been
diminishing with time in our data.

To test whether the firm specific effects play an important role we
consider two statistics, First we do an analysis of variance type test of
whether all the a's are equal to the overall comnstant. This is a likelihood
ratio (LR) test of the conditional model in column 6 of Table 2 against the
corresponding model in Table 1., Under the null hypothesis the statistic is

distributed as X%ZS' The LR test statistic exceeds 12,000 which is a clear

rejection. For a more interesting test, we compare the random effects
estimates to the fixed effects estimates using Hausman's (1978) test. For
columns 1 and 4, this test leads to a statistic distributed as x% under the
null hypothesis. Our statistic equals 15.2 which leads to a rejection of the’
random effects model. However, when we test column 3 against column 6 we
accept the null hypothesis that the firm specific effects remaining after
inclusion of the scientific sector dummy and the firm size variable are
independent of the Xit's. The value of the statistic is ,01, distributed as

X% under the null,

Lastly, we consider diagnostic tests. We can no longer disregard the

induced correlation in the conditional model since Zuit = 0 which follows
t
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. . PRIPRA A
from the fixed effects assumption and the definition Ait = Sitznit' Thus,
under the null hypothesis of no serial correlation among the u; ., we have

. . 1 .
serial correlation of order (TJ among the Uy To form a test for serial

correlation, we again disregard the possible correlation which arises from

A . A .
the B8's. Since B is estimated on 768 degrees of freedom, the Cox-Snell
(1969) corrections are quite small. On the other hand, the correlation which

. A . .
arises from I u, = 0, remains even as N, the number of firms, becomes
t

large.
. . N
Given the linear dependence among the us, s we want to transform from a

. . A . . ~ .
seven dimensional ,vector u. to a 6 dimensional vector Ei which under the null
i

hypothesis would not be serially correlated but would maintain the other
. . A ~
properties of ei. We need an orthogonal matrix P such that Pui = u, so that

T = E(:i;i) = I. P must be of order T - 1 = 6 and PP' = I. Beyond that we

are left with a wide choice of possible P's; we choose Theil's (1971) BLUS
procedure as our normalization. In the BLUS procedure P is chosen subject to
the two requirements we specified above and to minimize the expected sum of

squares of the error vector, where we ignore the B effect which is of order

172
OP(NT / ). We define the transformed residuals
~ _A 1 _
(2.9) u,o = up - (poyeluy, for t=2,...,7
~ 1 N
We then form the 6 x 6 estimated covariance matrix L = ﬁ-Z uu' which is found
i=]

in Table 2a. There is still evidence of some serial correlation, positive
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for adjoining years and negative for years far apart. The likelihood ratio
test, for diagonality of the correlation matrix, Anderson (1958, p.233),

takes the form

(2,100 = |F]7V2

because the diagonal elements of I are unity. Since our sample is large, we
can use the asymptotic expansion, Anderson (1958, p.239), to calculate -m

loglZ] = -124.2 x -1.09 = 135, for m = 128 - z% where the second term

accounts for higher order terms. Under the null hypothesis this statistic is

distributed as central X%S' Thus, we reject the null hypothesis of

independence even though the deviations exhibited in Table 2, column 6 are
not very interesting. Earlier we noted that the data exhibit
"overdispersion" which could have led to this rejection even though we
conditioned on the firm effect. Since the conditional fixed effects Poisson
specification does not solve this problem completely, we may want to allow
for another source of within stochastic variation. Such a more general model

is considered in the next section.
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3. Negative Binomial Models

Even with the fixed effects Poisson model we still have the restriction
that the variance and mean are equal, Enit = V(nit) = Ait' On the other

hand, the random efects Poisson had a variance to mean ratio of (Ait + 8)/6

which increases with Ait as our data indicates holds true. Speaking somewhat

loosely, we would like to combine the two models to permit the variance to
grow with the mean while at the same time we want to have a conditional fixed

effect a, which could be correlated with the right hand side variables,

especially R&D. To develop such a model, we begin with the famous negative
binomial specification of Yule and Greenwood (1920). We then develop a fixed
effects version of the negative binomial specification.

Yule and Greenwood in their model of accident proneness assumed that the
number of accidents in a year for a given worker followed a Poisson

distribution. They further assumed that the (unconditional) parameter Ai was

distributed in the population randomly and followed a gamma distribution.
Our situation differs in two respects from that of Yule and Greenwood.

First, we want to specify a conditional model for Ait to ascertain the

importance of research and development to the distribution of patents. Also,
we have panel data rather than a single cross—section so that we can allow
for both the possibility of permanent unobserved firm effects as well as the
possibility that these firm effects are correlated with the R&D and other
explanatory variables. To start, we return to the situation of Section 1 and
consider the yearly patents model. We assume that thé Poisson parameter xit

X. 8
follows a gamma distribution with parameters (y, &) and specify vy = e it



-27~-

1

with & common both across firms and across time. The mean and variance of

. B X. B
A. are then EA. = e 1t /8 and V(X. ) = e 1t /62. Note that even if X.
1t it it 1t

remains constant for a firm over time Xit can still vary. This situation

should be distinguished from the random effects specification of Section 1

X. B

1t '

where Ai = e so that Ait was constant for a given firm if the Xit 8

t 1
remained constant. On the other hand, in keeping with the models of Section

2, we have not allowed for firm specific effects. Thus, the Xit's are

independent for a given firm over time.

We now take the gamma distribution for the Ait and integrate by parts to

find

[}
(@]
—
8
ot
-
o
-
[md

e A £(A. )dA.

r{n. .
pr( 1t) ! it 1t 1t

(3.1)
I'(y +n. ) Y -n.
it (S it
F(Y)F(nit + 1) (l + 6) (1 +8)

which is the negative binomial distribution with parameters (Y,S8). The log

likelihood function is very similar to equation (2.5) with the differences
Xite
being that here vy = e rather than being constant and § is constant rather

than being a function of Xit' The same comments on computation apply with
the use of partial fraction expansions of the gamma and digamma functions

permitting rapid evaluation. The moments of .. have the form

X. B X. B
Enit =e 't /68 and V(nit) =e 't (1 + 6)/62. Therefore, the variance to
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mean ratio V(nit)/E(nit) = (1l + 68)/8 > 1., Thus, the negative binomial

specification allows for overdispersion with the original Poisson a limiting
A
case as § > ®», We estimate a § of about .05, implying a variance to mean
ratio of 21 which is roughly in line with the evidence in our data that we
presented earlier. There are two poténtial shortcomings of the negative
binomial specification: 1t does not allow for firm specific effects so that
serial correlation of the residuals (i.e. non-independence of the counts)
may be a problem. Also, the variance to mean ratio is assumed constant
across firms while previous evidence demonstrated that the ratio is probably
closer to an exponential function of the mean Qhere the exponent moderately
exceeds unity.

The estimates from the negative binomial specification are given in the
first two columns of Table 3. 1In the first column we consider a specifi-
cation with current R&D and time only. The coefficient of R&D equals .75,
which is a decrease of 15% from the corresponding model of Table 1l and which
may well arise from the overdispersion problem in the original Poisson
specification. We also estimate 6 to be .04 with quite a small asymptotic
standard error. The implied variance to mean ratio is 26, quite far from the
original Poisson specification of unity. 1In column 2 we add the time and R&D
interaction along with the scientific sector dummy variable and book value
for the firm. The estimated coefficient of current R&D is .56, which is
again 15% below the corresponding Poisson model. Time exerts a positive
effect while its interaction with R&D has a coefficient of -.012. The
declining effectiveness of R&D in producing patents once more seems to be the

dominant influence. Lastly, we estimate § = .057 for a variance to mean
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TABLE 3a

Estimated Correlation of the Transformed Residualsl

69 70 71 72 73 74
69 1.0
70 .22 1.0
71 .18 .28 1.0
72 .10 .08 .04 1.0
73 -.003 -.16 -.15 ~.04 1.0
74 .00 -.12 .07 .05 .03 1.0

1 These

residuals are computed using the results in the last column.
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ratio of 18.5, which again leads to a strong rejection of the Poisson
specification. But as we suspected might happen, when we compute
standardized residuals the problem of serial correlation reappears. The
correlation matrix is essentially the same as that in Table la. Thus, we
turn again to a model with firm specific effects to take account of this
problem,

In order to add firm specific effects to the negative binomial model we
also consider a random effects specification as we did in Section 2 for the
Poisson model. It is more convenient in this case, however, first to
describe the fixed effects version of our model and then add the random (no
correlation with the X's) interpretation to it. To do so we need to find a

convenient distribution for the sum of the patents for a given firm Znit
- t

which we will condition on as we did in the Poisson specification of equation
(2.5). There once we conditioned on the firm specific effect a, we returned
to a deterministic specification of the Ait' The situation differs here
because of the stochastic nature of the Ait even after conditioning. We

first find the moment generating function for the negative binomial

t -y

1+8-e ) . Since the sum of independent

distribution to be m(t) =

random variables equals the product of their moment generating functions we
see that if 6 is common for two independent negative binomial random
variables W, and Wy s then w, tw, =z is distributed as a negative binomial

with parameters (Y, + Y,, 8). We first derive the distribution, conditioned
1 2

on z, for the two observation case
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pr(wl)pr(z - wl)

(3.2) pr(wllz =w o+ w2) = e ()
Py, +w)) - 6)—(wl+w2)( s Yt EFYZ +w,)
F(y )T(w, + 1) I+ 3 Ty )T(w, + 1)
1 1 2 2
Ty, + v, + 2) Y, * Y
1 2 - 8 1 2
1+ 87 (g5

F(Yl + Yz)r(z + 1)

F(Yl + wl)I‘(Y2 + wz)F(Yl + Yz)l"(w1 + v, + 1)

F(Yl * Y, t z)F(Yl)T(YZ)T(wl + l)I'(w2 + 1)

Note that in equation (3.2) we are left with the ratio of gamma functions
which depend only on the parameter y, not on the parameter 8. Thus, each
firm, in effect, can have its own § so long as it does not vary over time.
The parameter § has been eliminated by the conditioning arguments.

More generally we consider the joint probability of a given firm's

patents conditional on the seven year total

F(Yit + n. ) I1(2Yit)r(znit + D

_ it t ot
(3.3 prlngy,ecungp|Ing ) = (1 T(y. JI(n. + l))(F(Zy. ¥ in. )
t 1t 1t t 1t t 1t

The marginal distribution of a given no. conditional on Znit is a negative

hypergeometric distribution (for integer values of the Yit's) so equation

(3.3) is sometimes called a negative multivariate hypergeometric distribution

for integer Yips €8 Cheng Ping (1964). An alternative derivation instead
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of proceeding via the negative binomial and conditioning can proceed from the
conditional Poisson derivation, i.e. the multinomial distribution of equation

(2.6). In equation (2.6) the multinomial parameters arose from the Poisson
X. B X. B
. . . _ _ e it
distribution p, = Xit/gkit e /fe

The natural mixing distribution

for the multinomial parameters 1is the Dirichlet distribution which takes the

pit's as random variables on the unit interval and enforces the adding up

condition. We then integrate over equation (2.6)

(In; )t Lnp, i
(3.4) - pr(nil""’niT|Znit) = —ﬁE:;T_ OI . Of [t it ) .
t

f(pil""’piT)dpil"'dpiT

n
' .
(Znit). p. 1t]
Hnit! t

I1(Znit * l)I‘(ZYit) I‘(Yit + 0. )

_ _t t I it
P(EYit * Enit) t I1(Yit)1ﬂ(nit + 1)

where f(pil""’piT) is the Dirichlet density and Yil""’YiT are the

parameters. Note that equations (3.3) and (3.4) are identical as expected.

The mean of equation (3.3) is En, =Y, In. /%Y. which is the same as
it ltt it 1t

Qitznit from the multinomial distribution. The variance takes the form of

t

the variance of a multinomial variate times a ratio which arises from the



-34-

Dirichlet parameters, V(nit) = (In,

p - v. /Zy. )(Zn. + ZIy.
: 1tYit/ Yit)(l Ylt/ Ylt)( n. Ylt)/

(1 + ZYit)' We have, thus, again increased the variance over the multinomial

case (equation 2.2) to allow for overdispersion. Now the Dirichlet

distribution occurs because each Xit is distributed as a gamma random

variable with parameters (Yit,6). Rescale the variables to take the form

(G_lY. ,1) and note that the random variable A. /(X., + X..) is distributed
it il 1l 12

as a beta random variable variable with parameters (G_lyil,é_lyiz). The

Dirichlet distribution is the multivariate generalization of the beta

distribution. Thus the random vector (A. /ZA. ,...,A._/IX._ ) is distributed
1l . it 1T ¢ iT

. . . -1
as a Dirichlet random vector with parameters oit’ t=1,...,T for Git=6 Yit'l

We have derived the conditional negative binomial model in two ways: The
first finds the conditional model for the negative binomial specification.
Equivalently, one can begin with the conditional Poisson model and let the

A. 's be random variables. Both derivations yield interesting insights into

1+
the basic model.

The log likelihood of the sample follows once we specify Y- We let

X. B W,

the parameters of the underlying model be (Yit’ 61) = (e it s ¢i/e Ywhere

both ¢i and W, are allowed to vary across firms. The mean of Ait=
. + .
X, B+ u

1 i XitB +zui
(e )/ ¢; while the variance is V(Ait) = (e

}/¢%. Therefore,
i

u.
. i . L .
we have multiplied the mean by e as we did for the deterministic Poisson

parameter in the fixed effects case. Likewise, the standard deviation has
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been multiplied by the same amount. Considering the unconditional negative

Xief vy Xieh *
binomial model we calculate En, = (e )/¢i with V(nit) = (e

u. M- W U.
l/¢§) (1 + ¢i/e 1] so that the variance to mean ratio is (e l/d,)i)(l+¢i/e 1).

Thus we allow for both overdispersion, which the fixed effects Poisson
specification did not, as well as a firm specific variance to mean ratio,
which the original negative binomial specification did not. With this

specification of Yip ve find the log likelihood for the conditional fixed

effects specification of equation (3.3)

'Xit8 XitB
(3.5)  L(B) = ¢, + Z[log I(Ze ™ ) - log I(Ze + In, )]
, 1 t t t
XitB X. B

+ Z%[log F(e

it
+ nit) - logP(e )]
1t

Estimates for the fixed effects negative binomial model are given in
columns 5 and 6 of Table 3. The first set of coefficient estimates are quite
close to the conditional Poisson model with the coefficient of R&D about one-
half as large as the original negative binomial specification. When we
interact time and R&D in column 6 we do find important differences from the
Poisson fixed effects model. First, the estimate of the coefficient of
current R&D is .42, which is somewhat lower than the Poisson model estimate
of .48, Next the pure time effect continues to be negative, although
insignificantly so, while in all previous models it becomes positive when the

interaction term was added. Correspondingly, the interaction term has a much
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smaller estimated magnitude. This last set of results continues to indicate
the decline in effectiveness of R&D in producing patents. But at the
midpoint of our time period the pure time effect was almost of the same size
as the interaction term. Thus, factors beyond the effectiveness of R&D may
have been important in explaining the decline in patenting.

,AS a check, we again compute residuals for the last fixed effects
specification. We use equation (2.8) to transform the residuals to
approximate independence under the null hypothesis of no serial correlation
and estimate the 6 x 6 corelation matrix which is given in Table 3a. There
is no sign of serious serial correlation now. The likelihood ratio test
based on equation (2.9) is calculated as -mloglfl = 28.7, which under the

null hypothesis is distributed as central X%S' It barely rejects the null

hypothesis of independence at the five percent level. The fixed effects
specification comes close to solving the non-independence problem,

In the 1940's Feller (1943) noticed the similarity of the mathematical
forms of the Yule-Greenwood (1920) overdispersion model and the Polya-
Eggenberger (1923) model of contagion. He drew the distinction between true
contagion (Polya-Eggenberger), where every favorable event increases (or

decreases) the probability of future favorable events, and apparent contagion

(Yule-Greenwood), which arises from population heterogeneity. In a single
cross—section the models cannot be distinguished as Feller points out
(p.398), "an excellent fit of Polya's distribution to observations is not
necessarily indicative of any phenomenon of contagion in the mechanism behind

the observed distribution." With patents we might well expect contagion to
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be present. One good idea might lead to several patents. Alternatively, the
"stock of knowledge leading to patents' may be depleted so that future
patents, conditioned on R&D, may be less likely. Although Feller is correct
about the cross-section case, can we look for true contagion in our panel
data? The answer seems to be yes. Population heterogeneity is accounted for
by the presence of the fixed effect after taking account of differences in
R&D. True contagion should then appear as either positive serial correlation
or negative serial correlation in the residuals. We find little evidence of
such serial correlation empirically. Note, however, that our evidence is not
as compelling as it might be. Our observation interval is a year, which may
tend to obscure the presence of contagion if it occurs for

short periods of time relative to one year's time. In order to be able to
give a more definitive answer, observations on the arrival time of patents
within a year would be required to test for '"bunching up'" of arrivals. We
would then require a different sampling scheme than we currently have to make
a study of the correlation of the arrival time intervals. But this type of
data is rather artificial Within‘the institutional and legal process for
patent applications. Also, the assumption of a fixed amount, i.e. uniform
flow, of R&D during the yéar would need to be modified. Attempting to
investigate the finer pattern of the data to probe the contagion question
does not appear promising. But looked at on a yearly basis, the presence of
firm specific effects together with the absence of substantial serial .
correlation does indicate the absence of contagion "in the large." 1t is
instructive to note how the presence of serial correlation in the original

Poisson or negative binomial model without firm specific effects might
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mislead us into incorrectly concluding the opposite, much in line with
Feller's remarks.
We lastly consider the random effects version of the negative binomial

specification. 1In the fixed effects specification we set the parameters of

X. B u

the underlying model as (Yit’ Gi) = (e Lt s ¢i/e ') so that both ¢i and My

vary across firms. Upon conditioning on the total number of patents in

X, 8

equation (3.4), the ¢i and H; parameters are eliminated and only Yip T e

appears. Analogously to the Poisson random effects specification, we now
assume that ¢i and W, are randomly distributed across firms, independent of

the Xit's° Given the choice of a probability distribution, we then have the

random effects negative binomial specification. An interesting difference

exists between the Poisson random effects specification and the negative

~

binomial random effects specification. 1In the Poisson case, Ait = Aitai

where a, is a random firm specific effect. Note that for constant Ao AL
is also constant, which would occur if the Xit’s are constant. However, in

the negative binomial specification Ait varies randomly across years even if

the Xitls are constant because it is a realization from a gamma probability

distribution each year. Thus, we have randomness both across firms and
across time, which corresponds to the usual specification in the linear case
where we have the variance components decomposition for the stochastic

disturbance .. = a. + n. .
1t 1 1t

H.
We now choose a distribution for e ' and for ¢i which will allow us to

integrate Gi out of the marginal probability statement
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(3.6) pr(nil"'"niTlXil""’XiT) = p(nil,...,niT]Xil,...,XiT,ui,¢i)g(ui,¢i)

where g(+) is the probability density of the incidental parameters. Again,

. M.
1. . . . .
let us assume that e is distributed as a gamma random variable with

parameter (b, 1). Furthermore, we also assume that ¢i is distributed as an
independent gamma random variable with parameters (a, 1)3. Consider the

u.
ratio 6i/(l + Gi) = ¢i/(e Yy ¢i) which can then be shown to be distributed
as a beta random variable with parameters (a, b). Therefore, Gi/(l + Gi) has

. . -1 a-1 b-1 .
a density function £(Z) = [B(a, b)] z (1 - z) where B(+) is the beta
function. The ratio Gi/(l + Si) takes values on the unit interval which is

appropriate for 6i > 0. The mean is E(Gi/(l + Gi)) = a/(a + b) with variance

2 . . .
V(Si/(l + Gi)) = ab/(a + b + 1)(a + b)". We integrate using the beta density

to find
(3.7) pr(nil,...,niT[Xil,...,XiT)
1 hal + \ N 1
_ fl § TV, Mit’ ; Tie (- Z‘)nit £(s. )da.
o i=1" F(Yit)F(nit + 1) i i i79%4
I'(a + b)T(a + ZYit)F(b + Znit) I‘(Yit + nit)

I
'(a)T(b)I'(a + b + ZYit + Znit) . F(Yit)r(nit + 1)

where z.= Si/(l + Gi). Note that the last term in equation (3.7) corresponds

exactly to a term in the fixed effects model of equation (3.4). But we now
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estimate additional parameters a and b from the beta distribution which

describe the distribution of the Gi across firms. . The log likelihood

function has the form

X. B
(3.8)  L(B,a,b) = Cg + N log[I(a + b)/T(a)T(b)] + I log I'(a + T e '* )
i t
X, 8
+log I'(b+Zn, )~-loglfa+b+Ze ™ +3n. )]
t it £ t it
K8 XieB
+ X I [log T(e + nit) - log T(e )1.
it

where C5 is a constant. Estimates of the unknown parameters are given in

columns 3 and 4 of Table 3.

The results of the random effects negative binomial specification fall
in between the estimates from the totals model and the estimates from the
fixed effects model. 1In column 3 of Table 3, where only R&D and time are

used in the specification for Yit’ the coefficient of R&D is estimated to be

.52, compared to .75 for the totals model and .37 for the fixed effects
model. The estimate of the time coefficient is negative and the same as the
fixed effects estimate. The parameters of the beta distribution are
estimated quite precisely along with a large increase in the likelihood
function compared to the totals model. The estimated mean § is 1.38, which
is significantly higher than for the totals model where the estimate of
(fixed) 6 is .04. The variance to mean ratio (at the mean) is now estimated
to be 1.72. But now the variance to mean ratio is allowed to vary across

firms rather than taking on a constant value as it does in the
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totals model. A Hausman test of the random versus fixed effects
specification yields 65.0 which leads to a rejection of the hypothesis of no
correlation between the Gi and R&D. This result was to be expected, given

the evidence in Figure 1 that Gi is negatively correlated with R&D.

In column 4 of Table 3 we now include the R&D-time interaction term and
the two firm specific variables, book value and scientific sector. The
results differ markedly from the Poisson case where this specification gave
almost identical results for the random effects and fixed effects models.
Here the estimates of the coefficients of R&D and book value differ signifi-
cantly in the two cases. The Hausman test statistic equals 114.0, which
clearly rejects the no correlation hypothesis. But the reason for the
rejection becomes apparent when we consider the differences between the
random effects Poisson specification and the random effects negative binomial
specification. In the latter, we estimate the variance to mean ratio to be

1.68. However, the negative correlation between R&D and Gi remains, which

leads to the rejection using the Hausman test. In the corresponding random
effects Poisson specification, Gi is not estimated (since the variance to

mean ratio is set to one) and only a firm specific mean effect Hy is allowed

to vary across firms. When both book value and the scientific sector dummy
are included in the Poisson model, they "explain" the firm effect. There-
fore, the Hausman test does not reject the no correlation assumption. In the

\

random effects negative binomial specification where both M and Gi are

permitted to vary, inclusion of book value and the scientific sector dummy do

not remove the correlation between 6i and R&D. Thus, the Hausman test
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rejects the no correlation assumption of the random effects specification in
favor of the fixed effects specification, which conditions on individual firm

values of My and 6i without needing the no correlation assumption.
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4, Between Firm Models

Within the context of the linear panel data models it is often useful
to separate the total sample variability into between firm and within firm

variability, That is, given the model y. = X. B + a. + n. i=1,N and
y ylt 1t 1

it?
t=1,T, the between model takes the form y;. = Xi B+ a, *+ng where the dot
. . s . 1 ;

notation signifies time averages, e.g. y. =7 Zyit The corresponding
within model is given by (y]._t - yi.) = (Xit—xi.)s *n,Tong This
decomposition is unique and the resulting samples are orthogonal which can
easily be seen by noting that if we stack the original model y = X8 + € for
£. = qo. + n. the between model arises from the projection P y = P Xf + P €

it i it e e e

-1 co

where P = I(X)e(e'e) "e', e a T long vector of ones. The within

specification arises from the orthogonal projection Qey = QeXB + Qes where

Qe= I(g)(l - Pe). Both models are of interest although often one cannot

obtain unbiased estimates of the parameters in the between model because of

1

lack of independence between the Xit and the firm specific effect a. Now

the conditional models we have been considering are analogous to the within
models for the linear specification. We demonstrate this fact by assuming

that aiand n,, are normally distributed, and conditioning on the mean number

of patents

covlypsy; )

(4.1) E(yitlyi.) HRSTLA var(yi ) (yi. - Xi.s)

+ —
X Bty ~% 8
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which, rearranged to E(yit -y ) = (Xit - Xi )8, yields the within

specification, However, in our models we cannot use linear projections which

separate the variables uniquely into X, , and X, ~ X;, components. We

explore the parallel definition of "between" models in this section. Our
first conditional model, the fixed effects Poisson specification, separates

the original total sample into a conditional multinomial probability times a

marginal Poisson probability
(4.2) pr(nil"'"niT'Xil""’XiT)
pr(nil"’"niTlXil"'"XiT’Enit’ai) pr(gnit,ailxil,...,XiT).

The first probability of the right hand side of equation (4.2) was derived in
equation (2.5) to be a multinomial distribution. The marginal probability

follows from taking the product of the moment generating function of the

t
-z z
T SXS SKSe
Poisson distribution T ms(t) = e e so that the sum In, is distri-
s=1 t '
buted as Poisson with parameter Ai = ins = TAi . We need to integrate out
s .

the unobservable random firm effect a. from the marginal probability for Zni
t

t

in equation (4.2). Therefore as we did in equation (2.3) we assume that a, =

u.
1 . . , . .
e is distributed as a gamma random variable with parameters Y and §. We

use the results of equation (2.3) on the sum of the patents Znit to derive
t

the marginal probability
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(4.3) pr(gnit|xil,...,XiT)
o ~ - ~
In. Y -Zn.
Xits . it s X, 8 . it I'(y + fnit)
= z z 8
[te ) Xit8 (te ! ) F(Y)r(znit + 1
Le + 6
t
T~ - — P -

Noté that as with the linear between specification, the between Poisson model
suffers from the same problem as the random effects Poisson specification --
it assumes that the firm specific effects are uncorrelated with the
explanatory variables, including R&D. Note also that all the Xit enter the

between model in equation (4.3) instead of just Xi- appearing.

8

The log likelihood for the between model is written

N X. B
(4.4) L(B, v, &) = Ce - NlogT'(y) + Nylogé + [Zn.t[log(Ze it ) -
i=1 t
XitB XitB
log(Ze + 8)) - ylog(Ze + 8) + logl(y + Znit)]
t t i

where C6 is a constant. Because of the nonlinearity introduced by the

exponential functions the between model does not depend on Xi- (or TXi.) like

the linear between model but instead depends on the within period variation

X. B
of the Xit via ze 't . Still, a close relationship to the linear case
t

exists. Rather than partitioning the sums of squares into a between and
within component, we partition the likelihood of the original sample into two

components, conditional and marginal, so that the log likelihoods add up L(B,

nil,...,niT) = LC(B, nil,...,niT| Enit) + LM(B, Enit) for a common parameter
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vector B. The log likelihood function on the left hand side of the equation
is given by equation (1.2) while the conditional log likelihood LP(.) is in

equation (2.5) and the marginal log likelihood Ly is the between model of

equation (4.4)., Similarly, the Fisher information regarding the parameters
: 82L
add up, JT= JC + JM for JT = ‘limﬁsgng with the variance matrices for the

estimates B following by matrix inversion. Although the interpretation is
not as neat in the Poisson case as in the linear case where no within sample
variation enters the between model, the idea of partitioning the information
in the data into two additive components still goes through.

In the first two columns of Table 4 we give the estimates of the between
Poisson specification. The coefficient of current R&D expenditures is
somewhat less than that of the original Poisson model. The estimates of Y
and § imply a ratio of variance to mean for the firm effect of about 4 rather
than 10, which we obtained for the random effects model on individual years
of data. When we add the firm variables, however, this ratio again becomes
near unity as in Table 2. The size of the coefficient on time interacted
with R&D suggests that the earlier R&D expenditures are substantially more
important than the later expenditures for the overall level of patents; this
result is consistent with the U-shaped lag we saw in the random effects
estimates in Table 2.

A similar decomposition of the original negative binomial specification
of equation (3.1) exigts. The within specification is given in equation

(3.3) as a ratio of gamma functions which takes the form of a negative



TABLE 4

Estimates of Marginal (''Between") Firm Models

Poisson g Negative Binomial
!
log R 75 (.04)  1.18 (.15) .79 (.05) | 1.27 (.45)
time - | -- bo=.22 (L16) . .67 (.49)
time-log R § | -.26 (.04) -.15 (.07)
dummy (scien- | % .20 (.18) .39 (.10)
tific sector)

: !

log book value +29 (.10 § -23 (.05)
]
intercept ; =2.07 (.55) -7.08 (2.93)
Y 1.29 (.15) 1.55 (.17)
s .23 (.03) .87 (.03)
a 9.1 (4.4) 151 (694)
b 731.7 (470) 15154 (71340)
log likelihood -806.5 -792.9 -790.0 i -776.0
|

i
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multivariate hypergeometric distribution. The between negative binomial
model follows from taking the product of the moment generating function of
the negative binomial distribution under the assumption that the underlying
gamma distribution for the Poisson parameter Ait has V¢ varying across years

but keeps Gi constant. The moment generating function is

=Ly, -
is
T 1+ Gi - et s
(4.5) S0 om () = —————

s 8.

s=1 i
which is a negative binomial with parameters (Zyit, Gi). To derive the
' t

between firm negative binomial model we make the same assumptions about Gi as

we did earlier for the derivation of the random effects model (equation 3.7).

We take the negative binomial distribution with parameters (I Yoo Gi)
t

and specify Gi/(l + Gi) to be distributed as a beta random variable so that
the between firm specification takes a generalized hypergeometric form,

X X. ) =

(4.6) pr(Zni EEEREL o

oy

T
(ZYit + Znit) I'(a + b) I'(a + zYit) I'(b + Enit)

r(Zy, ) T(Zn. + 1) T(a) T(b) I(a + b + Zy. + &n. )
it it it it

where a and b are the parameters of the underlying beta distribution. The
log likelihood function for equation (4.6) follows directly. It is
interesting to note that in equation (4.6) the leading terms in the numerator

and denominator arise from the combinatorial term in the negative binomial
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distribution of equation (2.5) while the remaining terms arise from the ratio
of two beta functions.

In columns 3 and 4 of Table 4 we give the results of the between
negative binomial model of equation (4.6). The most striking difference
between these estimates and those of the between Poisson model is that the
negative effect of later R&D expenditures has become a small_positive effect;
the steep slope of the R&D coefficient has flattened and the overall level is
much higher (.67 instead of .14 for constant R&D). Both models give the not
very surprising result that firm characteristics such as industry and size
are as important as R&D expenditures for the overall level of firm patenting.
These results should not be taken too seriously, however, since there.is very
little relevant variance in the marginal (between) dimension of the data to

identify the fine time structure of R&D effects.
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5. Summary

Our various models can be thought of as differing along two conceptual
dimensions: (1) where and to what extent do they allow for "disturbances in
the equation," for variability not explicitly accounted for either by the X's
or by the assumed underlying Poisson process, and (2) are the relevant
coefficents (B's) different when estimated in the conditionial ("within")
rather than in the marginal ("between") dimension of the data. That is, do
we get different answers when we focus on the shorter term time-series
aspects of the data than when we sum or average over a longer time period and
use primarily the cross-sectional aspect of the data. 1In Mundlak's (1978)
language, are the individual "effects" correlated with the X's?

Table 5 attempts to organize and summarize all of our different models.
We start with the "total” Poisson: It assumes no disturbances in the
equation and maintains the equality of coefficients across all dimensions of
the data. It can be partitioned into two components: conditional ("within')
and a marginal ('between'"). If the two yielded the same estimated coeffi-
cients, their log likelihoods would sum to the earlier total. The actual sum
is higher, implying that the coefficients do differ (as can also be seen in
column 3), that there is a correlation between individual firm effects and
their R&D expenditures.

All the other models represent different ways of adding randomness. The
Poisson "random effects'" model adds a pure firm disturbance with no within
(year to year) variability. Note the large increase in the log likelihood

(from -9,078 to =-3,780). The Negative Binomial "total" allows the Poisson



TABLE 5

Summary of Results

Log Likelihood

2
Total R&D Coefficient

Model Poisson Negative Poisson |Negative
Binomial Binomial
1. Totals (no firm effects) -9,077.5 -3,747.4 .57 (.006) .51 (.02)
2. Marginal (no firm effects) -6,065.2 -776.1 .56 (.008) .66 (,19)
3.  Conditional -2,979.0 | -2,467.4 .41 (.03) 40 (.04)
Sum of 2 and 3 -9,044.2 | -3,243.5
Test of 2 and 3!
against 1 X 2=66.6 x62=1008.
2
4. Totals (random effects) -3,779.6 -3,304.9 .41 (.01) 45 (.04)
5. Marginal (random effects) -792.9 -776.0 14 (.13) .67 (.19)
Sum of 5 and 3 -3,771.9 -3,243.4
Test of 5 and 3!
against 4 x 2=15.4 X62=123.
2

] These tests are likelihood ratio tests for the equality of the coefficients
in the marginal and conditional models.

2

.This coefficient is computed as the total effect of log R&D in 1971,

B+ 48
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parameter Ait to be distributed randomly, across firms and time, according to

a Gamma distribution. Adding such a disturbance again increases the like-
lihood greatly (from -9,078 to -3,747). The random effects negative
binomial, which is in effect a Beta distribution (as described in the
previous section), allows the variance of the effects to differ in the within
and between dimensions. It is essentially a '"variance compodents' version of
the negative binomial. It is clear from the results reported in Table 5 that
the data want both a disturbance in the conditional within dimension (compare
the conditionals for the negative binomial and Poisson) and a different one,
with a different variance, in the marginal (between) dimension. The big
changes in fit come from the introduction of such variability and from
allowing it to differ across these two dimensions of the data.l Most of this
variability is in the between dimension (compare the log likelihoods for the
two Poisson marginals, one without and the other with firm effects), but
there is also variability in the time dimension. The estimated coefficients
differ in the two dimensions, but much less so (the likelihood rises only
from -3,305 to -3,245).

Substantively, our results differ from those of Pakes and Griliches
(1980) primarily because of the introduction of additional firm specific
variables (log book value and scientific industry dummy) and the log R-time
interaction. Adding the firm specific variables reduces the coefficient of
log R from about .8 tq .6 and brings the "between'" and "within" estimates
closer to each other. While there is still some (positive) correlation left

between the individual firm propensity to patent and its R&D intensity, it is
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now much smaller. 1In fact, it would not be a bad approximation to assume
that controlling for industry and size, the remaining firm effects are
largely random.

Our estimate of the elasticity of patenting with respect to R&D is about
.4 and slightly lower than those of Pakes and Griliches. That is partly due
to our inclusion of only one log R term in the final analysis. The data we
used were not informative enough about the lag structure, and considering the
already complex nature of our computations, we did not experiment much with
this aspect of the specification. A more adequate specification of the lag
structure might have raised the sum of estimated coefficients by .l or .2.

The major new substantive finding is that the negative trend in the
patent data has a strong interactive component. That is, rather than the
propensity to patent just declining exogenously over time, firms are getting
less patents from their more recent R&D investments, implying a decline in
the "effectiveness" or productivity of R&D.

Methodologically, we have shown how a panel of count data can be
analyzed consistently.? We described and illustrated the theoretical and
empirical necessity to generalize the Poisson model to allow for both
"individual" effects and for "overdispersion" in the data and derived models
which allowed us to do it. More work needs to be done, however, on the
analysis of residuals from such models. Also, it would be interesting to
introduce firm effects which could decay over time. This would allow us to
consider the effects of lag truncation in such models (along the lines of the
Griliches-Pakes work for linear distributed lag models). But even without

such refinements, this type of model has many potential uses in econometric

data analysis which we expect to pursue further in the future.
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NOTES

Section 1

11t has a long history in the analysis of accident data with perhaps
the most famous example being von Bortkiewicz's 1898 study of accidental
death by mule kick in the German army. -

21t is interesting to note how similar our results are to the OLS
results which are unbiased (except for the zero problem) in the presence of-
serial correlation. It may turn out to be the case that the main effect of
serial correlation is on the estimated standard errors which are inconsistent
for both estimators.

Section 2

IThis problem has been recently discussed by Mundlak (1978), Hausman
(1978), Chamberlain (1980), and Hausman-Taylor (1980).

2Note that this specification is close to the classic Yule-Greenwood
(1920) specification which leads to a negative binomial specification. A
similar probability specification was derived by Bates and Neyman (1952) for
a somewhat different model of accident proneness from that of Yule and
Greenwood. Bates and Neyman named the distribution the multivariate negative
binomial distribution. It is also referred to as the negative multinomial
distribution.

3Chamberlain (1980) also derives a multinomial logit in his generali-
zation of Cox's (1970) fixed effects binomial logit model.

“With more years of data we might well want to let this initial stock
of knowledge decay over time. However, we did not find evidence of such a
decay process in our residuals.

5It may be interesting to report also the comparable original OLS
estimates for this model. Without the time interaction and firm specific
variables the estimated coefficient of log R is .81, .77, .29, and .39 for
the total, within, between, and variance-components specifications respec-
tively. With the additional variables they are .49, .54, .29, and .29. The
variance-components results are close to the within because most of our vari-
ance is between (95 percent for log Patents and 97 percent for log R) which
is downweighted in this specification. These results are mirrored in the
random-effects specification results reported in the text. Note, however,
that the comparable results are somewhat higher for the Poisson than the OLS
specification.
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Section 3

lye could easily specify 8 to change over time., However, preliminary
investigation did not demonstrate that this more general specification was

needed.

2Note that the scale parameter § is not identified here. We set &=1,
This result is to be expected for the conditional model given the results of

equations (3.2) and (3.3).

3Since these are unobservable random variables, the scale parameter
merely serves as a normalization. -

Section 4

lHausman (1978) considers a test for the presence of this correlation
which we have used in the preceding sections. Hausman-Taylor (1980) further
investigate the problem and devise a technique for consistent estimation,
even when correlation is present.

Section 5
2ection

1The log likelihood of the marginal negative binomial with random firm
effects 1s about the same without such effects, indicating that once the data
are summed, one disturbance is enough, the model cannot distinguish between
two different sources of variance,

2After this paper was written, an unpublished paper by G.C. Gilbert,
"Econometric Models for Discrete Economic Processes,'" which covers some of
of the same topics, was brought to our attention. Our basic model 1is the
same as his "multiplicative'" form of the Poisson model. However, the present
paper extends the Poisson and Negative Bionomial models to the panel data
setting where the independence of each observation is not a reasonable
assumption. In addition, we have obtained all our maximum likelihood
estimates by unconstrained optimization of the log likelihood function and
did not find the problems in obtaining estimates of the negative binomial

model that he found.
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