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New insights into cholangiocarcinoma: multiple stems and related 
cell lineages of origin
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Abstract Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies that may develop at any 
level of the biliary tree. CCA is currently classified into intrahepatic (iCCA), perihilar (pCCA) and 
distal (dCCA) on the basis of its anatomical location. Notably, although these three CCA subtypes 
have common features, they also have important inter-  and intra-tumor differences that can 
affect their pathogenesis and outcome. A unique feature of CCA is that it manifests in the hepatic 
parenchyma or large intrahepatic and extrahepatic bile ducts, furnished by two distinct stem 
cell niches: the canals of Hering and the peribiliary glands, respectively. The complexity of CCA 
pathogenesis highlights the need for a multidisciplinary, translational, and systemic approach to 
this malignancy. This review focuses on advances in the knowledge of CCA histomorphology, risk 
factors, molecular pathogenesis, and subsets of CCA.

Keywords Cholangiocarcinoma, classifications, inflammation, cells of origin, stem cells, molecular 
profiling

Ann Gastroenterol 2018; 31 (1): 1-14

Introduction

CCA is a heterogeneous group of malignancies emerging 
at any level of the biliary tree [1-3] (Fig. 1). CCA is classified 
into intrahepatic (iCCA), perihilar (pCCA) and distal (dCCA) 
based on its anatomical location [1-3]. Notably, although these 
three CCA subtypes have common features, they also have 
important inter-  and intra-tumor differences that can affect 
the pathogenesis and outcome [4-9]. The complexity of the 
pathogenesis and the pronounced heterogeneity of CCAs have 
impeded clinical goals in their management [10].

This review focuses on advances in the knowledge of CCA 
classifications and histomorphology, risk factors, and molecular 
pathogenesis, as well as the multiple subtypes of CCA. The 

existence of multiple cells of origin is presented and discussed as 
a possible major determinant of the intertumoral heterogeneity 
of CCA, suggesting the possibility of a CCA classification based 
on cells of origin. Finally, a model of interaction between the 
cell of origin, the molecular alterations, and the underlying liver 
and biliary pathologies in different CCA subsets is proposed.

New insights into CCA classifications

In the last few years, a huge number of different classifications 
have been proposed [1-11]. Currently, CCA is classified as 
iCCA, pCCA or dCCA [1-3]. However, this classification is 
biased by some pitfalls. Firstly, CCA is frequently diagnosed 
at an advanced stage; this is especially true for pCCA, where 
distinguishing between an intra-hepatic or extra-hepatic 
location proves challenging [11]. Secondly, small bile ducts 
and ductules are also present in the perihilar liver parenchyma. 
Therefore, pCCA may originate either from these smaller ducts 
or from hilar ducts, though this cannot be discriminated based 
on gross morphology. Likewise, iCCA may originate from large 
or small ducts of the intrahepatic biliary tree. Thirdly, recent 
studies demonstrated that, from a pathological and molecular 
point of view, there are no differences between pCCA and iCCA 
that originate from large bile ducts; therefore, the distinction 
between these two forms of CCA is losing relevance [4,9,12-14]. 
Taking into consideration the macroscopic pattern of growth, 
iCCA has been classified as mass-forming (MF), periductal 
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infiltrating (PI), and intraductal growing (IG) [2,15]. As far 
as pCCA and dCCA are concerned, both PI and IG patterns 
have been recognized. For pCCA a nodular+PI growth pattern 
predominates (>80%) [2,5,16-18].

Histologically, the vast majority of pCCAs and dCCAs are 
mucinous adenocarcinomas. In contrast, iCCAs are highly 
heterogeneous tumors and several classifications have been 
proposed [4,5,9,19]. The small bile duct type (mixed) iCCAs 
display an almost exclusively MF growth pattern  [4,5,9,19], 
and are frequently associated with chronic liver diseases 
(viral hepatitis or cirrhosis) [4,5,9,19,20]. Notably, this 
subtype shares clinicopathological similarities with 
cytokeratin (CK) 19-positive hepatocarcinoma (HCC) [4,21]. 
On the other hand, large bile duct type (mucinous) iCCAs 
may grossly appear as MF, PI or IG types; they are more 
frequently associated with primary sclerosing cholangitis 
(PSC) and can be preceded by preneoplastic lesions, such 
as biliary intraepithelial neoplasm or intraductal papillary 
neoplasm  [4,5,9,19]. Interestingly, the large bile duct type 
(mucinous) iCCAs share phenotypic traits with pCCA and 
pancreatic cancers [4]. In our opinion, this histological 
subtyping should be taken into serious consideration because 

it results in different risk factors, molecular profiles, and 
clinical management [3,4,9,14,22-28,52].

Multiple risk factors reveal CCA subtype-specific 
pathogenesis

The epidemiological profile of CCA and its subtypes (Fig. 1) 
displays enormous geographic differences. Although in most 
countries CCA is a rare cancer (incidence <6/100,000), its 
incidence may reach extremely high peaks in some populations of 
Chile, Bolivia, South Korea and North Thailand [29]. In particular, 
the variation in incidence rates is correlated with the different 
prevalence of risk factors. In regions of Thailand, for example, it is 
closely related to the incidence of liver flukes [30-32]. In the past 
century, a progressive increase in iCCA incidence was registered, 
whereas the incidences of both pCCA and dCCA seem to be 
decreasing [29]. Fig. 1 summarizes the worldwide epidemiology 
and incidence trends of intrahepatic and extrahepatic CCA.

In order to review the literature on risk factors associated 
with iCCA and/or p/dCCA, we searched for case series of iCCA 

Figure 1 Worldwide incidence (cases/100,000) of cholangiocarcinoma (CCA).
Data refer to the period 1971-2009. Green color identifies areas with lower incidence (<6/100,000 cases, rare cancer), while pink color indicates 
countries where CCA is not a rare cancer (>6/100,000  cases). Diagnoses have been classified according to the International Classification of 
Diseases (ICD-O-1, ICD-O-2, ICD-O-3, ICD-10, ICD-V9, ICD-V10, ICD-O). Where available, the more incident form (intrahepatic [IH] vs. 
extrahepatic [EH] CCA) and the temporal trend of incidence (↑increasing trend; ↕stable trend; ↓decreasing trend) have been reported
Modified from Banales et al. Nat Rev Gastroenterol Hepatol [ref. 3]
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and p/dCCA diagnosed according to the currently recognized 
criteria (i.e.  European RARECARE) [33], or case series with 
appropriate topographic classification of histologically verified 
CCA. The results of these studies, mostly case-control studies, 
are summarized in Table 1 [34-46].

Methods for collection of case-control studies investigating 
risk factors and for the preparation of Table 1

Table  1 was prepared to summarize findings regarding 
case-control studies that investigated risk factors associated 

Risk factors for iCCA 
[references]

Odds ratios for 
increased risk

Risk factors for pCCA/dCCA
[references]

Odds ratios for 
increased risk

Bile duct diseases and conditions Bile duct diseases and conditions

Cholecystitis [36] 8.5 Cholecystitis [36] 5.9

Cholelithiasis [35,40,161] 10.23-13.5 Cholelithiasis [35,36,45] 2.6-11

Hepatolithiasis [77§,37,39,40,43] 50.0-4.8; 6.7§ Hepatolithiasis [45] 3.09

Choledochal cysts [36,37,44,59] 10.7-43.03 Choledochal cysts [36] 47.1

Choledocholithiasis [35,43,161] 4.17-33.35 Choledocholithiasis [36,45] 34, 9.84

Cholangitis/PSC [36,44] 64.2 -75.23 Cholangitis/PSC [36] 45.7

Biliary cirrhosis/PBC [36,44] 17.08-19.8 Biliary cirrhosis/PBC [36] 11.8

Cholecystectomy [36,39] 3.6-5.4 Cholecystectomy [35,36,45] 5.8-12

Digestive diseases Digestive diseases

Inflammatory bowel diseases [36,58] 1.72-3.95 Inflammatory bowel diseases [36,58] 1.1-1.97

Crohn’s disease [36 44] 1.68-2.4 Crohn’s disease [36] 2.8

Ulcerative colitis [36,44] 3.3-4.5

Duodenal ulcer [36] 3.4 Duodenal ulcer [36] 1.9

Chronic pancreatitis [36] 5.9 Chronic pancreatitis [36] 9.3

Liver flukes Liver flukes

Clonorchis sinensis infection [38,42] 8.6-13.6 Clonorchis sinensis infection [42] 6.5

Endocrine disorders Endocrine disorders

Thyrotoxicosis [36] 1.5 Thyrotoxicosis [36] 1.7

Diabetes mellitus type II [37-39,43,75,86] 1.8-3.2 Diabetes mellitus type II [35,36,45,86] 1.5-3.2

Metabolic conditions and general risks Metabolic conditions and general risks

Obesity [36,44] 1.7-1.71

Alcohol intake >80 g/day [37,39,75] 1.52-5.21 Alcohol intake >80 g/day [39,45] 1.05-3.6

Smoking [36,44,162] 1.3-2.1 Smoking [36] 1.30

Metabolic syndrome [overall @ 44] 1.32-1.83 Family history of other cancer [45] 3.15

Dyslipoproteinemia [44] 1.65

Hypertension [44] 1.63

Chronic liver diseases Chronic liver diseases

Alcoholic liver disease [36,44] 3.1-5.69 Alcoholic liver disease [36] 4.5

Non specific cirrhosis [36,37,43,44,75] 18.24-28.79 Non specific cirrhosis [36,45] 5.4-6.16

Hemochromatosis [36] 2.6

Hepatic schistosomiasis [43] 11

Non alcoholic liver disease [36] 3

Unspecified viral hepatitis [44] 7.66

HCV infection [77§,36-40,44,75] 2.41-9.71; 9.7§ HCV infection [78] 1-3.05

Table 1 Summary of risk factors significantly associated with iCCA* and/or pCCA/dCCA# as assessed by case-control studies (Odds ratios by 
multivariate analyses; all odds ratios reported are significant for the 95% CIs)

(Contd...)
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with iCCA and/or pCCA/dCCA (extrahepatic CCA), 
assessed by multivariate analyses. The case-control studies 
were selected from papers returned by the following search 
terms on PubMed: (“cholangiocarcinoma” [MeSH Terms] 
OR “cholangiocarcinoma” [All Fields]) AND (“risk factors” 
[MeSH Terms] OR (“risk” [All Fields] AND “factors” [All 
Fields]) OR “risk factors”[All Fields] OR (“risk”[All Fields] 
AND “factor” [All Fields]) OR “risk factor” [All Fields])) 
NOT (“review”[Publication Type] OR “review literature as 
topic”[MeSH Terms] OR “review”[All Fields]) AND English 
[lang]. The selection criteria also required that works include 
histologically verified case series of iCCA and/or pCCA/
dCCA with appropriate topographic classification (Klatskin 
tumors classified as pCCA and excluded from the iCCAs). 
In the 14  case-control studies selected, several putative risk 
factors were evaluated. The risk factors were collected based 
on the pathophysiological mechanisms leading to CCA (cells 
primarily targeted or activated by diseases and therefore 
involved in the carcinogenic process) and on the homogeneity 
of risk factors.

The investigated risk factors could be classified on the 
basis of the tissue or the cell primarily targeted by diseases 
or conditions and is therefore likely to be involved in the 
carcinogenic process as cell or tissue of origin. In this view, 
biliary diseases such as cholangitis/PSC, secondary biliary 
cirrhosis, choledocholithiasis, hepatolithiasis, cholecystitis and 
liver flukes are pathological conditions that primarily affect 
large intra-  and/or extrahepatic bile ducts (Table  1) (Fig.  1). 
Appropriately, as shown in Table 1, these pathological conditions 
are risk factors for both iCCA and p/dCCA. Pancreaticobiliary 

maljunction, cholelithiasis, and cholecystectomy primarily 
affect extrahepatic bile ducts. Moreover, these conditions 
are recognized risk factors essentially for p/dCCA (Table  1) 
(Fig.  1). Parenchymal liver diseases, including chronic viral 
and non-viral liver diseases, recognize the interlobular bile 
ducts, bile ductules, and the canals of Hering as the primary 
targets; thus, these conditions are specific risk factors for iCCA 
(Table 1).

Moreover, several toxic and environmental risk factors 
are known or suspected to be related to CCA development; 
amongst them are nitrosamine-contaminated food, asbestos, 
dioxins, vinyl chlorides and, in the past, thorotrast [47]. 
However, the geographic distribution of the related CCA cases 
associated with these risk factors, and their combination with 
other identified factors or with subclinical inflammation of the 
liver and biliary tree (see obesity, metabolic diseases, steatosis), 
are largely unknown.

PSC, a disease affecting both intra-  and extrahepatic bile 
ducts, represents the strongest independent risk factor for both 
iCCA and pCCA as evaluated by multivariate analysis (Table 1). 
Several other dated studies evaluated the cumulative risk of 
CCA in PSC patients, but not the discrete risk of iCCA and/or 
pCCA in PSC [48-51]. The lifetime incidence of CCA among 
PSC patients ranges from 5-10% [52-55]. Clinicopathological 
observations suggested that PSC is specifically associated with 
the development of bile-duct (mucinous) type  CCA [4,56]. 
We have indeed found a PSC-specific pathologic spectrum 
involving peribiliary glands (PBGs) in large bile ducts that 
exhibit cell proliferation in PBGs, mucinous metaplasia, 
epithelial mesenchymal transition (EMT) traits, and dysplasia, 

Risk factors for iCCA 
[references]

Odds ratios for 
increased risk

Risk factors for pCCA/dCCA
[references]

Odds ratios for 
increased risk

HCV infection plus cirrhosis [40] 8.53

HBsAg positive [35,37-40,44,75,81°] 2.3-9.7
° 2.35-4.3

HBsAg positive [45,81°] 1.84
°0.92-2.14

HBsAg positive plus cirrhosis [35,40,41] 13-18 HBsAg positive plus cirrhosis [45] 3.42

HBsAg negative/HBcAb positive [45,81°] 1.09-1.81° HBsAg negative/HBcAb positive [45,81°] 1.50
0.88-1.24°

ABO blood types

ABO blood type A [45] 1.78

ABO blood type B [45] 1.27

ABO blood type AB [45] 0.44

ABO blood type and HbsAg positive [45] 3.04

ABO blood type A and HbsAg positive/
HBcAb positive [45]

3.79

Occupational exposure Occupational exposure

Occupational exposure to asbestos [46] 4.81 Occupational exposure to asbestos [46] 2.09
*histological verified cases; #histological verified cases comprise pCCA; §iCCA cases comprise 2 cases of cHCC-CCA; @ according the 2001 U.S. NCEP-ATP 
III definition; °Risk of CCA only in Asia
CCA, cholangiocarcinoma; iCCA, intrahepatic cholangiocarcinoma; pCCA, perihilar cholangiocarcinoma; dCCA, distal cholangiocarcinoma; HCV, hepatitis C 
virus; PSC, primary sclerosing cholangitis

Table 1 (Continued)
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suggesting a carcinogenic progression linked with the 
manifestation of PSC within the bile ducts [56].

In addition, inflammatory bowel diseases (IBD) associated 
with or preceding PSC may significantly affect the risk of 
CCA. In a European multicenter study, the coexistence and 
duration of IBD significantly increased the risk of CCA in PSC 
patients [51] and the incidence of CCA was highest within the 
first year after diagnosis of IBD [51]. According to a recent 
meta-analysis of IBD patients, the estimated relative risk was 
2.61 for iCCA versus 1.47 for pCCA [57]. Both Crohn’s disease 
(CD) and ulcerative colitis (UC) were found to be associated 
with an increased risk of CCA, whereas CD patients seemed 
to have a lower risk of CCA than UC patients [57]. Recently, 
it has been revealed that CD and no IBD (both vs. UC) were 
associated with a lower risk of malignancy in PSC patients 
(hazard ratio, 0.77; P=0.004) [58]. In contrast, in a US study 
neither IBD nor its duration conferred additional risk of CCA 
in PSC patients [59].

In another study, Welzel et al reported that duodenal 
ulcer disease was significantly more common among pCCA 
and iCCA cases than controls [36]. Many studies have 
demonstrated associations between CCA and Helicobacter 
pylori, but the correlation remains controversial and a direct 
causal relationship has not been established [60-66].

A positive association between chronic pancreatitis and 
CCA has also been found. The risk is greater in pCCA than in 
iCCA (Table 1).

A strong association exists between liver fluke infestation 
(Ophistorchis viverrini [OV] and Clonorchis sinensis) and 
the development of CCA, in particular in east Asia, where 
iCCA represents a large proportion of primitive liver cancers 
(Table 1) [67,68].

Some epidemiological studies have been conducted to 
evaluate the relationship between type  2 diabetes and CCA 
(Table  1) [36,69-71]. In this regard, it was demonstrated in 
a diabetes model and in human subjects affected by type  2 
diabetes that PBGs underwent proliferation and expansion 
in relation to hyperglycemia [72]. Interestingly, metformin 
significantly reduced the risk of iCCA in diabetic patients 
by 60% [73,74]. A  recent meta-analysis also confirmed that 
obesity, alcohol use, and smoking have an association with 
iCCA [75].

In recent years, it is becoming more evident that metabolic 
conditions, particularly metabolic syndrome, predispose to the 
development of primary liver cancers [3,44,76]. Nonalcoholic 
fatty liver disease/nonalcoholic steatohepatitis (NAFLD/
NASH) have been found to be independent predictors of iCCA 
development, though with a lower strength of association than 
other risk factors (viral hepatitis, cirrhosis), whereas NAFLD/
NASH failed to predict pCCA (Table  1). Hemochromatosis 
has also been identified as an independent predictor of iCCA 
development, though it failed to predict pCCA (Table 1).

It has long been known that the presence of cirrhosis 
increases the risk of iCCA [36,37,40,44,75]. Liver diseases 
related to hepatitis B virus (HBV) and hepatitis C virus (HCV) 
have been identified as definitive risk factors for CCA, with 
a stronger association for iCCA than pCCA [77]. A  meta-

analysis by Palmer et al of eight case-control studies indicated 
that HCV was associated with an overall odds ratio of 4.84 
for iCCA [75]. Li et al have furthermore described that this 
infection was associated, not only with iCCA, but even with 
an increased risk of pCCA [78]. The association with HBV 
is more significant where the prevalence of the infection is 
higher, such as in Asian countries [79,80]. As regards HBV 
infection (HBsAg seropositivity), the range of the odds ratio 
in the positive study was from 2.3 to 9.7 (Table  1) [81]. The 
presence of cirrhosis in HBV or HCV patients increases the 
risk of CCA (Table 1): the risk of iCCA increased 2.5-fold (95% 
confidence interval [CI] 1.2-5.1; P=0.02) in HBV, and 3.2-fold 
(95%CI 1.2-8.1, P=0.017) in HCV patients [41].

The burden of HCV in the last few decades has been 
associated with a specific increase in iCCA, as well as in 
HCC  [81]. Likewise, clinicopathological observations 
suggest that liver cirrhosis is specifically associated with 
the development of small-bile-duct (mixed) type iCCA [4]. 
Ductular reaction is a marker strongly associated with the 
evolution of chronic liver disease in cirrhosis. The origin of 
small-bile-duct type iCCA may be associated with the chronic 
proliferative activation of hepatic stem cells and senescence of 
mature hepatocytes in chronic liver diseases [12,82].

Molecular profiling and the identification of multiple 
CCA subsets

Enormous geographic and racial differences exist with 
CCA  [3,83]. Generally, the prominent genetic alterations 
described in CCAs affect Tumor Protein 53 (TP53) (DNA 
repair) [84-86], tyrosine kinase (KRAS Proto-Oncogene, 
GTPase [KRAS], B-Raf Proto-Oncogene, Serine/Threonine 
Kinase [BRAF], Small Mother Against Decapentaplegic 4, 
and Fibroblast Growth Factor Receptor 2) [8,84-88], and 
and Protein Tyrosine Phosphatase, Non-Receptor Type  3 
(PTPN3)  [89], deregulated Wnt Family Member/Catenin 
Beta 1 (WNT/CTNNB1) [90] and Notch pathways, epigenetic 
(Isocitrate Dehydrogenase (NADP(+)) 1, Cytosolic [IDH1] 
and Isocitrate Dehydrogenase (NADP(+)) 2, Mitochondrial 
[IDH2])  [28,84,88,91,92], and chromatin-remodeling 
factors [85] (AT-Rich Interaction Domain 1A, Polybromo 1, and 
BRCA1 Associated Protein 1) [84,86,88,91].

Since all known CCA risk factors are associated with 
chronic bile duct inflammation, it is understandable that 
molecular studies have also focused on genetic/epigenetic 
abnormalities involving inflammation-related genes [93-95]. 
In keeping with the initiation and progression of CCA in the 
inflammatory milieu, the enzyme cyclooxygenase (COX)-
2 is induced in CCA by both bile acids and oxysterols, the 
oxidation products of cholesterol that are increased in the bile 
during biliary inflammation [96,97]. Inflammatory cytokines 
may also induce the expression of inducible nitric oxide 
(NO) synthase (iNOS) in CCA. NO promotes DNA damage 
directly and also by inhibiting DNA repair mechanisms, 
thus promoting carcinogenesis [98,99]. iNOS activation 
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also stimulates the expression of COX-2 [100]. Interestingly, 
recurrent genetic variants in the promoter of human telomerase 
reverse transcriptase [88] have been described in CCA that 
developed in the chronic inflammation milieu of the hepatitis 
infection [88]. This molecular alternation could be correlated 
with the pivotal role of telomerase in controlling stem cells, 
extremely challenged in conditions of chronic inflammation 
because the senescence of the mature hepatocytes determines 
the secondary stem proliferative activation [12].

The comparative evaluation of the gene expression profile 
(transcriptome), clinicopathological traits, and patient 
outcomes in iCCA cases has allowed for the identification 
of two main biological classes of iCCA: 1) the inflammation 
class (38%), characterized by activation of inflammatory 
signaling pathways, overexpression of cytokines, and Signal 
transducer and activator of transcription 3 activation; and 
2) the proliferation class (62%), characterized by activation 
of oncogenic signaling pathways (i.e., RAS, mitogen-activated 
protein kinase and hepatocyte growth factor [HGF]/MET), 
DNA amplifications at 11q13.2, deletions at 14q22.1, mutations 
in KRAS and BRAF and gene expression signatures previously 
associated with poor outcomes for patients with HCC [7].

Technological advances have also allowed the differential 
characterization of genomic and genetic features of CCA 
epithelial and stromal compartments [101]. The tumor 
epithelium was defined by deregulation of the Human 
Epidermal Growth Factor Receptor 2 network and frequent 
overexpression of Epidermal Growth Factor Receptor, HGF/
MET, Plastid Ribosomal Protein S6, and Ki67, whereas the 
stroma was rich in inflammatory cytokines [101].

The molecular mechanism of OV-associated CCA has 
been also studied in experimental models [32,102]. In 
humans, molecular studies of iCCA associated with liver 
flukes demonstrated an overexpression of genes involved in 
xenobiotic metabolism (UDP Glucuronosyltransferase Family 2 
Member B11, UDP Glucuronosyltransferase Family 1 Member 
A10, Carbohydrate Sulfotransferase 4, Sulfotransferase Family 
1C Member 2), whereas, in contrast, non-OV-associated iCCA 
showed enhanced expression of genes related to growth factor 
signaling (Transforming Growth Factor β1, Placental Growth 
Factor, Insulin Like Growth Factor-Binding Protein). The draft 
genome of Clonorchis sinensis and transcriptomes of Clonorchis 
sinensis and OV have recently been elucidated [103,104]. In 
a large cohort of iCCA (n=102) associated with liver fluke 
infection, promoter hypermethylation in a handful of target 
genes was demonstrated [105]. Thus, the evaluation of the 
putative signature of liver flukes associated with CCA could 
help in screening and surveillance, with the perspective of an 
early diagnosis in subjects carrying the infestation [102].

CCA genetic susceptibility has been investigated 
in geographic areas where liver flukes are endemic. In 
these studies, specific haplotypes of COX2-coding gene 
Prostaglandin-Endoperoxide Synthase 2 (PTGS2) or Interlukin 
8 Receptor Beta (IL8RB) have recently been associated with a 
significant risk of CCA development [106].

Different molecular signatures of the high oncogenic risk 
were described in PSC patients. KRAS mutations were found 

in the bile fluid of 30% of PSC patients without evidence of 
CCA [107]. Since KRAS mutations are frequently observed in 
CCA, this could be an early event of bile-duct carcinogenesis 
in PSC patients. Notably, mutational profiling can be 
performed in cell-free DNA of bile supernatant [108]. The 
inflammatory microenvironment has also been associated 
with an aberrant DNA methylation profile in PSC-derived 
CCA, which provides survival signals for the tumor [109]. 
Genetic susceptibility of PSC patients to CCA development 
was demonstrated by studies concerning the natural killer 
cell G2D receptor, where specific genetic variants have been 
described in PSC patients [110].

As far as multilevel differences between iCCA and pCCA 
are concerned, it has been shown that pCCA expresses higher 
levels of	 Mucin 5AC, AKT Serin/Theronin Kinase, Keratin 
8, and Annexin, but less Vascular Endothelial Growth Factor. 
At a molecular level, distinct patterns of genetic mutations, 
methylation, and expression profiling may differentiate 
iCCA from pCCA. iCCAs were significantly more frequently 
B-cell Lymphoma 2+ and p16+, whereas pCCAs were 
more often Tumor Protein p53+ [111]. Miller et al revealed 
545 genes with altered expression in p/dCCA and 2354 in 
iCCA [112]. Mutations in IDH1 and IDH2 were found only 
in iCCA (n=9), but in none of the examined p/dCCA (n=22) 
and gallbladder cancer (n=75) cases [113]. Recent papers 
confirmed that liver-fluke-negative iCCAs are enriched with 
IDH mutants [14,28]. A cross-platform comparison of CCA 
with pancreatic cancer and HCC further emphasized the 
presence of distinct tumor subsets, suggesting similarities 
between IDH-mutant CCAs and HCCs, rather than pancreatic 
cancers [28]. Conversely, mutations in KRAS by tumor site 
demonstrated a predominance of KRAS mutations in pCCAs 
(53.3% of hilar vs. 6.7% of peripheral type)  [7]. As far as 
epigenetic abnormalities are concerned, the methylation of 
Ras Association Domain-Containing Protein 1 (RASSF1A) was 
more common in pCCA than in iCCA, while the opposite 
was demonstrated for the methylation of the Glutatione 
S-Transferase P (GSTP) gene [114]. Other reported alterations 
associated with iCCA included fibroblast growth factor 
receptor pathways and Ephrin Type-A Receptor 2 (EPHA2) 
mutations [115].

Finally, the histopathological distinction of 
cholangiolocellular differentiation of iCCA has been 
correlated with its genome-wide molecular features and 
clinical significance [115]. Based on cholangiolocellular 
differentiation status, iCCAs were stratified into iCCA 
with or without cholangiolocellular differentiation. iCCA 
with cholangiolocellular differentiation resembling an 
inflammation-related subtype revealed less aggressive 
histopathological features compared to iCCA without 
cholangiolocellular differentiation resembling a 
proliferation subtype. Accordingly, the former showed more 
favorable clinical outcomes, including overall survival, than 
iCCA without cholangiolocellular differentiation [116]. An 
updated expert review of a personalized approach based 
on molecular target therapies in CCA has recently been 
published [117].
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Variable clinical presentations and diagnostic 
features

The clinical presentation of CCA is largely influenced 
by anatomic location and pattern of growth, which depend 
on the cells of origin. Recent studies on the origin of CCA 
have demonstrated that CCA comprises at least two separate 
entities with distinct histology, progression, and risk factors. 
These subtypes have recently been classified into large-bile-
duct (mucinous) type  CCAs and small-bile-duct or mixed 
CCAs. According to multiple observations, pCCAs most 
likely originate from mucin-secreting cholangiocytes and 
PBGs [118] located in hilar bile ducts, show a large-bile-
duct (mucinous) type histology, and are associated with 
preneoplastic lesions emerging in surface epithelium [2,3] 
and PBGs [118]. On the other hand, iCCAs show inter-
tumor heterogeneity and are classified into two main different 
histological subtypes [4,119], which probably have different 
cells of origin [4]: the small-bile-duct or mixed CCA and 
the-large-bile duct (mucinous) type iCCAs [22,119]. This 
last iCCA subtype displays an immunohistochemistry (IHC), 
gene expression and clinicopathological profile that can be 
superimposed on pCCA [4,120-122]. Small-bile-duct or 
mixed CCAs usually show a peripheral localization and an 
MF growth pattern. In contrast, large-bile-duct (mucinous) 
type  CCAs usually show a periductal infiltrating and/or MF 
growth pattern [4]. Importantly, these separate entities differ 
in prognosis (with the mucin-producing iCCAs having a 
worse prognosis) and in associated diseases [4,10,82,123]. 
Indeed, parenchymal liver diseases, including chronic viral 
and non-viral liver diseases and liver cirrhosis, should be 
considered risk factors for mixed-type iCCAs [4,10,82,123]. In 
contrast, chronic biliary diseases or pathologies and conditions 
affecting the intrahepatic medium-large and extrahepatic 
bile ducts are risk factors for mucin-producing iCCAs and 
pCCAs [4,10,82,123]. These differences significantly affect the 
clinical presentation and modalities of diagnosis [4,10,82,123]. 
As far as the mixed-type MF iCCA is concerned, the clinical 
presentation is similar to that of other intrahepatic liver 
malignancies, but different from that of pCCA [4,10,82,123]. 
CCAs are usually asymptomatic in their early stages (20-25% 
of cases are incidental findings). Malaise, cachexia, abdominal 
pain, night sweats, fatigue and/or jaundice, whether associated 
or not with systemic manifestations, represent the clinical 
onset of symptomatic iCCA [4,10,82,123]. In contrast, a 
typically painless jaundice is the most frequent clinical onset 
in pCCA [4,10,82,123]. Regarding patients with PSC, CCA 
may present as the development of a rapid deterioration 
of clinical conditions or dominant stricture during follow 
up [3]. In general, the MF type represents the most frequent 
macroscopic presentation of iCCA (>90%), appearing on 
imaging as a nodule [3,123]. In the context of cirrhotic liver, 
it was demonstrated that, in contrast-enhanced magnetic 
resonance imaging (MRI), iCCAs consistently showed a lack 
of HCC hallmarks, though in computed tomography this 
occurs only in large nodules (>3 cm) [124-126]. Currently, the 
identification of HCC with stem-cell features (CK19+-HCC), 

combined HCC-CCA, cholangiolocellular carcinoma and 
bile-duct mixed type iCCA with imaging procedures is still an 
unsolved challenge [3,4,10,123,127,128]. Biopsy is therefore 
necessary after excluding HCC in cirrhosis, or in the context 
of a nodule in a non-cirrhotic liver [3,129]. From a histological 
point of view, the differential diagnosis of iCCA versus HCC 
or metastasis represents an unsolved problem [2,3,129,130], 
partly because of the lack of validation of specific markers.

Radiologically, pCCA usually appears as a dominant 
stricture; therefore, MRI+MRCP represents the imaging 
procedure with the highest diagnostic accuracy for 
localizing and sizing the stricture [3], though the definitive 
demonstration of malignancy is still a challenge [3]. In this 
respect, endoscopic retrograde cholangiopancreatography 
enables a number of procedures that may allow microscopic 
confirmation, including cytology, brushing, fluorescent 
in situ hybridization (FISH)-polysomy, biopsy, or further 
innovative techniques [3]. However, all these techniques have 
an unsatisfactory sensitivity [54,130-133], and even FISH-
polysomy demonstrated a low sensitivity for detecting CCA in 
PSC patients in a meta-analysis [133]. Essentially, the diagnosis 
of CCA still requires a combination of clinical, radiological and 
non-specific histological/biochemical markers [3].

Cells of origin and cancer stem cells: inter- and 
intratumoral heterogeneity

The cell of origin, or cancer-initiating cell, is considered 
to be the normal cell that receives the first cancer-causing 
mutation  [134,135]. On the other hand, cancer stem cells 
(CSCs) are the cells that sustain tumor growth and propagation 
[134,135]. Therefore, the phenotypes of cells of origin and 
CSCs may be substantially different [134,135].

CCA subtypes exhibit pronounced heterogeneity, raising 
the question of potentially diverse cellular origins [4,9-12]. 
Possible cells of origin are human Hepatic stem/progenitor 
cells (hHpSCs), immature neural cell adhesion molecule 
positive (NCAM+) cholangiocytes, mature (NCAM-) 
interlobular cholangiocytes, and PBGs (Fig. 1) [10]. According 
to different observations, pCCAs most probably originate 
from mucin-secreting cholangiocytes and PBGs [56,118] 
located in hilar bile ducts. Indeed, pCCAs are associated with 
preneoplastic lesions emerging in surface epithelium [2,3] 
and PBGs  [56,118]. Moreover, the IHC and gene expression 
profiling of pCCA have shown a strong similarity to the 
cylindrical, taller, mucin-producing cholangiocytes (and PBGs) 
lining hilar bile ducts [4,118,136]. On the other hand, iCCAs 
show inter-tumor heterogeneity, leading to their classification 
into two main different histological subtypes [4,119], most 
probably with different cells of origin [4]. The large bile duct 
(mucinous) type iCCAs arise in larger intrahepatic bile ducts; 
this portion of the intrahepatic biliary tree shares anatomical 
and embryological similarities with the extrahepatic biliary 
tree and pancreatic duct system [22,119]. This iCCA subtype 
displays IHC, gene expression and a clinicopathological 
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profile that can be superimposed on pCCA [4]; in addition, it 
displays (together with pCCA) large similarities to pancreatic 
ductal adenocarcinoma [120-122]. The pattern of growth 
and the presence of preneoplastic lesions in cholangiocytes 
and PBGs lining larger intrahepatic bile ducts identify these 
cells as candidate cells of origin [56,136]. The small bile duct 
(mixed) type iCCAs show an IHC and gene expression profile 
similar to mucin-negative cuboidal cholangiocytes that line the 
smaller bile duct (interlobular bile duct and bile ductules) [4]. 
In addition, the phenotypic and genotypic profiles are similar 
to those of cholangiolocellular carcinoma thought to originate 
from hepatic progenitor cells [4,137,138]. A  number of 
observations suggest that small bile duct (mixed) type iCCAs, 
together with cholangiolocellular carcinoma and CK19+ HCC, 
represent a group of primitive liver cancers originating from 
hHpSCs [4,21,139-141]. Thus, a unique feature of CCA is that 
it recognizes as origin tissues the hepatic parenchyma or large 
bile ducts, furnished by two distinct stem cell niches, the canals 
of Hering and the PBGs, respectively (Fig. 2) [12].

Based on the grade of maturation of the cell of origin 
within the two lineages, our suggestion is that CCAs could be 
classified as (Fig. 2):

•	 Primary liver parenchymal CCA: cholangiolo-carcinoma, 
small-bile-duct type (mixed) CCA, and combined HCC-
CCA. These tumors emerge within the liver parenchyma 
from the canals of Hering, bile ductules and interlobular 
bile ducts and indeed originate from hHpSCs, immature 
NCAM+ cholangiocytes, or mature (NCAM-) interlobular 
cholangiocytes.

•	 Primary biliary CCA: dCCA, pCCA, and large-bile-duct 
(mucinous) type iCCA. These tumors emerge from the 
extrahepatic biliary tree and larger intrahepatic bile ducts 
and originate from PBGs or the surface epithelium of 
corresponding bile ducts.
CSCs are defined as the cells within a tumor that possess 

the capacity for self-renewal and generation of heterogeneous 
lineages. CSCs are highly tumorigenic and are responsible for 
chemo-radio resistance and tumor recurrence [137,142,143]. 
Several CSC markers have been reported in human CCAs [137], 
including CD133 [144], epithelial cell adhesion molecule 
(EpCAM) [145], CD44 [146], CD13 [147] and CD90 [148]. In 
a recent study, CSCs comprised more than 30% of the tumor 
mass in human CCA sub-types [120]. Interestingly, the CSC 
profile was similar between mucinous iCCA and pCCA [120].

Figure 2 Classification of cholangiocarcinoma based on cell lineages of origin.
Based on the grade of maturation of the cell of origin within the two lineages, one constituted by the hepatic stem cells and non mucin-producing 
cuboidal cholangiocytes in Hering canals and bile ductules/interlobular bile ducts (see red points), the other constituted by peribiliary glands 
(PBGs) and surface epithelium of corresponding bile ducts (see blue points), our suggestion is that CCAs could be reclassified as:
• primary liver parenchymal CCA comprising combined HCC-CCA, cholangiolo-carcinoma, and small-bile-duct type (mixed) CCA
• primary biliary CCA comprising dCCA, pCCA, and large-bile-duct (mucinous) type iCCA
Modified from Cardinale et al. Nat Rev Gastroenterol Hepatol [ref. 119]
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Clinicopathological studies demonstrated the expression 
of cluster of designation (CD133) [34], Epithelial cell 
adhesion molecule (EpCAM) [35], CD44 and SRY-related 
HMG-box(Sox2)[146], and S100 calcium-binding protein 
A4 (S100A4) EMT marker [13,149] as being significant 
contributors to the worsening of CCA prognosis. EpCAM 
and CD133 are expressed by microparticles in a liquid 
biopsy of CCA patients and showed significant diagnostic 
and prognostic potential [150]. Moreover, Sox17, a 
biliopancreatic progenitor transcriptional factor that 
regulates the differentiation and maintenance of the biliary 
phenotype, acts as a tumor suppressor in CCA and its 
restoration may represent a promising new therapeutic 
strategy [151].

Vital stem-cell signaling pathways, especially Notch, 
Wnt/β-catenin or Hedgehog, are crucial players in CCA 
pathogenesis  [137,138] and could serve as molecular targets, 
contributing to efficient CSC target therapy [152,153]. However, 
CSC markers and signaling pathways are largely shared by 
normal and cancer stem cells, thus limiting targeted strategies 
specific to CSCs in primary liver cancers  [137,151,153]. 
Moreover, CSCs display considerable crosstalk and redundancy 
in signaling pathways [152,153].

Cancers that follow the stem cell model are also subject to 
clonal evolution, as well as heterogeneity from environmental 
differences within tumors [154,155]. Specifically, genetically 
distinct subclones, together with developmental pathways 
and epigenetic modifications, can contribute to functional 
heterogeneity [155]. In CCA, the tumor microenvironment 
is composed of cancer-associated macrophages, fibroblasts, 
and vascular cells and functions as a specialized CSC 
niche, thus contributing to the maintenance of stemness 
and chemoresistance [138,149,155-157]. Many factors 
needed for the maintenance of CSC within its niche 
(cellular components, soluble factors, cytokines and 
growth factors)  [138,157], should be considered additional 
potential targets for successful therapeutic strategies against 
CSC [152,153,157,158].

Human CCA cells expressed EMT markers both in situ 
and in vitro and, interestingly, subcutaneous xenografts from 
highly tumorigenic CD90+ or CD13+ CSCs were dominated 
by stromal markers [120]. By contrast, in intrahepatic 
xenografts in cirrhotic livers, tumors were dominated by 
epithelial traits reproducing the original human CCAs, 
suggesting that CSC subpopulations generate different 
types of cancer, depending on the microenvironment [120]. 
A similar phenomenon was described at the single-cell level 
in breast cancer, where metastatic cells from low-burden 
tissues were individuated by their increased expression of 
stem cell, EMT, prosurvival, and dormancy-associated genes 
with respect to high-burden metastasis, which is constituted 
by differentiated tumor cells [159]. The increased expression 
of stem and EMT genes in CCAs may imply a process of 
metastasis that could be determined by circulating tumor 
cells, characterized by an intermediate phenotype that is 
largely unknown and represents a research target with 
important clinical implications.

Concluding remarks

Regarding the origin of CCA, a physiopathology concept that 
emphasizes the lineage of origin over the cell of origin should 
be considered (Fig.  2) [10,12,13,148]. A  CCA classification 
based on the cell lineages of origin is more consistent with 
current knowledge regarding epidemiology and risk factors 
and may have important clinical implications in the definition 
of specific therapeutic targets (Fig. 2). Moreover, it highlights 
a lineage dependency of chronic liver diseases and related 
molecular carcinogenesis [12]. Since somatic mutagenesis 
and epigenome features are cell/lineage specific [160] and 
are largely driven by the preneoplastic pathologic milieu (see 
inflammation) (Fig. 3), the multiple lineages of origin plus the 
related diseases may explain the intertumoral heterogeneity 
observed at any level of CCA (Fig. 4). Emphasizing cell lineage 
in CCA development would have implications for preventive 
strategies in patients with clinical or subclinical underlying 
hepatic or biliary diseases, diagnosis and therapy (Fig. 4).
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